ブレインコンピュータインタフェイス(BCI)において,多チャネルで測定された脳波をチャネル間で直交化することにより脳波の特徴を強調する方法を提案した.並列構成された複数の階層形ニューラルネットワーク(MLNN)を用いてメンタルタスク(MT)を分類し,それらの結果を統合する方法により, MTの分類性能が大幅に向上した.他の方式として,脳波の特徴を強調する部分空間フィルタと複数の2分類器,その出力を誤差訂正符号化する方式を提案し,高い分類性能を得た.
Brain Computer Interface(BCI) system has been developed. A method to emphasize features of the brain waves has been proposed. The orthogonalized components and parallel multi-layer neural networks are used to classify themental tasks. These results are averaged to obtain the final result. The high performance for mental task classification has been obtained. Another method, combining the special filter, binary classifiers and error correcting code, has beenproposed, resulting in high performance.