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Abstract 

Orexin deficiency results in the sleep disorder narcolepsy in many mammalian species, 

including mice, dogs, and humans, suggesting that the orexin system is particularly 

important for normal regulation of sleep/wakefulness states, and especially for 

maintenance of wakefulness. This review discusses animal models of narcolepsy; the 

contribution of each orexin receptor subtype to the narcoleptic phenotypes; and the 

etiology of orexin neuronal death. It also raises the possibility of novel therapies 

targeting the orexin system for sleep disorders including insomia and narcolepsy-

cataplexy. 

 

Introduction 

A series of studies have suggested that loss of the hypothalamic neurons producing the 

orexin (hypocretin) neuropeptides causes narcolepsy in humans and other mammalian 

species, highlighting roles of this neuropeptide in the regulation of sleep and 

wakefulness(1). The deficiency of orexin signaling in narcolepsy-cataplexy 

unequivocally shows that this neuropeptide system plays a physiologically essential role 

in the regulation of sleep and wakefulness, especially in the maintenance of long, 

consolidated waking periods. This chapter discusses the relationship between orexin-
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deficiency and narcolepsy; why orexin deficiency causes narcolepsy; and the 

therapeutic potential of drugs that target orexin receptors for treating insomnia, 

narcolepsy and other sleep disorders.  

 

What is narcolepsy? 

Narcolepsy is a debilitating neurological disorder, characterized by instability of 

sleep/wakefulness states and pathological intrusions of REM sleep-related events into 

wakefulness. It affects approximately 1 in 2,000 individuals in the United States(2). 

Males and females are equally affected. The onset of the disease usually occurs during 

adolescence, suggesting that narcolepsy is an acquired, not an innate, condition. 

However, although most cases of narcolepsy occur sporadically, familial clustering may 

be observed; the risk of a first-degree relative of a narcoleptic developing narcolepsy is 

10-40 times higher than in the general population(3). The development of the disease 

seems to involve both environmental and genetic factors.  25 to 31% of monozygotic 

twins were reported to be concordant for narcolepsy(2). 

The most disruptive symptom of the disorder is excessive daytime sleepiness, or 

daytime hypersomnia (an insurmountable urge to sleep), which often results in falling 

asleep at inappropriate times and situations (‘sleep attacks’). Patients with narcolepsy 

have a three-fold increased risk of motor vehicle accidents from lapses in attention, lack 
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of alertness, and dozing off. The latency for rapid eye movement (REM) sleep is 

markedly reduced in narcolepsy patients, and REM sleep is sometimes observed shortly 

after sleep onset (‘sleep-onset REM periods’). Nocturnal sleep is often disturbed by 

sleep fragmentation and premature awakenings. Other symptoms include hypnagogic 

hallucinations, vivid dreaming, and sleep paralysis which occurs as patients fall asleep 

or upon awakening. 

Narcolepsy patients often suffer from attacks of “cataplexy” - sudden episodes 

of muscle weakness, ranging from facial weakness and slurred speech to complete 

collapse from widespread weakness. Cataplexy is usually triggered by strong emotional 

stimuli. Unlike sleep attacks, consciousness is preserved during cataplexy. In the 

International Classification of Sleep Disorders, narcolepsy accompanied by cataplexy is 

referred to as “narcolepsy with cataplexy”, while that without cataplexy is termed 

“narcolepsy without cataplexy” (4). 

 

Dog and Rodent Models of Narcolepsy 

Animal models first suggested the involvement of orexin-dysfunction in narcolepsy. 

Using a forward genetics approach, Mignot and colleagues  found that dogs with a 

mutation in the orexin 2 receptor are remarkably similar to human narcolepsy 
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patients(5). As in human narcolepsy, narcoleptic dogs exhibit cataplexy (elicited by the 

presentation of food), sleepiness (i.e. reduced sleep latency), and SOREMPs(6). These 

findings suggested that loss of orexin-2 receptor-mediated signaling can produce a 

narcolepsy phenotype. 

Mouse models also showed a relationship between narcolepsy and orexin system 

abnormalities. At first, Yanagisawa’s group found that Orexin-/- mice showed a 

phenotype remarkably similar to human narcolepsy(7).Subsequently, orexin neuron-

ablated (orexin/ataxin-3-transgenic) mice or Oxr-1-/-;Oxr-2-/- (double-receptor-deficient) 

mice were shown to have very similar phenotypes that have strong parallels to the 

human narcolepsy with behavioral arrests very similar to cataplexy, direct transitions 

from wakefulness to REM sleep, and highly fragmented sleep-wake cycles(8-10), all of 

which are important features of narcolepsy. Oxr-2-/- mice also show a narcolepsy 

phenotype, though it is milder than that of orexin-/- mice, orexin neuron-ablated 

(orexin/ataxin-3-transgenic) mice, Oxr-1-/-;Oxr-2-/- mice(9). 

 

Human Narcolepsy and Orexin Deficiency 

The link between orexin dysfunction and narcolepsy has been subsequently confirmed 

and established by studies on human narcolepsy patients. First, nine human narcolepsy 
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patients were shown to have very low levels of orexin A in their cerebrospinal fluid 

(CSF) as compared with healthy controls (11). Postmortem brain studies of human 

narcolepsy patients subsequently showed no detectable levels of orexin peptides in the 

cortex and pons, in which orexinergic projections are normally found (Figure 1A), and 

an 80-100% reduction in the number of neurons containing detectable prepro-orexin 

mRNA or orexin-like immunoreactivity in the hypothalamus(12, 13).  

Approximately 90% of patients with narcolepsy with cataplexy have decreased 

orexin A levels in cerebrospinal fluid(14) (Figure 1B). Accordingly, a low CSF level of 

orexin A (less than 110 pg/ml) is now one of the diagnostic criteria for narcolepsy-

cataplexy according to the 2nd edition of the International Classification of Sleep 

Disorders (ICSD-2) (4).  Especially, narcolepsy with cataplexy is thought to be more 

closely related to orexin deficiency as compared with narcolepsy without cataplexy. 

Because of its strong association with certain human leukocyte antigen (HLA) 

alleles(15), it has long been speculated that narcolepsy results from an autoimmune-

mediated mechanism. Recently, Tribbles homolog 2 (Trib2) was reported as a candidate 

antigen involved in the destruction of orexin neurons (16). Trib2 was shown to be 

abundantly expressed in orexin neurons, and levels of Trib2-specific antibodies were 

much higher in patients with narcolepsy, especially shortly after the disease onset, 
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although it is still unknown if Trib2-specific antibodies are directly involved in cell 

death, or if the antibody production is a consequence of cell damage by other unknown 

mechanisms(17).  

Recent large scale genome wide association studies (GWAS) showed that susceptibility 

to narcolepsy is associated with single nucleotide polymorphisms (SNPs) in the T-cell 

receptor alpha gene locus (18). The SNPs are located between carnitine palmitoyl-

transferase 1B and choline kinase beta(19) and SNPs of purinergic receptor P2Y11(20).  

These genes may be involved in either cell death of orexin neurons or enhancing 

narcolepsy symptoms. Of note, the association with the T-cell receptor alpha locus 

might be important, as the interactions between HLA molecules on antigen presenting 

cells and T cell receptors on T cells play critical roles in self/non-self discrimination by 

the immune system(21). Recently, association between narcolepsy and  seasonal 

streptococcus, H1N1 infections and AS03-adjuvanted pH1N1 influenza vaccination was 

reported in Northern Europe and China(21). These observations further suggest the 

involvement of immunological mechanisms responsible for the loss of orexin-producing 

neurons. 

Each Receptor in Narcolepsy 

Detailed characterization of behavioral, pharmacological, and electrophysiological 
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features of orexin-/- and OX2R-/- mice showed that these mice exhibited two types of 

behavioral arrests.  One is “abrupt arrests”: a sudden loss of muscle tone during various 

active behaviors such as grooming and ambulation (9).  Detailed observations of 

behaviors during EEG/EMG recordings found that abrupt arrests in orexin-/- and OX2R-

/- mice are associated with EEG changes suggestive of unusual direct transitions from 

wakefulness to REM sleep. The other type are “gradual arrests”, which typically begin 

during quiet wakefulness and can be easily distinguished from the normal onset of 

resting behavior by the absence of stereotypic preparation for sleep (e.g., nesting and/or 

assumption of a curled or hunched posture, with limbs drawn under the body) and the 

presence of ratchet-like “nodding” of the head over a period of several seconds, with a 

transition to a collapsed posture. EEG/EMG correlates of the gradual arrests in both 

orexin-/- and OX2R-/- mice resemble transitions from wakefulness to non-REM sleep, 

suggesting this type is a counterpart of “sleep attacks” in human narcolepsy patients.  

In accordance with these similarities to clinical narcolepsy symptoms, “abrupt 

arrests” in orexin-/- mice were suppressed by systemic administration of clomipramine, 

a tricyclic anti-depressant drug used for the treatment of cataplexy, while administration 

of caffeine, a psychostimulant used to treat excessive sleepiness in human narcolepsy, 

tends to slightly increased abrupt arrest frequency. In clear contrast, systemic 
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administration of caffeine dose-dependently suppressed gradual arrests, while 

administration of clomipramine did not affect the frequency of gradual arrests in both 

orexin-/- and OX2R-/- mice. These observations suggest that the abrupt and gradual 

arrests are the presumptive mouse correlates of cataplexy and sleep attacks in human 

narcolepsy-cataplexy, respectively.   

  The International Working Group on Rodent Models of Narcolepsy proposed a 

consensus definition of murine cataplexy as; (i) an abrupt episode of nuchal atonia 

lasting at least 10 seconds. (ii) Theta activity dominates the EEG during the episode, 

and video recordings document immobility. (iii) at least 40 seconds of wakefulness must 

precede the episode (22). 

OX2R-/- mice have much less cataplexy than orexin-/- mice (31-fold lower 

frequency in OX2R-/- over orexin-/- mice), while they are similarly affected with sleep 

attacks. These results suggest that the normal regulation of wake/NREM sleep 

transitions depends critically on OX2R function, whereas the profound dysregulation of 

REM sleep control unique to the full narcolepsy-cataplexy syndrome emerges from loss 

of signaling through both OX1R- and OX2R-dependent pathways. 

 In pharmacological experiments, the effects of orexin-A on increasing 

wakefulness time and decreasing NREM sleep time were significantly attenuated in 
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both OX1R-/- and OX2R-/- mice as compared to wild-type mice, with substantially 

greater attenuation in OX2R-/- mice as compared with OX1R-/- mice. These results 

suggest that the OX2R pathway has a pivotal role in the promotion of wakefulness, but 

OX1R also plays additional roles in promoting arousal. Suppression of REM sleep by 

orexin-A administration was similarly attenuated in both OX1R -/- and OX2R -/- mice, 

suggesting a comparable contribution of both receptors to REM sleep suppression.  

 Histaminergic neurons in the TMN, which strongly expresses OX2R,  have been 

thought to play an important role in the arousal-promoting effect of orexin, because the 

effect of ICV orexin-A administration is markedly attenuated by the histamine H1 

receptor antagonist pyrilamine and is absent in H1 histamine receptor knockout 

mice(23, 24). Mochizuki et al. produced a mouse model in which a loxP-flanked gene 

cassette disrupts production of the OX2R, but normal OX2R expression can be restored 

by Cre recombinase(25). They showed that targeted Cre expression, i.e., focal 

restoration of OX2R expression, in the TMN and adjacent regions rescued 

fragmentation of wakefulness in this mouse model, suggesting that the orexin signaling 

mediated by OX2R in the TMN and/or its surrounding area in the posterior 

hypothalamus is sufficient to prevent sleepiness caused by systemic OX2R deficiency. 

However, orexins probably promote arousal through many redundant systems because 
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optogenetic activation of the orexin neurons still promotes wakefulness in mice lacking 

histamine, and mice lacking both OX1R and histamine H1 receptors demonstrate no 

abnormality in sleep/wakefulness(10). 

Clinically, narcolepsy can be divided into two pathological phenomena, 

suggesting that the pathophysiology of narcolepsy is caused by two mechanistically 

independent mechanisms. One is difficulty in maintaining long waking periods, 

characterized by abrupt transitions from wakefulness to NREM sleep (a failure to 

maintain long wake bouts). This phenomenon manifests clinically as excessive daytime 

sleepiness, which often results in sleep attacks, sometimes at socially inappropriate 

times. The aforementioned mouse studies suggest that it mostly results from a lack of 

Oxr-2 signaling(26). Psychostimulant drugs such as modafinil, methylphenidate, 

amphetamine and caffeine are used to treat these symptoms. The other key phenomenon 

is pathological intrusions of REM sleep into wakefulness (dysregulation of REM sleep 

onset); it is during these periods that patients experience cataplexy, hypnagogic 

hallucinations, and sleep paralysis. Therapies for these symptoms includes tricyclic 

antidepressants such as imipramine, serotonin/noradrenaline reuptake inhibitors (SNRI) 

and serotonin-specific reuptake inhibitors (SSRIs)(27), suggesting the existence of 

abnormal monoaminergic neurotransmission in the pathophysiology of cataplexy. As 
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described above, mouse studies have suggested that lack of signaling from both 

receptors seems to be critically associated with this symptom (9, 28), although we 

should take into account the species difference between mice and humans.  

The mechanisms through which the orexin receptors regulate sleep/wake 

behavior is further discussed in the article by Alexandre and Scammell.  

 

Chronic plastic changes in orexin-target neurons in narcolepsy 

Narcolepsy patients often suffer from insomnia in addition to excessive daytime 

sleepiness. Narcoleptic animals also show behavioral instability characterized by 

frequent transitions between all vigilance states, exhibiting very short bouts of NREM 

sleep as well as wakefulness(29). As already described, instability of wakefulness states 

in narcolepsy might be due to deficiency of orexin. However, the mechanism 

responsible for sleep instability in this disorder remains to be unknown. Because firing 

of orexin neurons ceases during sleep in healthy animals(30-32), deficiency of orexin 

does not explain abnormality of sleep. One  possible explanation is that chronic 

compensatory changes in target neurons of orexin in response to the progressive loss of 

endogenous orexin tone underlie the pathological regulation of sleep/wake states. In 

fact, we recently found that although 5-HT neurons showed almost normal firing 
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patterns according to behavioral states in narcoleptic orexin/ataxin-3 mice, NA neurons 

showed an altered firing pattern (our unpublished observation). NA neurons in 

orexin/ataxin-3 mice showed rather higher activity as compared with those in wildtype 

mice during both wakefulness and NREM sleep, especially in the early epoch of NREM 

sleep. We also found that the frequencies of sIPSCs and mIPSCs of NA neurons were 

markedly decreased in orexin/ataxin-3 mice as compared with wildtype mice, 

suggesting that the increase in firing rate of NA neurons might be due to synaptic 

downscaling  in GABAergic input to these cells. These observations suggest that 

GABAergic input to NA neurons might be altered in narcoleptic mice. The reduced 

GABAergic input might result from compensatory changes of GABAergic input with 

reduced net excitation to NA neurons due to loss of orexin neurons. These 

compensatory processes might explain why narcoleptics show an unstable NREM sleep 

state as well as unstable wakefulness state. 

 

Metabolic abnormalities in narcolepsy 

Narcolepsy patients have an increased body mass index (BMI) despite having 

decreased caloric intake (33, 34). Consistently, orexin neuron-ablated, orexin-ataxin 3 

mice display hypophagia and late-onset obesity, although the degree of abnormality 
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critically depends on the genetic backgrounds of mice (8, 35). Under normal conditions, 

the orexin system is likely to positively regulate feeding as well as arousal, activity, and 

basal energy expenditure, leading to increased energy expenditure, and this might 

explain why narcoleptic mice and humans show increased body weight. 

Transgenic mice with ubiquitous orexin overexpression are resistant to high-fat 

diet-induced obesity and insulin insensitivity through promotion of energy expenditure 

and reduced consumption (36). Genetic and pharmacological studies indicate that 

OX2R (rather than OX1R) signaling predominantly mediates this phenotype through 

negative energy homeostasis and improved leptin sensitivity. 

 

Therapeutic potential of drugs that target the orexin receptors 

Because orexin is a potent arousal promoting factor, it is reasonable to hypothesize that 

orexin receptor antagonists will be effective as drugs for insomnia treatment. To date, 

several orexin receptor antagonists with different pharmacological characteristics have 

been developed (Table 1). Because the two orexin receptors may have partly 

overlapping yet partly distinct physiological roles, pharamacological profiles of these 

antagonists are of importance. 

A dual orexin receptor antagonist , almorexant (ACT-078573, Actelion 
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Pharmaceuticals Ltd.) blocks both OXR-1 and OXR-2 with similar potency (IC50 16 

and 15 nM, respectively). Almorexant was reported to shorten time spent awake and 

enables and maintains sleep in rats, dogs, and humans (37, 38). Almorexant 

significantly improved the primary parameter of sleep efficiency (time spent sleeping 

while confined to bed during an eight hour period at night) in a dose-dependent 

manner. Almorexant decreased the latency to sleep onset and the number of wake bouts 

after sleep onset. Importantly, almorexant not only changed these physiological sleep 

parameters, but also significantly improved subjective sleep quality. Effective doses or 

even higher doses of almorexant did not cause any significant negative effects on next-

day performance (assessed by fine motor testing and mean reaction time). In addition, it 

was reported that rats administered high doses of almorexant (300 mg/kg, p.o.) are fully 

capable of spatial and avoidance learning(39). Notably, almorexant was well tolerated 

with no signs of cataplexy, suggesting that acute, short-lived, intermittent temporary 

blockade of orexin receptors will not result in a narcolepsy-like phenotype(40).  

Several other promising dual orexin receptor antagonists (DORA) and OXR2-

selective antagonists (SORA) are under development as sleep-inducers. Especially, MK-

4305 (suvorexant) is expected to be available in the clinic in 2014. 

Recently, repeated administration of an OXR-2 selective antagonist, JNJ-
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10397049, was shown to decrease the latency for persistent sleep and increased NREM 

sleep time more potently than did the dual antagonist, almorexant(41), while, an OXR-1 

selective antagonist SB-408124 had no effect on sleep parameters. Rather, the OXR-1 

antagonist attenuated the sleep-promoting effects of the OXR-2 antagonist when 

simultaneously administered, possibly by increasing dopamine release in the prefrontal 

cortex. On the other hand, another report suggested that a DORA is more effective for 

sleep promotion than antagonism of either receptor alone (42). Further research using 

selective antagonists is required to conclude the effectiveness, advantages and 

disadvantages of these compounds. 

Because narcolepsy results from the absence of orexins, replacement therapy 

using orexin receptor agonists or allosteric stimulators of orexin receptors could be 

promising ways for treating narcolepsy. This is supported by a study demonstrating that 

chronic overproduction of orexin from an ectopically expressed transgene effectively 

prevented the development of narcolepsy symptoms in orexin neuron-ablated 

(orexin/ataxin-3-transgenic) mice(43). Acute intracerebroventricular (ICV) 

administration of orexin A also maintained wakefulness, suppressed sleep, and 

completely inhibited cataplectic attacks in orexin/ataxin-3 mice(43).  

 However, chronic overexpression of orexin A in an unregulated fashion results 
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in fragmentation of NREM sleep (44), suggesting it would be beneficial for 

therapeutically relevant orexin agonists to have a short half-life (<12 hr). 

Enhancers of orexin receptor signaling, especially those acting on OX2R, may 

be also beneficial as a novel medication for daytime sleepiness caused by reasons other 

than narcolepsy. In the case of agonists/enhancers, however, the potential risk of 

addiction should be considered, since orexin signaling potentiates the mesolimbic 

dopamine pathway. At any rate, orexin receptors would provide promising targets for 

new drugs for not only sleep disorders, but also some affective disorders. 
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Figure Legends 

Fig. 1. CSF orexin A levels in narcolepsy and control subjects. (A) CSF orexin A level is 

undetectably low in most narcolepsy patients (84.2%). Note that two HLA DQB1*0602-negative and 

one familial case have normal or high CSF orexin A levels. (B) Preproorexin transcripts are detected 

in the hypothalamus of a control (b) but not a narcolepsy subject (a). Melanin-concentrating 

hormone (MCH) transcripts are detected in the same region in both control (d) and narcolepsy (c)  f, 

fornix. Scale bar represents 10 µm (a–d) (Modified from Sakurai and Nishino, Orexin (Hypocretin) 

and Narcolepsy, in press) 
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  Affinity  Units Ref 

 Compound OXR-1 OXR-2   

DORA ACT-078573 (almorexant) 7.9 (human), 7.8 

(rat) 

8.1 (human), 7.8 

(rat) 

pIC50 (37) 

DORA MK-4305 (suvorexant) 9.26 9.46 pKi (45) 

1-SORA SB-410220 7.7 nd pKi (46) 

1-SORA SB-334867 7.2 nd pKi (46) 

1-SORA SB-408124 7 nd pKi (46) 

1-SORA [3H]SB-674042 8.3 nd pKd (46) 

1-SORA SB-410220 8.1 6.3 pKb (46) 

1-SORA SB-334867 7.4 5.7 pKb (47) 

1-SORA SB-408124 7.7 5.9 pKb (46) 

1-SORA SB-674042 9 6.9 pKb (46) 

2-SORA 1-(2-bromo-phenyl)-3-((4S,5S)-2,2-

dimethyl-4-phenyl-[1,3]dioxan-5-yl)-

urea 

5.3 – 6.1 6.8 – 7.1 pKi (48) 

1-SORA 1-(2,4-dibromo-phenyl)-3-((4S,5S)-2,2-

dimethyl-4-phenyl-[1,3]dioxan-5-yl)-

urea (JNJ-10397049) 

5.3 – 5.8 8.0 – 8.6 pKi (48) 

Table 1 Available orexin receptor antagonists. 1-SORA, single orexin receptor antagonist, slective for OX1R; 2-

SORA, single orexin receptor antagonist, slective for OX2R;DORA, dual orexin receptor antagonist 
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Table. 2 Animal Models of Narcolepsy 
strain  phenotype Abnormality in orexin system 

dog familial Cataplexy, sleep/wake fragmentation Mutation in orexin type2 receptor 

 sporadic Cataplexy, sleep/wake 
fragmentation(severe) 

Loss of orexin neurons 

Rodents 
(genetic 
engineering) 

Prepro-orexin 
KO 

Behavioral arrest (cataplexy),  
sleep/wake fragmentation(severe) 
direct transition of wakefulness to REM 
sleep 

 

 OX1R KO sleep/wake fragmentation(mild)  

 OX2R KO Behavioral arrest (cataplexy),  
sleep/wake fragmentation (moderate) 

 

 Orexin/ataxin-
3 mice/rats 

Behavioral arrest (cataplexy),  
sleep/wake fragmentation(severe) 
direct transition of wakefulness to REM 
sleep 

Ablation of orexin neurons by toxic 
transgene 

Human 
narcolepsy 

sporadic cataplexy 
sleep/wake fragmentation(severe) 
direct transition of wakefulness to REM 
sleep 

CSF orexin (-) 
(Loss of orexin neurons) 

 familial cataplexy 
sleep/wake fragmentation(severe) 
direct transition of wakefulness to REM 
sleep 

CSF orexin (-) 

 De novo 
mutant 

Early onset, severe cataplexy CSF orexin (-) 
Point mutation in the prepro-orexin 
gene (signal peptide) 
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