【総説】

第9回 高安賞優秀賞受賞論文

論文 「Inducible Costimulator Ligand (ICOSL) Regulates Bleomycin-induced Lung and Skin Fibrosis Independently of the ICOS-ICOSL Pathway」
Arthritis & Rheumatism
Vol. 62, Page1723-32 2010年6月掲載
田中千洋，藤本 学，濱口 優，佐藤伸一，竹原 和彦，
長谷川 敏 共著

ICOSLは，ICOS-ICOSL経路非依存性に、プレオマイシンにより
誘導される皮膚・肺の線維化を制御する

田中 千洋（たなか ちひろ）
ウスと同様に生存率は低下し、皮膚・肺の線維化は重複化し、炎症細胞浸潤も増加、肺におけるTGF-βのmRNAの発現も亢進していた（図3）。

図2. BLM気管支内投与後の肺におけるサイトカインのmRNAの発現。Real time PCRで測定したTGF-βの発現は、ICOS−/−マウスで有意に低下し、ICOS−/−マウスで有意に亢進していた。*，P<0.05；**，P<0.01。

A. 生存率

B. 病理組織像（ICOS−/−ICOSL−/−+BLM）

C. TGF-β, CTGF

図3. ICOS−/−ICOSL−/−マウスにおける検討結果。A）BLM気管支内投与後の生存率。B）健常皮内投与による肺・皮膚の病理組織学的変化（肺：Masson's trichrome染色、皮膚：Azan-Mallory染色）とC）肺組織中のTGF-βの発現を、いずれもICOS−/−マウスと同様の傾向を示した。*，P<0.05。

4) フローサイトメトリーによるBLM気管支内投与後の気管支肺洗浄液におけるICOS, ICOSLの発現の解析：ICOS−/−マウスでは、マクロファージ、B細胞でのICOSLの発現が野生型マウスに比べ著明に増加していた。対照的に、ICOS−/−マウスでは、T細胞でのICOSの発現が有意に増加していた。

ま と め

このように、BLM投与により誘導される肺線維化・皮膚硬化的重複度は、T細胞におけるICOSの発現ではなく、マクロファージやB細胞におけるICOSLの発現量と逆相関していた。これまでに、ICOSとICOSLは1:1のリガンド同士と考えられてきた。しかし、今回の結果からは、ICOSがICOSL以外にもリガンドとして働き、しかもBLMモデルにおいて、その線維化を抑制する経路がICOS-ICOSLの線維化促進の経路よりも優勢に働く可能性が示唆される。もう一つの考え方としては、BLMモデルにおいて、抗原提示細胞上のICOSLの発現自体が、ICOS-ICOSL経路を介さずに抗原提示細胞の線維化に影響するシグナル関値を抑制するというものである。他の可能性も含めて、今後の検討が必要と考えられる。

BLMによる肺、皮膚の線維化においては、ICOSLが、ICOS-ICOSL経路を介さない役割を有することが示された。この結果から、強皮症の病態形成にもICOS, ICOSLが関与している可能性があると考えられた。

文 献

Profile
所在地
所属 金沢大学大学院医学系研究科医学系
組織代謝学会
2000年：金沢大学医学部卒業
2010年：金沢大学大学院医学系研究科卒業