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We develop a plane-wave pseudopotential scheme for noncollinear magnetic structures, based on
a generalized local spin-density theory in which the direction of the magnetization is a continuous
variable of position. We allow the atomic and magnetic structures to relax simultaneously and self-
consistently. Application to small Fe clusters yields noncollinear magnetic structures for Fe3 and
Fe5. The components of the magnetization density vary smoothly with position. The spin direction
undergoes sizable changes only in the regions of small charge and spin density between the atoms and
is generally uniform in the magnetic regions of the atoms. [S0031-9007(98)05870-0]

PACS numbers: 75.10.–b, 71.15.Pd, 71.24.+q, 75.50.Bb
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Most local spin-density calculations assumed so
complete spin alignment throughout the system, result
in collinear magnetic structures. This approach is suita
for describing ferromagnetic or antiferromagnetic orde
usually encountered in crystals. There are, however, ca
where noncollinear spin arrangements may occur, such
e.g., in theg phase of Fe which exhibits a spin-spiral stru
ture [1,2]. More generally, noncollinear configurations o
cur more easily in magnetic systems in a low symmetry
in a disordered state [3,4]. Furthermore, noncollinearity
crucial for dealing with magnetic excitations, such as sp
waves, or to treat magnetism at finite temperature [5–7

A number of generalized spin-density calculations a
lowing for noncollinear structures have been perform
[2,5,6–12]. All of these calculations adopted the atom
sphere approximation for the crystal potential and assum
a uniform spin direction within each atomic sphere. A
though the latter approximation seems well justified fro
a physical point of view, the actual spatial variation of sp
directions as it would result from a fully unconstrained ca
culation is not known. In addition, the atomic sphere a
proximation is not reliable for atomic relaxations and, as
consequence, its application is restricted to cases in wh
the atomic geometry isa priori known.

To address the above issues, we adopt a scheme b
on pseudopotentials and plane waves in which both the
rection and the magnitude of the magnetization are fu
unconstrained as a function of position. This approa
combines noncollinear local spin-density calculations w
theab initio molecular dynamics method [13], which dea
efficiently with the simultaneous relaxation of electron
and ionic degrees of freedom. We apply our scheme
small Fe clusters and find that some geometrical str
tures are characterized by noncollinear spin arrangeme
which appear to be favored by an increase of the atom
spin moments. In particular, the ground state of Fe5 is
found to be noncollinear. The noncollinear structures th
we find allow us to study how the spins change their orie
tation as a function of position and to check the validity
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the common assumption of uniform spin direction within
the atomic regions.

In generalized local spin-density theory [14], the
wave functions are described by two-component spino
Csrd ; sssc1srd, c2srdddd, where c1 and c2 are complex
wave functions. The density matrix is defined as

rabsrd 
X

i

ficaisrdcp
bisrd , (1)

where a and b are spin indices andfi is the occu-
pation number of theith single-particle state. In terms
of the unit matrix s0 and of the Pauli spin matri-
ces sk sk  x, y, zd, the density matrix readsrsrd 
1
2 nsrds0 1

1
2

P
k mksrdsk, wherensrd is the charge den-

sity and mksrd is the Cartesian components of the spin
density vectormsrd. Note that in this scheme the indi-
vidual eigenstates can have different spin quantization d
rections. Furthermore, the spin quantization axis of eac
state can vary with position.

Following the ab initio molecular dynamics scheme
[13], we optimize simultaneously the electronic wave func
tions hCij and the atomic positionshRIj by minimiz-
ing the total energy, which is defined for noncollinea
spin structures as in Refs. [9,14]. Within our noncollinea
scheme the ground-state spin moment corresponding
a given atomic structure is found automatically as a re
sult of the minimization process. We adopt the ultra
soft pseudopotential scheme [15], which has already be
used successfully to describe larged-electron systems
[16]. The equations of motion forCi andRI are solved
numerically with the same procedures used in collinea
cases [16]. We compute the exchange-correlation ener
Excfnsrd, jmsrdjg with the formula given by Perdew and
Zunger [17].

We demonstrate our scheme by computing structur
and magnetic properties of Fen sn # 5d clusters. These
systems have been studied extensively in the past, n
only for their intrinsic interest [18–22] but also becaus
they can be taken as simple models of the bulk [23
© 1998 The American Physical Society
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TABLE I. Bond lengthsb (a.u.) and binding energiesEB (eVyatom) of magnetic Fe clusters,
compared with other collinear calculations. F and AF indicate collinear ferromagnetic a
antiferromagnetic structures.

Cluster b EB Figure

Fe2 D`h collinear (F) present 3.70 2.06
Ref. [20] 3.74 2.03
Ref. [21] 3.70 2.19
Ref. [27] 3.68 2.00

Fe3 C3y collinear (F) present 3.99 2.64
Ref. [20] 3.86 2.60
Ref. [21] 3.97 2.75

D`h noncollinear present 3.72 2.17 1(a)
D`h collinear (AF) present 3.66 2.15 1(b)
D`h collinear (F) present 3.55 1.80

Ref. [20] 3.63 1.79
Ref. [21] 3.54 2.03

Fe4 D2d collinear (F) present 4.11,4.28 3.13
Td collinaer (F) present 4.22 3.12

Ref. [20] 4.25 3.07
Ref. [21] 4.20 3.27

Fe5 D3h noncollinear present 4.26,4.43 3.46 1(c)
D3h collinear (F) present 4.20,4.48 3.45 1(d)

Ref. [21] 4.18,4.46 3.59
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Only collinear spin structures were considered in the
studies. However, the existence of a spin-spiral pha
in fcc Fe is an indication that noncollinear magnet
structures may be important in iron systems [2]. Thu
small iron clusters which have less symmetry constrain
than the bulk are likely candidates for the occurrence
noncollinear structures.

Our Fe pseudopotential is devised to include th
semicore 3s and 3p states into the valence. In this
way, the overlap of these states with the other valen
states is correctly accounted for [22]. In our scheme, t
inclusion of semicore states is not too costly because
does not lead to an increase of the plane-wave cuto
Ultrasoft pseudopotentials are essentially as accurate
all-electron calculations, as shown recently for structur
and vibrational properties ofd-electron metals [24].

We adopt periodic boundary conditions and describe t
clusters with a simple cubic unit cell having a lattice con
stant of 20 a.u., which is sufficient for the interactions b
tween the periodic images to become negligible [25]. T
spinor wave functions are expanded into a set of pla
waves with a cutoff energy of 24 Ry. In the ultraso
pseudopotential scheme the density matrix has a hard a
mented component, for which we use a cutoff energy
250 Ry, as described in Ref. [16]. The geometry optimiz
tions are initiated from atomic configurations taken eith
from Ref. [21] or from Ref. [22]. We compute the bind
ing energies of the clusters by taking as a reference
isolated spherical magnetic atoms with a total magne
momentM  4mB. We estimate the magnetic momen
of each atom in the clusters by integrating the magne
density within spheres of radius 1.7 a.u. centered on
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atoms. These spheres do not overlap and contain ab
90% of the magnetic density [26].

Our results for several optimized cluster geometries a
summarized in Tables I and II. Overall, in the collinea
case, our structures and binding energies agree w
with previous all-electron calculations, as can be seen
Table I [28]. The only small difference with previous cal-
culations is in the structure of Fe4 with magnetic moment
M  12mB, which was found in Refs. [20,21] to have a
perfectly tetrahedral geometry. We find instead that th
lowest energy structure is a distorted tetrahedron withD2d

symmetry, which has two short (4.11 a.u.) and four lon
(4.28 a.u.) bond lengths. We recover a regular tetrahedr
sTdd by using fractional occupation numberss fi  1y3d
for the triply degenerate highest occupied molecula
orbital. The corresponding bond length is 4.22 a.u
and the binding energy is only 0.01 eVyatom higher than
that of the ground state, which can be considered as
Jahn-Teller distortion of the regular tetrahedron [29].

We find noncollinear spin arrangements for Fe3 and
Fe5 clusters of symmetryD`h [linear chain, Fig. 1(a)]
andD3h [trigonal bipyramid, Fig. 1(c)], respectively. We
notice that in both cases the loss of collinearity resul
in a coplanar magnetic structure. The noncollinear F5

structure corresponds to the ground state, whereas
noncollinear Fe3 structure is metastable. In the latte
case, the ground state is collinear and has the struct
of an equilateral triangle (C3y symmetry). In both non-
collinear cases, we find a collinear cluster of the sam
symmetry [Figs. 1(b) and 1(d), respectively] at a slightl
higher energys0.01 0.02 eVyatomd. The noncollinear
structures have larger atomic magnetic moments and,
3623
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TABLE II. Total M and atomicMat magnetic moments (in
units of mB) of Fe clusters. F and AF are as in Table I. Fo
noncollinear structures, the vector components of the atom
moments are also given.

Cluster M sMatd Figure

Fe spherical collinear (F) 4.00 (3.29)
Fe2 D`h collinear (F) 6.00 (2.67)

Fe3 C3y collinear (F) 8.00 (2.44)
D`h noncollinear 2.04 (2.89,1.27) 1(a)

Fe (edge) s62.88, 0.00, 0.29d
Fe (central) (0.00,0.00,1.27)

D`h collinear (AF) 0.00, (2.88,0.00) 1(b)
D`h collinear (F) 6.00 (1.84,1.04)

Fe4 D2d collinear (F) 12.00 (2.62)
Td collinaer (F) 12.00 (2.61)

Fe5 D3h noncollinear 14.57 (2.71,2.72) 1(c)
Fe (apical) s61.34, 0.00, 2.35dd
Fe (basal) (0.00,0.00,2.72)

D3h collinear (F) 14.00 (2.55,2.58) 1(d)

average, slightly elongated bond lengths, compared w
their collinear counterparts. This suggests that no
collinearity is favored by the magnetic energy associat
with larger magnetic moments. This energy compet
with the chemical bonding energy which is reduced fo
stretched bonds. A correlation between bond distanc
and spin multiplicity was already observed in the case
magnetic dimers [30].

The noncollinear magnetic structure of Fe3 resembles
that of its collinear antiferromagnetic counterpart. Wit
respect to the latter, the central atom acquires a fin
moment and the moments of the edge atoms are tilted
10±, yielding a total moment of2.04mB. Note that the
direction of the total magnetic moment is arbitrary sinc
we do not include spin-orbit effects. In the case of Fe5
the total magnetic moment has a magnitude of14.57mB

and is parallel to the moments of the atoms in the bas
plane. The moments of the two apical atoms are tilte

FIG. 1. Atomic and magnetic structures of noncollinear (a
Fe3 and (c) Fe5. The corresponding collinear structures ar
given in (b) and (d).
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in opposite directions by approximately30± (Table II)
with respect to the moments of the basal atoms. The
noncollinear spin configurations that we obtain in Fe3 and
Fe5 suggest a ferromagnetic interaction between neares
neighbors and an antiferromagnetic interaction between
next-nearest neighbors. Interestingly, similar features ar
also observed in calculations of the exchange paramete
of bulk fcc Fe [8,10].

In Figs. 2(a) and 2(b) we report the spatial variation of
the magnitude of the magnetization density together with
the charge density along some special directions in Fe3

and Fe5 clusters, respectively. The spatial localization of
the magnetization density reflects that of the 3d states.
On the nuclei, our calculated magnetization density is no
accurate because of the pseudopotential approximation
However, this has a negligible effect on our calculated
properties since the integrated magnetization over a sma
volume close to the nuclei is well reproduced [31]. Next,
we define a Cartesian reference frame in which thez axis
is parallel to the direction of the total magnetization and
the x-z plane is the plane in which the direction of the
magnetization density varies. Thex and z components
of the magnetization density are reported in Figs. 2(c) and
2(d). These components vary going from one atom to the
other, indicating a change of direction of the magnetiza-
tion. Overall, the components are as smooth as the mag
nitude of the magnetization. In order to better characterize
the variation of the spin direction we plot in Figs. 2(e) and
2(f) the polar angleu formed by the magnetization den-
sity and thez axis s2180± # u , 180±d. The spin direc-
tion is remarkably uniform within the regions surrounding
the atoms that carry a large magnetic moment, such as th

FIG. 2. Noncollinear magnetization density along the symme-
try axis of Fe3 and along a line connecting a basal and an apical
atom in Fe5. Charge (solid line) and modulus of the magnetiza-
tion density (dashed line) for (a) Fe3 and (b) Fe5, corresponding
x (solid line) andz (dashed line) components in (c) and (d), and
the corresponding polar angleu in (e) and (f ).
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edge atoms in the trimer and all of the atoms in the pe
tamer. Typically the dispersion of the spin direction is o
about1± for these atoms. Around the central atom of th
trimer, which carries a relatively small magnetic momen
the spin direction makes a small oscillation. This appea
to be induced by a ferromagnetic coupling with the tw
edge atoms which have spins pointing in almost oppos
directions. The occurrence of a small magnetic mome
on one atom is peculiar and is likely related to the fact th
this is not the ground-state configuration of the trimer. A
shown in Figs. 2(e) and 2(f), the spin direction change
abruptly in the interatomic regions, where the magnetiz
tion density is essentially zero and the charge density
very small. The change in spin direction shows a larg
fluctuation related to a spin flip in the interatomic region
This appears to be a general feature that occurs both
collinear and in noncollinear cases.

We note that all of the collinear structures reported
Table I are local minima. This implies, in particular, tha
there are barriers separating the noncollinear and their c
responding collinear structures in Fig. 1. This is inconsi
tent with a simple picture based on a classical Heisenbe
Hamiltonian and is likely related to the increase of atom
moments when going from the collinear structures to the
noncollinear counterparts.

So far, in all studies of noncollinear magnetism, a coar
graining procedure was adopted which associates a sin
spin direction to each atomic sphere. Our finding that th
spin direction is uniform within a given sphere support
this approximation. Interestingly, although the magnet
zation density has a uniform direction within each atom
sphere, the spin quantization axes of single eigenstates
side each sphere vary both from state to state and w
position.

In order to study spin fluctuations at finite temperature
is important to treat noncollinear magnetic structures [5
7]. This requires a description not only of the magnet
density within the atomic spheres but also of the rap
variation of spin direction in the interatomic region, which
gives an important contribution to the kinetic energy [32

In conclusion, we have presented the first application
a fully unconstrained scheme for noncollinear magnetis
The self-consistent treatment of orbital, magnetic, an
atomic degrees of freedom makes our scheme a promis
tool for investigations of magnetic systems from firs
principles.
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