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Abstract

For a simplex in Lorentzian space whose vertices are in the positive light cone, J.
R. Weeks defined the “tilt” relative to each of its faces. It gives an efficient tool for
deciding whether or not the dihedral angle between two simplices holding a face in
common is convex. He also provided an efficient formula, called the “tilt formula,”
to obtain tilts from the intrinsic geometry of the simplex when its dimension is two
or three. M. Sakuma and J. R. Weeks generalized it to general dimensions. In this
paper, we generalize the concept of the tilt and the tilt formula to the case where
not all vertices are in the positive light cone. A key to our generalization is to give
a correspondence between points and hyperplanes (or half-spaces) in Lorentzian
space. In hyperbolic space, we can regard these hyperplanes as geometric objects,
points, spheres, geodesic hyperplanes, equidistant hypersurfaces and horospheres.

Key words: tilt formula, canonical decomposition, convex hull construction,
simplex, hyperbolic geometry.
1991 Mathematics Subject Classifications: Primary: 51M10; secondary:
51M09, 57Q15.

1 Introduction

D. B. A. Epstein and R. C. Penner gave in [EP] a method for decomposing any noncom-
pact complete hyperbolic manifold of finite volume with weight at each cusp into ideal
polyhedra. This decomposition is called the Euclidean decomposition, and defined via
a convex hull construction in Lorentzian space. Each vertex of the hull is in the posi-
tive light cone and corresponds to a lift of a cusp, and each face of the hull corresponds
to an ideal polyhedron in the manifold. Especially if all weights are equal, then the
decomposition is called the canonical decomposition.

For a simplex in Lorentzian space whose vertices are in the positive light cone, J.
R. Weeks defined in [We1] the tilt relative to each of its faces. It gives an efficient
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tool for deciding whether or not the dihedral angle between two simplices holding a
face in common is convex. So it becomes a useful tool to determine whether or not a
given decomposition of the manifold is obtained from a convex hull. He also provided
an efficient formula, called the tilt formula, to obtain tilts from the intrinsic hyperbolic
geometry of the simplex when its dimension is two or three. Using this formula, he made
the hyperbolic structures computation program “SnapPea” (cf. [We2]). Then M. Sakuma
and J. R. Weeks generalized the tilt formula to general dimensions in [SW] .

S. Kojima gave in [Ko1, Ko2] a method for decomposing any complete hyperbolic
manifold of finite volume with non-empty totally geodesic boundary into partially trun-
cated polyhedra. In many cases each polyhedron is a partially truncated simplex. Since
such a simplex is lifted to a simplex in Lorentzian space whose vertices may not be in the
positive light cone, it is meaningful to generalize the concept of the tilt and to establish
the tilt formula for the generalized tilt. The main purpose of the paper is to do it (see
Theorem 6.4, Theorem 6.8 and Corollary 6.9).

This paper is organized as follows: in Section 2 we recall some basic facts about
Lorentzian space and hyperbolic geometry. One important task of this section is to give
a correspondence between points and hyperplanes (or half-spaces) in Lorentzian space.
This correspondence is a generalization of the well-known duality between points in the
hyperboloid of one sheet and half-spaces in hyperbolic space. In Section 3 we define two
values connected with the hyperbolic distance; one is called the signed distance, and the
other is called the width. The former is a extension of the hyperbolic distance between
a geodesic hyperplane and a point, and the later is a generalization of the radius of a
sphere and the distance between a equidistant hypersurface and its axial hyperplane. We
also relate these values with the Lorentzian inner product. In Section 4 we first define
a generalized n-simplex in the projective model of the n-dimensional hyperbolic space.
Roughly speaking, this is a partially truncated n-dimensional simplex of finite volume.
Furthermore we extend it to a weighted n-simplex . In Section 5 we define the tilt of a
weighted n-simplex relative to an internal face, and obtain a relationship between tilts and
the convexity of two adjoining weighted n-simplices (see Proposition 5.2). In Section 6
we first define a complex number called a generalized distance, by unifying the signed
distance and the dihedral angle between two geodesic hyperplanes. We next establish an
efficient way to obtain tilts of a weighted n-simplex, by imitating the method in [SW]
(see Theorem 6.4, Theorem 6.8 and Corollary 6.9).

The author would like to thank Professor Katsuo Kawakubo for his encouragement.
The author would also like to expresses his sincere gratitude to Professor Makoto Sakuma
and Professor Jeffrey R. Weeks for their helpful comments and advice.

2 Lorentzian space and hyperbolic geometry

The n + 1-dimensional Lorentzian space (or simply Lorentzian n + 1-space) E1,n is the
real vector space Rn+1 of dimension n + 1 with the Lorentzian inner product 〈x,y 〉 :=
−x0 y0 +x1 y1 + · · ·+xn yn, where x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn). Through-
out this paper, we assume n ≥ 2. The Lorentzian norm of x in E1,n is defined to be the

complex number
√
〈x,x 〉. If the Lorentzian norm of x is zero (resp. positive, imaginary),

then x is said to be light-like (resp. space-like, time-like). The coordinate x0 of E1,n is
called the height . Now we define six connected subsets in E1,n as follows: the set of time-
like vectors with positive height is T+ := {x ∈ E1,n | 〈x,x 〉 < 0 and x0 > 0 }, the set of
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time-like vectors with negative height is T− := {x ∈ E1,n | 〈x,x 〉 < 0 and x0 < 0 }, the
set of light-like vectors is L := {x ∈ E1,n | 〈x,x 〉 = 0 }, the set of light-like vectors with
positive height is L+ := {x ∈ E1,n | 〈x,x 〉 = 0 and x0 > 0 } (⊂ L), the set of light-like
vectors with negative height is L− := {x ∈ E1,n | 〈x,x 〉 = 0 and x0 < 0 } (⊂ L), and the
set of space-like vectors is S := {x ∈ E1,n | 〈x,x 〉 > 0 }. Then E1,n is disjointly divided
as follows: E1,n = T+ t T− t L+ t {o} t L− t S, where o is the origin (0, 0, . . . , 0) of
E1,n, and · t · means the disjoint union of sets. We call T+ the future cone, T− the past
cone, L the light cone, L+ the positive light cone, L− the negative light cone, and S the
side cone. For any x ∈ E1,n with 〈x,x 〉 6= 0, we denote by n (x) its normalized vector,
that is, n (x) := x√

|〈x,x 〉|
.

Let H+
T := {x ∈ E1,n | 〈x,x 〉 = − 1 and x0 > 0 } be the upper sheet of the (standard)

hyperboloid of two sheets. The restriction of the quadratic form induced by 〈 ·, · 〉 on E1,n

to the tangent space of H+
T is positive definite and gives a Riemannian metric on H+

T .
The space obtained from H+

T equipped with the metric above is called the hyperboloid
model of the n-dimensional hyperbolic space, and we denote it by Hn. If x and y are
points in H+

T and d denotes the hyperbolic distance between x and y, then the following
relation holds (see [Na, p. 45], [Ra, (3.2.2)] or [Th, Proposition 2.4.5(a)]):

〈x,y 〉 = − cosh d . (2.1)

A ray in L+ started from the origin o corresponds to a point in the ideal boundary of Hn.
The set of such rays forms the sphere at infinity, and we denote it by Sn−1

∞ . Then each
ray in L+ becomes a point at infinity of Hn. The (standard) hyperboloid of one sheet HS

is defined to be HS := {x ∈ E1,n | 〈x,x 〉 = 1 }.
Let us denote by P the radial projection from E1,n − {x ∈ E1,n |x0 = 0 } to an affine

hyperplane Pn
1 := {x ∈ E1,n |x0 = 1 } along the ray from the origin o. The projection

P is a homeomorphism on Hn to the n-dimensional open unit ball Bn in Pn
1 centered at

the origin i := (1, 0, 0, . . . , 0) of Pn
1 , which gives the projective model of Hn. The affine

hyperplane Pn
1 contains not only Bn and its set theoretic boundary ∂Bn in Pn

1 , which is
canonically identified with Sn−1

∞ , but also the outside of the compactified projective model
Bn := Bn t ∂Bn ≈ Hn t Sn−1

∞ . In this identification, the points near the intersection
S ∩ {x ∈ E1,n |x0 = 0 } are mapped to an end of Pn

1 . So we can naturally extend P to
the mapping from E1,n−{o} to the n-dimensional real projective space Pn := Pn

1 tPn
∞,

where Pn
∞ is the set of lines in the affine hyperplane {x ∈ E1,n |x0 = 0 } through o. But

we use the notation P for the mapping obtained as above to save letters since there would
be no confusion. We denote by ExtBn the exterior of Bn in Pn.

We call an affine hyperplane in E1,n through the origin a linear hyperplane. A vector
subspace of E1,n is said to be time-like if it has a time-like vector, space-like if every
nonzero vector in it is space-like, or light-like otherwise. Suppose P is a time-like linear
hyperplane, and let R be a half-space in E1,n bounded by P . Then we can associate
a unique vector w ∈ HS so that 〈w, q 〉 ≤ 0 for any q ∈ R. This establishes a well-
known duality between points on HS and half-spaces in E1,n bounded by time-like linear
hyperplanes. Now we give an generalization of this duality. For an arbitrary vector u in
E1,n, we define a half-space Ru and a hyperplane Pu in E1,n as follows:

Ru :=

{
x ∈ E1,n

∣∣∣∣∣ 〈x,u 〉 ≤ 〈u,u 〉 − 1

2

}
,

Pu :=

{
x ∈ E1,n

∣∣∣∣∣ 〈x,u 〉 =
〈u,u 〉 − 1

2

}
= ∂Ru .
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We denote by Γu (resp. Πu) the intersection of Ru (resp. Pu) and H+
T . We note that

Πu = {u} when u ∈ H+
T . By the definition, a hyperplane Pu is linear if and only if

u ∈ HS. Then Πu is a geodesic hyperplane in Hn. We call u (∈ HS) a normal vector to
Pu (or Πu).

For two different geodesic hyperplanes in Hn, the following theorem is a well-known
one:

Theorem 2.1 (see [Ra, Theorem 3.2.6, 3.2.7, 3.2.9]) Let x and y be two points in
HS with x 6= ±y, and we denote by N the vector subspace of E1,n spanned by x and y.

(1) |〈x,y 〉| < 1 ⇐⇒ N is space-like
⇐⇒ Πx and Πy intersect in H+

T .

(2) |〈x,y 〉| > 1 ⇐⇒ N is time-like
⇐⇒ Πx and Πy are disjoint, and N ∩H+

T is a
unique common orthogonal geodesic line to
Πx and Πy.

(3) |〈x,y 〉| = 1 ⇐⇒ N is light-like
⇐⇒ Px ∩ Py is light-like. So Πx and Πy

meet at infinity. 2

For two geodesic hyperplanes Πx and Πy in Hn (so x, y ∈ HS), we call Πx and Πy
are ultraparallel if the condition of Theorem 2.1(2) holds, and parallel if the condition of
Theorem 2.1(3) holds. Next we suppose Πx and Πy intersect, that is, the condition of
Theorem 2.1(1) holds. Then we have the following relation (see [Th, Proposition 2.4.5(c)]
and [SW, Lemma 2.7]):

〈x,y 〉 = − cos θ , (2.2)

where θ is the dihedral angle between Πx and Πy which is measured in Γx ∩ Γy. We
note that this relation holds even if Πx and Πy are parallel. In this case we regard θ as
0. Now the following proposition is well-known:

Proposition 2.2 Let u be a point in HS, and let N be a 2-dimensional time-like vector
subspace of E1,n containing u. Then the geodesic line N∩H+

T and the geodesic hyperplane
Πu intersect orthogonally.

Proof of Proposition 2.2. Let a be a time-like vector in N . Without loss of generality,
we may assume a ∈ H+

T . Let b be the point in E1,n defined as follows:

b =
1√

〈a,u 〉2 + 1
a− 〈a,u 〉√

〈a,u 〉2 + 1
u .

Then we can easily show that b ∈ N ∩ Pu ∩ H+
T , and it means that N ∩ H+

T intersects
Πu.

Now we show that N ∩H+
T and Πu intersect orthogonally at b. Let M be an arbitrary

time-like linear hyperplane in E1,n containing N , and let m be its normal vector. Since
N contains u, we have 〈m,u 〉 = 0. This equation means that, by (2.2), M ∩H+

T and Πu
intersect orthogonally, and so do N ∩H+

T and Πu. Thus we have proved Proposition 2.2.
2
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For a linear hyperplane and the light cone L, the following proposition is also well-
known:

Proposition 2.3 Fix a point x in HS. Let y be a point in Px ∩ L − {o}. Then the
vector subspace of E1,n spanned by x and y is tangent to L.

Proof of Proposition 2.3. Let N be the vector subspace of E1,n spanned by two vectors
x and y, and z a point in N ∩ L. Then all we have to show is that z = ay for some
a ∈ R.

Since z is contained in N , there exist two real numbers a and b such that z = ay+bx.
Since z is also contained in L, we obtain the following equation:

〈z, z 〉 = a2 〈y,y 〉+ 2 a b 〈x,y 〉+ b2 〈x,x 〉 = 0.

The assumption y ∈ Px ∩ L shows b = 0. We have thus proved Proposition 2.3. 2

For an arbitrary point u in HS, Pu ∩ Pn becomes a hyperplane in Pn, moreover Pu
intersects Bn. Since P (u) is a point in ExtBn, Proposition 2.3 shows that the cone
consisting of lines through P (u) and a point in Pu ∩ ∂Bn is tangent to ∂Bn. We call
Pu ∩ Pn the polar hyperplane of P (u) in Pn, and P (u) the pole of Pu ∩ Pn (see, for
example, [Ke, p. 544]). For an arbitrary point v in ExtBn, we denote by Ω (v) its polar
hyperplane and by Ψ (v) the hyperplane in Bn with pole v, i.e., Ψ (v) := Ω (v) ∩ Bn.
Using Proposition 2.2, we have the following well-known corollary:

Corollary 2.4 Let v be a point in ExtBn. If a line in Pn through v intersects Bn,
then the line and the hyperplane Ψ (v) intersect orthogonally (in the sense of hyperbolic
geometry). 2

3 Signed distances and widths

In this section we define two kinds of values connected with the hyperbolic distance; one
is called a signed distance and the other is called a width. Then we give a relationship
between each of them and the Lorentzian inner product. We start this section with
defining a signed distance.

3.1 Signed distances

Definition 3.1 Fix a point x in HS. Let y be an arbitrary point in H+
T . Then the signed

distance between Πx and y (or equivalently Πy) is defined to be the real number, say d,
which satisfies the following two conditions:

(1) Its absolute value |d| is equal to the hyperbolic distance between Πx and y in the
usual sense. Especially d = 0 if and only if y ∈ Πx, that is, if and only if 〈x,y 〉 = 0.

(2) The sign of d is positive (resp. negative) if y ∈ Γx −Πx (resp. y /∈ Γx), that is, if
〈x,y 〉 < 0 (resp. 〈x,y 〉 > 0).

Lemma 3.2 Let x (resp. y) be a point in HS (resp. H+
T ). Then the signed distance d

between Πx and y has the following relation to the inner product 〈x,y 〉:
〈x,y 〉 = − sinh d .
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Proof of Lemma 3.2. Let N be the time-like vector subspace of E1,n spanned by x and
y. Then the shortest geodesic between Πx and y is the segment in N ∩H+

T joining y and
z, where z is the point defined by N∩Px∩H+

T . As we saw in the proof of Proposition 2.2,
z is expressed as a linear combination of x and y as follows:

z =
1√

〈x,y 〉2 + 1
y − 〈x,y 〉√

〈x,y 〉2 + 1
x .

Using the relation (2.1) together with the fact that the hyperbolic cosine is an even
function, we obtain 〈x,y 〉 as follows:

− cosh d = 〈y, z 〉
⇐⇒ cosh d =

√
〈x,y 〉2 + 1

⇐⇒ 〈x,y 〉 = ± sinh d .

By the definition of the signed distance, the sign must be negative. This completes the
proof. 2

Definition 3.3 Fix a point x inHS. Let y be an arbitrary point either inH+
T t(Rx ∩ L+)

or in Rx ∩HS with 〈x,y 〉 ≤ − 1. We denote by N the vector subspace of E1,n spanned
by x and y. Then, by Theorem 2.1 and Proposition 2.3, N is either time-like or light-like.
Now the signed distance d between Πx and Πy is defined as follows:

Case 1. Suppose N is time-like. Then, by Theorem 2.1(2) and Proposition 2.3, y is either
in H+

T t(Rx ∩ L+ − Px) or in Rx∩HS with 〈x,y 〉 < − 1. In this case, d is defined
to be the signed distance between Πx and z, where z is a unique point defined by
N ∩ Py ∩H+

T .

Case 2. SupposeN is light-like. Then y is either in Px∩L+ orRx∩HS with 〈x,y 〉 = − 1.

Case 2.1. If y ∈ Px ∩ L+, then d = −∞.

Case 2.2. If y ∈ Rx ∩HS with 〈x,y 〉 = − 1, then d = 0.

Proposition 3.4 Let x be a point in HS. For an arbitrary point y in H+
T t (Rx ∩ L+)

or in Rx ∩HS with 〈x,y 〉 ≤ − 1, the following equation holds:

〈x,y 〉 = − e
d + ν e− d

2
,

where ν := 〈y,y 〉, and d is the signed distance between Πx and Πy .

Proof of Proposition 3.4. We first suppose N , the vector subspace of E1,n spanned by x
and y, is time-like. Then Lemma 3.2 shows 〈x, z 〉 = − sinh d, where we recall that z is
a unique point defined by N ∩ Py ∩H+

T . We here note that x and z also span N . Since
y is contained in N , there exist two real numbers a and b such that y = ax+ b z.

Since z is contained in Py, we have

〈 z,y 〉 =
〈y,y 〉 − 1

2
⇐⇒ b = −

(
a sinh d+

ν − 1

2

)
.
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Then compute 〈y,y 〉 = ν and we obtain a = ± (ν + 1) / (2 cosh d) .
If y ∈ H+

T , then a = 0. From now on we consider the case where y is in Rx∩L+−Px
or in Rx ∩HS with 〈x,y 〉 < − 1. Then we obtain 〈x,y 〉 as follows:

〈x,y 〉 = a 〈x,x 〉+ b 〈x, z 〉

=
ν ed + e− d

2
, − e

d + ν e− d

2
.

Since y ∈ Rx, 〈x,y 〉 must be non-positive, that is, 〈x,y 〉 must be −(ed + ν e− d)/2. Of
course this consequence holds when y ∈ H+

T .
We next supposeN is light-like. If y is a point in Px∩L+, then 〈x,y 〉 = 0 = −e−∞/2,

and if y is a point in Rx ∩HS with 〈x,y 〉 = − 1, then −(e0 + 1 e− 0)/2 = − 1.
We have thus completed the proof of Proposition 3.4. 2

3.2 Widths

We next define the width of a point u in T+ tL+ tS, and observe its relationship to the
Lorentzian norm.

We first consider the case where u is a time-like vector with positive height, that is,
u ∈ T+ = {x ∈ E1,n | 〈x,x 〉 < 0 and x0 > 0 }.

Lemma 3.5 For any u ∈ T+, Πu is a sphere centered at n (u) = u√
−〈u,u 〉

.

Proof of Lemma 3.5. Since − 〈u,u 〉 > 0, we can rewrite the definition of Pu as follows:

Pu =

x ∈ E1,n

∣∣∣∣∣∣
〈
x,

u√
− 〈u,u 〉

〉
=
〈u,u 〉 − 1

2
√
− 〈u,u 〉

 .

Thus, by (2.1), all we have to show is that the following inequality holds for every u ∈ T+:

〈u,u 〉 − 1

2
√
− 〈u,u 〉

< − 1 .

And it holds by the following identity:

− 1− 〈u,u 〉 − 1

2
√
− 〈u,u 〉

=

(√
− 〈u,u 〉 − 1

)2

2
√
− 〈u,u 〉

. 2

We here note that Πu consists of only one point in H+
T if and only if 〈u,u 〉 = − 1,

and then Πu = {u}.

Definition 3.6 Let u be a point in T+. Then a real number δu is said to be the width
of u if the following two conditions hold:
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(1) Its absolute value |δu| is equal to the hyperbolic radius of the sphere Πu in the usual
sense. Especially δu = 0 if and only if u ∈ H+

T , that is, if and only if 〈u,u 〉 = − 1.

(2) The sign of δu is positive (resp. negative) if − 1 < 〈u,u 〉 < 0 (resp. 〈u,u 〉 < − 1).

Lemma 3.7 For any u ∈ T+, we have the following relation between its width δu and
〈u,u 〉:

− 〈u,u 〉 = e− 2 δu .

Proof of Lemma 3.7. Using (2.1), we obtain eδu as follows:

〈u,u 〉 − 1

2
√
− 〈u,u 〉

= − cosh δu = − e
δu + e− δu

2

⇐⇒ eδu = (−〈u,u 〉)1/2 or eδu = (− 〈u,u 〉)−1/2 .

The definition of the width δu implies eδu = (− 〈u,u 〉)−1/2, thereby completing the
proof. 2

Since the exponential function is injective, the following corollary holds:

Corollary 3.8 For an arbitrary point v in Bn and an arbitrary real number t, there
exists a unique vector u in T+ such that P (u) = v and δu = t. 2

We secondly consider the case where u is a space-like vector, that is, u ∈ S =
{x ∈ E1,n | 〈x,x 〉 > 0 }. In this case we can rewrite the definition of Pu as follows:

Pu =

x ∈ E1,n

∣∣∣∣∣∣
〈
x,

u√
〈u,u 〉

〉
=
〈u,u 〉 − 1

2
√
〈u,u 〉

 .

Lemma 3.2 shows that Πu is a non-empty set of points each of which is at a certain
distance away from the geodesic hyperplane Πn(u). We call such a hypersurface Πu an
equidistant hypersurface, and Πn(u) the axial hyperplane of Πu (cf. [Fe, p. 39]).

Definition 3.9 Let u be a point in S. Then a real number δu is said to be the width of
u if the following two conditions hold:

(1) Its absolute value |δu| is equal to the hyperbolic distance between Πu and its axial
hyperplane Πn(u) in the usual sense. Especially δu = 0 if and only if u ∈ HS, that
is, if and only if 〈u,u 〉 = 1.

(2) The sign of δu is positive (resp. negative) if 0 < 〈u,u 〉 < 1 (resp. 1 < 〈u,u 〉).

Lemma 3.10 For any u ∈ S, we have the following relation between the width δu and
〈u,u 〉:

〈u,u 〉 = e− 2 δu .

8



Proof of Lemma 3.10. By the definition of the width together with Lemma 3.2, we
obtain eδu as follows:

〈u,u 〉 − 1

2
√
〈u,u 〉

= − sinh δu = − e
δu − e− δu

2

⇐⇒ eδu = −〈u,u 〉1/2 or eδu = 〈u,u 〉−1/2 .

Since the exponential function is always positive, eδu must be 〈u,u 〉−1/2. This completes
the proof. 2

Since the exponential function is injective, the following corollary holds:

Corollary 3.11 For an arbitrary half-space in Bn bounded by a geodesic hyperplane and
an arbitrary real number, there exists a unique vector u in S such that Rn(u) ∩ Bn

coincides with the given half-space, and such that the width δu is equal to the given real
number. 2

Now we put together Lemma 3.7 and Lemma 3.10, and thus have the following propo-
sition:

Proposition 3.12 Suppose u ∈ T+ tS. Then the sign of its width δu is positive if and
only if 0 < |〈u,u 〉| ≤ 1 and negative if and only if |〈u,u 〉| > 1. Furthermore we have
the following relation between δu and |〈u,u 〉|:

δu = − 1

2
log |〈u,u 〉| . 2

We finally consider the case where u is a light-like vector with positive height, that is,
u ∈ L+ = {x ∈ E1,n | 〈x,x 〉 = 0 and x0 > 0 }. In this case we can rewrite the definition
of Pu as follows:

Pu =
{
x ∈ E1,n

∣∣∣∣ 〈x,u 〉 = − 1

2

}
.

The set Πu is called a horosphere whose center is the ray through u. Now the following
lemma is a well-known one.

Lemma 3.13 Let u be a point in L+.

(1) Let p be an arbitrary point in T+. Then the The Lorentzian inner product 〈u,p 〉
is negative.

(2) The horosphere Πu intersects orthogonally any geodesic line one of whose point at
infinity is the ray through u.

9



Proof of Lemma 3.13. Since p = (p0, p1, . . . , pn) ∈ T+, we have p0 >
√
p2

1 + p2
2 + · · ·+ p2

n.

And since u = (u0, u1, . . . , un) ∈ L+, we have u0 =
√
u2

1 + u2
2 + · · ·+ u2

n. So we can com-
pute 〈u,p 〉 as follows:

〈u,p 〉 = −u0 p0 + u1 p1 + u2 p2 + · · ·+ un pn

< u1 p1 + u2 p2 + · · ·+ un pn −
√
u2

1 + u2
2 + · · ·+ u2

n

√
p2

1 + p2
2 + · · ·+ p2

n .

Using the Cauchy-Schwarz inequality, we obtain 〈u,p 〉 < 0, thereby proving part (1).
To prove part (2), fix a point, say a, in the geodesic line in question. Then the line is

obtained by N ∩H+
T , where N is the 2-dimensional vector subspace of E1,n spanned by

a and u. Let b be the point in E1,n defined as follows:

b =

(
1− 1

4 〈u,a 〉2
)
u− 1

2 〈u,a 〉 a .

We note that the definition is well-defined since, by part (1), 〈u,a 〉 6= 0. Now we can
easily show that b ∈ N ∩ Pu ∩H+

T , and it means that Πu intersects N ∩H+
T .

From now on, we prove that N ∩ H+
T and Πu intersects orthogonally at b. Let M

be a time-like linear hyperplane through b with satisfying that its normal vector m is
in N ∩ HS. By this definition together with Proposition 2.2, M ∩ H+

T is orthogonal to
N ∩H+

T . Therefore, if M ∩H+
T is tangent to Πu, then Πu must be orthogonal to N ∩H+

T .
After this we show that M ∩H+

T is tangent to Πu.
Since N is also spanned by u and b, we can express m as a linear combination of u

and b as follows: m = − 2u+ b. We denote by b′ a point obtained from M ∩ Pu ∩H+
T .

Since b′ is contained in Pu, we have 〈 b′,u 〉 = −1/2. Since b′ is also contained in M , we
have 〈 b′,m 〉 = − 2 〈 b′,u 〉 + 〈 b′, b 〉 = 1 + 〈 b′, b 〉 = 0. Thus we obtain 〈 b′, b 〉 = − 1.
The relation (2.1) shows that b′ = b, and it means that M ∩H+

T is tangent to Πu at b.
Thus we have proved part (2). 2

Definition 3.14 Let u be a point in L+. Then the width δu of u is defined as follows:

δu := − 1

2
log (u,u ) ,

where ( ·, · ) means the Euclidean inner product, that is, (u,u ) := u2
0 + u2

1 + · · · + u2
n if

u = (u0, u1, . . . , un).

One reason why this definition is fit for us is given by the following proposition:

Proposition 3.15 (cf. [Na, Theorem 23 and 3]) Let u1 be a point in L+. For an ar-
bitrary k ≥ 1, we denote by u2 the vector ku1. Let N denote an arbitrary 2-dimensional
time-like vector subspace containing u1.

(1) The set Ru1 is contained in Ru2.

(2) Let b1 (resp. b2) be the point in N ∩Pu1 ∩H+
T (resp. N ∩Pu2 ∩H+

T ), and let d be
the hyperbolic distance between b1 and b2. Then d is independent with the choice
of N , and is equal to δu1 − δu2.
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Proof of Proposition 3.15. Let x be a point in Ru1 . Then it satisfies that 〈x,u1 〉 ≤
−1/2. Now we have 〈x,u2 〉 = k 〈x,u1 〉 and, since k ≥ 1, we also have 〈x,u2 〉 ≤
−k/2 ≤ −1/2. Thus we obtain x ∈ Ru2 , thereby proving part (1).

By the definition of the width, we can easily obtain δu1 − δu2 = log k. So all we have
to show is that d = log k.

Using the computation in the proof of Lemma 3.13, we can express b2 as a linear
combination of u1 and b1 as follows:

b2 =

(
1− 1

4 〈u2, b1 〉2
)
u2 −

1

2 〈u2, b1 〉
b1

=
(
k − 1

k

)
u1 +

1

k
b1 .

Using (2.1), we obtain ed as follows:

〈 b1, b2 〉 = − e
d + e− d

2
⇐⇒ ed = k ,

1

k
.

Since d ≥ 0 and k ≥ 1, ed must be k, that is, d = log k.
We have thus completed the proof of Proposition 3.15. 2

Since the logarithmic function is injective, we have the following corollary, which is
the one correspondent with Corollary 3.8 and Corollary 3.11:

Corollary 3.16 For an arbitrary point v in ∂Bn and an arbitrary real number t, there
exists a unique vector u in L+ such that P (u) = v and δu = t. 2

4 Definition of a weighted n-simplex

The projective model Bn has the advantage that it enable us to describe polyhedra in
Hn in terms of Euclidean terminology. For example, we can regard an ideal polyhedron
in Hn as an Euclidean polyhedron in Pn

1 whose vertices lie in ∂Bn. We start this section
with defining a generalized n-simplex in Bn.

Let V = {v0,v1, . . . ,vn} be a set of independent points in Pn, and let Vin :={
v ∈ V

∣∣∣v ∈ Bn
}

and Vex :=
{
v ∈ V

∣∣∣v ∈ ExtBn
}

= V − Vin. Without loss of gen-

erality, we may assume Vex = {v0,v1, . . . ,vk} and Vin = {vk+1,vk+2, . . . ,vn} for some
k ∈ {− 1, 0, 1, . . . , n}, by changing indices if necessary. This notation means that Vex = ∅
and Vin = V when k = − 1, and that Vex = V and Vin = ∅ when k = n. Now we suppose
V satisfies the following two conditions:

Condition 1. If Vex has more than one point, then for arbitrary different points vi
and vj in Vex hyperplanes Ψ (vi) and Ψ (vj) with poles vi and vj respectively are parallel
or ultraparallel, that is, they do not intersect in Bn.

Condition 2. The set Vin is wholly contained in one connected component of
Bn − ⋃ki=0 Ω (vi).

We note that, when k = − 1, Condition 2 means that V ⊂ Bn. We also note that Con-
dition 1 is equivalent to the following one:

11



Condition 1′. If Vex has more than one point, then for arbitrary different points vi
and vj in Vex the intersection of Bn and the line through vi and vj is not an empty set.

For each point vi in Vex, there is a unique point v′i in HS such that P (v′i) = vi
and Vin ⊂ Rv′i . Let |v′0v′1 · · ·v′kvk+1vk+2 · · ·vn| be the affine simplex in E1,n with vertex
set {v′0,v′1, . . . ,v′k,vk+1,vk+2, . . . ,vn}. Since the points in V are independent in Pn,
vectors {v′0,v′1, . . . ,v′k,vk+1,vk+2, . . . ,vn} are linearly independent in E1,n, namely the
hyperplane through n + 1-points v′0,v

′
1, . . . ,v

′
k,vk+1,vk+2, . . . ,vn does not contain the

origin o. Thus we can define P (|v′0v′1 · · ·v′kvk+1vk+2 · · ·vn|), an n-simplex in Pn with
vertex set V , and denote it by |v0v1 · · ·vn|. We note that, if Vex = ∅, |v0v1 · · ·vn| is just
the n-dimensional affine simplex in Pn

1 ≈ Rn with vertex set V .

Definition 4.1 Under the assumptions stated above, the generalized n-simplex ∆V in
Bn with vertex set V is defined as follows:

∆V :=


Bn ∩ |v0v1 · · ·vn| if V ⊂ Bn ,

Bn ∩ |v0v1 · · ·vn| ∩
k⋂
i=0

Rv′i if V ∩ ExtBn 6= ∅ (see Figure 1).

Figure 1: An example of a generalized 2-simplex in B2

Each face of ∆V is either contained in a face of |v0v1 · · ·vn| or in Ψ (vi) for some
vi ∈ Vex. We call the former an internal face of ∆V , and the later an external face of ∆V

(cf. [Ko1, Ko2]). For each vertex vi of ∆V , we denote by Fi the hyperplane in Pn through
n points {v0,v1, . . . ,vi−1,vi+1, . . . ,vn}. If an internal face of ∆V coincides with Fi ∩∆V

for some vi ∈ V , then we call the face the opposite face of vi, and denote it by Φi. By the
definitions of the notation, we have an injective correspondence from the internal faces
of ∆V to the vertex set. We here note that this correspondence may not be surjective
(see Figure 2). We may use the symbol of opposite faces to denote internal faces without
referring to vertices. Let Φi and Φj be internal faces, and Fi and Fj their corresponding
geodesic hyperplanes in the previous sense. Then we say that Φi and Φj (with i 6= j)
are parallel (resp. ultraparallel , intersecting) if P− 1 (Fi) ∩ H+

T and P− 1 (Fj) ∩ H+
T are

12



parallel (resp. ultraparallel, intersecting) (cf. Theorem 2.1). The dihedral angle between
Φi and Φj is defined to be the dihedral angle between P− 1 (Fi)∩H+

T and P− 1 (Fj)∩H+
T

measured in P− 1 (∆V )∩H+
T . By Condition 1, we can see that each connected component

of external faces is totally geodesic. We also note that a vertex of ∆V as a polyhedron in
hyperbolic space is not a “vertex” of the generalized n-simplex ∆V if it is made from the
intersection of an external face and an edge of |v0v1 · · ·vn| (see Definition 4.1).

Figure 2: A generalized 2-simplex with one degenerate internal face

We next define a weighted n-simplex . We recall that ∆V is a generalized n-simplex
with vertex set V . At each vertex, we give a real number called weight . Let W be the
set of weights of all vertices.

Definition 4.2 Under the assumptions stated above, we call a triplet (∆V , V,W ) a
weighted n-simplex in Bn.

Corollary 3.8, 3.11 and 3.16 imply the following proposition:

Proposition 4.3 (lift proposition) For a weighted n-simplex (∆V , V,W ) in the pro-
jective model Bn, there exists a unique affine n-simplex ∆̂V in E1,n−{o} with vertex set
V̂ satisfying the following four conditions:

(1) V̂ ⊂ T+ t L+ t S;

(2) P
(
V̂
)

= V ;

(3) For any u ∈ V̂ ∩ S, we have ∆V ⊂ Rn(u) ∩Bn;

(4) For any u ∈ V̂ , the width δu is equal to the weight of P (u). 2
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We call ∆̂V the lift of the weighted n-simplex (∆V , V,W ) in Bn, V̂ the lift of the vertex
set V , and u the lift of the vertex P (u) ∈ V . We here note that condition (2) means

V̂ is a set of linearly independent vectors in E1,n. We also note that P
(
∆̂V

)
does not

always coincide with ∆V , though P
(
V̂
)

= V .

5 Definition of a tilt

D. B. A. Epstein and R. C. Penner gave in [EP] a method for decomposing any noncom-
pact complete hyperbolic n-manifold of finite volume with weight at each cusp into ideal
polyhedra. This decomposition is called the Euclidean decomposition and defined via a
convex hull construction in Lorentzian space. Especially if all weights are equal, then the
decomposition is invariant under the action of the fundamental group of the manifold.
In this case it is called the canonical decomposition. S. Kojima gave in [Ko1, Ko2] a
method for decomposing any complete hyperbolic manifold of finite volume with non-
empty totally geodesic boundary into partially truncated polyhedra. This decomposition
is also called the canonical decomposition, and defined via a convex hull construction in
Lorentzian space. We give a brief review of the canonical decomposition of a compact
hyperbolic n-manifold, say M , with non-empty totally geodesic boundary.

We regard the universal cover M̃ of M as a subset of the hyperboloid model Hn.
To each component of ∂M̃ , assign a label. To each component of ∂M̃ labeled by α,
there exists a unique space-like vector vα ∈ HS such that Pvα contains the boundary
component, and such that Rvα contains M̃ . Let A be the set of dual vectors {vα}
on HS. Then A is invariant under the action of the covering transformation group.
Let HA be the closed convex hull of A in E1,n. The projection P (∂HA) contains Bn

(see [Ko1, Lemma 4.3]), and the intersection of P (∂HA) with P(M̃) in Bn defines a
π1 (M)-equivalent polyhedral decomposition on M̃ . It induces a truncated polyhedral
decomposition of M (see [Ko1, Theorem 4.8]), which is the canonical decomposition of
M .

In many cases the canonical decomposition for a compact hyperbolic n-manifold with
non-empty totally geodesic boundary consists of truncated n-simplices (see, for example,
[Us1, Theorem 2.2]). Furthermore if the manifold has cusps, then the simplices have
several ideal vertices instead of external faces. Namely they are “partially truncated
ideal n-simplices.” In the previous section we defined the weighted n-simplex, a unity of
such simplices and ideal n-simplices with weights. So when two weighted n-simplices are
adjacent to each other along a face, it is meaningful to provide an efficient tool to decide
whether or not their lifts form a convex dihedral angle.

R. C. Penner gave in [Pe, Proposition 2.6(b)] a criterion of convexity when simplices
are (2-dimensional) ideal triangles. J. R. Weeks independently gave in [We1, Proposi-
tion 3.1] a criterion of convexity when simplices are 2 and 3-dimensional ideal simplices.
This criterion is expressed by using “tilts,” and allow him to make the hyperbolic struc-
tures computation program “SnapPea” (cf. [We2]). He also provided an efficient formula,
called the tilt formula, to obtain tilts from the intrinsic hyperbolic geometry of the simplex
when its dimension is two (see [We1, Theorem 3.2]) and three (see [We1, Theorem 5.1]).
M. Sakuma and J. R. Weeks generalized the tilt formula to general dimensions in [SW].
The idea of R. C. Penner is translated by M. Näätänen in [Nä, Lemma 3.3] into the case
where simplices are triangles, and by the author in [Us2, Proposition 3.5(2)] into the case
where simplices are truncated triangles (i.e., orthogonal hexagons). In this section, using
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Weeks’ method, we will obtain a criterion of convexity when two weighted n-simplices in
Bn are “adjacent along faces.” So we start this section with the definition of the tilt of a
weighted n-simplex in Bn relative to an internal face.

Fix a weighted n-simplex (∆V , V,W ) in Bn, and take an internal face Φi of ∆V . Then
there is a unique pointmi inHS such that Φi ⊂ Pmi

∩Bn and ∆V ⊂ Rmi
∩Bn. We define

the normal vector p to the lift ∆̂V of (∆V , V,W ) by the condition that 〈p,x 〉 = − 1 for
all x ∈ ∆̂V .

Definition 5.1 Under the assumptions stated above, the tilt ti of (∆V , V,W ) relative
to Φi is defined as follows:

ti := 〈mi,p 〉 .

Let (∆V0 , V0,W0) and (∆V1 , V1,W1) be two weighted n-simplices in Bn, and let Φ0

(resp. Φ1) be an internal face of (∆V0 , V0,W0) (resp. (∆V1 , V1,W1)). Then we say that
(∆V0 , V0,W0) and (∆V1 , V1,W1) are adjacent along Φ0 and Φ1 if ∆̂V0 ∩ ∆̂V1 = Φ̂0 = Φ̂1,
where Φ̂0 (resp. Φ̂1) is the lift of Φ0 (resp. Φ1) in ∆̂V0 (resp. ∆̂V1). Now we call Φ0

and Φ1 joint faces . For convenience we additionally assume that V0 = {v0,v1, . . . ,vn},
V1 = {v1,v2, . . . ,vn,vn+1}, and that the joint faces are opposite faces of v0 and vn+1. We
denote by t0 (resp. t1) the tilt of (∆V0 , V0,W0) (resp. (∆V1 , V1,W1)) relative to Φ0 (resp.
Φ1). Then the following proposition correspondent with [We1, Proposition 3.1] holds.

Proposition 5.2 (tilt proposition) Under the assumptions stated above, the dihedral
angle formed by ∆̂V0 and ∆̂V1 is convex (flat, concave respectively) in E1,n if and only if
t0 + t1 < 0 (= 0, > 0 respectively).

Proof of Proposition 5.2. Let ui be the lift of vi, where i ∈ {0, 1, . . . , n+ 1}. So the
lift V̂0 of V0 is {u0,u1, . . . ,un}, and the lift V̂1 of V1 is {u1,u2, . . . ,un+1}. We denote by
m the orthogonal vector to the hyperplane containing joint faces of ∆V0 and ∆V1 with
satisfying that ∆̂V0 ⊂ Rm. Then, for an arbitrary i ∈ {1, 2, . . . , n}, we have 〈ui,m 〉 = 0.
Furthermore we have 〈u0,m 〉 < 0 and 〈un+1,m 〉 > 0.

Since vectors m,u1,u2, . . . ,un form a basis of E1,n, there exist unique real numbers
α0, α1, . . . , αn such that

u0 = α0m+ α1 u1 + α2 u2 + · · ·+ αn un .

Similarly we have
un+1 = α′0m+ α′1 u1 + α′2 u2 + · · ·+ α′n un

for some α′0, α
′
1, . . . , α

′
n ∈ R. We note that α′0 > 0, since 〈un+1,m 〉 > 0.

Let p0 (resp. p1) be the normal vector to ∆̂V0 (resp. ∆̂V1). Now p0 is also expressed
as a linear combination of m,u1,u2, . . . ,un as follows:

p0 = β0m+ β1 u1 + β2 u2 + · · ·+ βn un ,

where β0, β1, . . . , βn ∈ R. Then we have the following:
〈p0,u1 〉
〈p0,u2 〉

...
〈p0,un 〉

 =


〈u1,u1 〉 〈u1,u2 〉 · · · 〈u1,un 〉
〈u2,u1 〉 〈u2,u2 〉 · · · 〈u2,un 〉

...
...

. . .
...

〈un,u1 〉 〈un,u2 〉 · · · 〈un,un 〉



β1

β2
...
βn

 =


− 1
− 1
...
− 1

 ,
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that is,
n∑
i=1

βi 〈uj,ui 〉 = − 1 for j ∈ {1, 2, . . . , n} . (5.1)

Similarly we have

p1 = β′0m+ β′1 u1 + β′2 u2 + · · ·+ β′n un

for some β′0, β
′
1, . . . , β

′
n ∈ R. Then, in the same fashion as (5.1), we have

n∑
i=1

β′i 〈uj,ui 〉 = − 1 for j ∈ {1, 2, . . . , n} .

Using the relations above, we can compute 〈p1,un+1 〉 as follows:

− 1 = 〈p1,un+1 〉 = α′0 β
′
0 + α′1 (β′1 〈u1,u1 〉+ β′2 〈u1,u2 〉+ · · ·+ β′n 〈u1,un 〉)

+ α′2 (β′1 〈u2,u1 〉+ β′2 〈u2,u2 〉+ · · ·+ β′n 〈u2,un 〉)
+ · · ·
+ α′n (β′1 〈un,u1 〉+ β′2 〈un,u2 〉+ · · ·+ β′n 〈un,un 〉)

= α′0 β
′
0 −

n∑
i=1

α′i .

Thus we have the following relation:
n∑
i=1

α′i = α′0 β
′
0 + 1 . (5.2)

The hyperplane Pi, where i = 1 or 2, is defined to be Pi := {x ∈ E1,n | 〈x,pi 〉 = − 1 }.
Then Pi contains ∆̂Vi . Now the dihedral angle formed by ∆̂V0 and ∆̂V1 is convex if and
only if P0 separates un+1 from the origin o, or equivalently, if and only if P1 separates
u0 from o. And this condition is equivalent to the one that 〈ui,pj 〉 < − 1, where
(i, j) = (n+ 1, 0) or (0, 1). So, using (5.1) and (5.2), we can compute 〈un+1,p0 〉 as
follows:

− 1 > 〈un+1,p0 〉 = α′0 β0 + α′1 (β1 〈u1,u1 〉+ β2 〈u1,u2 〉+ · · ·+ βn 〈u1,un 〉)
+ α′2 (β1 〈u2,u1 〉+ β2 〈u2,u2 〉+ · · ·+ βn 〈u2,un 〉)
+ · · ·
+ α′n (β1 〈un,u1 〉+ β2 〈un,u2 〉+ · · ·+ βn 〈un,un 〉)

= α′0 β0 −
n∑
i=1

α′i

= α′0 β0 − (α′0 β
′
0 + 1) .

Thus we obtain β0 − β′0 < 0, since α′0 > 0. Furthermore t0 = 〈m,p0 〉 = β0 and
t1 = 〈−m,p1 〉 = − β′0, we have t0 + t1 < 0 if and only if the dihedral angle formed by
∆̂V0 and ∆̂V1 is convex. The proofs of other cases are analogous. We have thus proved
Proposition 5.2. 2

6 Tilt formulas

6.1 Generalized distances

Definition 6.1 Fix a point x in HS. Let y be an arbitrary point in T+ t (Rx ∩ L+) t
(Rx ∩ S). Then the generalized distance d between x and y is defined as follows:
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Case 1. If y ∈ Rx∩L+, then d is defined to be the signed distance between Πx and Πy.

Case 2. If y ∈ T+ or y ∈ S with 〈x,y 〉 ≤ −
√
〈y,y 〉 (that is, Πx and Πn(y) are parallel

or ultraparallel), then d = dn−δy, where dn is the signed distance between Πx and
Πn(y), and δy is the width of y.

Case 3. If y ∈ S with (0 ≥) 〈x,y 〉 > −
√
〈y,y 〉, that is, if Πx and Πn(y) intersect, then

d =
√
− 1 θ− δy, where θ is the dihedral angle between Πx and Πn(y) measured in

Γx ∩ Γn(y).

Now we have the following proposition, which is a generalization of Proposition 3.4:

Proposition 6.2 Let x be a point in HS. For an arbitrary point y ∈ T+ t (Rx ∩ L+)t
(Rx ∩ S), the following equality holds:

〈x,y 〉 = − e
d + ν e− d

2
,

where ν := 〈y,y 〉, and d is the generalized distance between x and y.

Proof of Proposition 6.2. We first consider the case where y ∈ Rx ∩ L+. In this case,
the proposition is a direct consequence of Proposition 3.4.

We secondly consider the case where y ∈ S with 〈x,y 〉 > −
√
〈y,y 〉. Then, using

the relation (2.2) together with Lemma 3.10, we obtain

〈x,y 〉 = −
√
〈y,y 〉 cos θ

= − e− δy e
√
− 1 θ + e−

√
− 1 θ

2

= − e
√
− 1 θ− δy + e− 2 δy e− (

√
− 1 θ− δy)

2

= − e
d + ν e− d

2
.

We thirdly consider the case where y ∈ S with 〈x,y 〉 ≤ −
√
〈y,y 〉. Then, using

Proposition 3.4 and Lemma 3.10, we obtain

〈x,y 〉 = −
√
〈y,y 〉

edn +
〈

y√
〈y,y 〉

, y√
〈y,y 〉

〉
e− dn

2

= − e− δy e
dn + 〈y,y 〉 e2 δy e− dn

2

= − e
(dn−δy) + ν e− (dn−δy)

2

= − e
d + ν e− d

2
.
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We finally consider the case where y ∈ T+. Then, using Proposition 3.4 and Lemma 3.7,
we obtain

〈x,y 〉 = −
√
− 〈y,y 〉

edn +
〈

y√
−〈y,y 〉

, y√
−〈y,y 〉

〉
e− dn

2

= − e
d + ν e− d

2
.

We have thus proved Proposition 6.2. 2

As Figure 2 in Section 4, if the dimension n is equal to two, internal faces may be
degenerate, that is, some of opposite faces may not exist in Bn. But n is greater than
two, all opposite faces exist.

Proposition 6.3 Suppose n is greater than or equal to three. Then, for any weighted
n-simplex (∆V , V,W ) in Bn, the opposite face Φi of an arbitrary vertex vi ∈ V exists in
Bn.

Proof of Proposition 6.3. All we have to show is that the opposite face Φn intersects Bn

when v0,v1, . . . ,vn−1 ∈ ExtBn and each line l (vivj) in Pn through vi and vj, where
0 ≤ i < j ≤ n − 1, touches ∂Bn. Let w1 (resp. w2) be the tangent point of ∂Bn

and l (v0v1) (resp. l (v0v2)). Then w1 does not coincide with w2 when n ≥ 3. Since
n-dimensional ball Bn is convex, the line l (w1w2) intersects Bn. Thus l (w1w2) ∩Bn is
a (non-empty) segment contained in the opposite face Φn. This completes the proof. 2

6.2 The case where the dimension is greater than two

In this subsection we suppose the dimension n is greater than or equal to three. Fix a
weighted n-simplex (∆V , V,W ) in Bn. Then Proposition 6.3 guarantees that all internal
faces of ∆V exist in Bn, namely we can always define the tilt ti for each internal face Φi.
We denote by V̂ = {u0,u1, . . . ,un} the lift of V , and we define νi := 〈ui,ui 〉. Let di be
the generalized distance between mi and ui, where we recall that mi is the point in HS

such that Φi ⊂ Pmi
∩Bn and ∆V ⊂ Rmi

∩Bn. Now we define Qi as follows:

Qi :=
2

edi + νi e− di
.

We denote by θi j the dihedral angle between Φi and Φj, that is, the dihedral angle
between Πmi

and Πmj
measured in Γmi

∩ Γmj
. We note that θi j = 0 if Φi and Φj are

parallel. Then we have the following Theorem 6.4, the main theorem of this paper and a
generalization of Theorem 2.1 in [SW]:

Theorem 6.4 (tilt formula for n ≥ 3) Under the notation defined above, the tilt of
a weighted n-simplex relative to each of its (codimension one) internal faces may be
computed as follows:
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

t0
t1
t2
...
tn

 =



1 − cos θ0 1 − cos θ0 2 · · · − cos θ0n

− cos θ1 0 1 − cos θ1 2 · · · − cos θ1n

− cos θ2 0 − cos θ2 1 1 · · · − cos θ2n
...

...
...

. . .
...

− cos θn 0 − cos θn 1 − cos θn 2 · · · 1





Q0

Q1

Q2
...
Qn

 .

We may say the (n+ 1)× (n+ 1) matrix on the right side of the formula denoted above
the Gram matrix of the generalized n-simplex ∆V (cf. [Vi, p. 39]).

We prove this theorem by imitating the method of Section 2 in [SW]. So we also
organize the proof of this theorem and its supporting lemmas in a top-down fashion. The
actual logical dependent among the lemmas is as follows:

Theorem 6.4
↗ ↑ ↖

(Proposition 6.2 →) Lemma 6.5 → Lemma 6.6 Lemma 6.7.

Proof of Theorem 6.4. Lemma 6.5 shows that vectors m0,m1, . . . ,mn form a basis of
E1,n. Relative to this basis, mk = (0, . . . , 0, 1, 0, . . . , 0) and p = (Q0, Q1, . . . , Qn) by
Lemma 6.6, and the metric is given by the matrix computed in Lemma 6.7. Therefore

tk = 〈mk,p 〉
= (0, . . . , 0, 1, 0, . . . , 0)

×



1 − cos θ0 1 − cos θ0 2 · · · − cos θ0n

− cos θ1 0 1 − cos θ1 2 · · · − cos θ1n

− cos θ2 0 − cos θ2 1 1 · · · − cos θ2n
...

...
...

. . .
...

− cos θn 0 − cos θn 1 − cos θn 2 · · · 1





Q0

Q1

Q2
...
Qn

 ,

thereby completing the proof of Theorem 6.4. 2

Lemma 6.5 The set {m0,m1, . . . ,mn} forms a basis of E1,n, and is dual to the basis
{−Q0 u0,−Q1 u1, . . . ,−Qn un} in respect of the Lorentzian inner product.

Proof of Lemma 6.5. As we saw in Proposition 4.3, V̂ = {u0,u1, . . . ,un} is a set of
linearly independent vectors in E1,n. Furthermore, since uj lies in Pmi

for i 6= j, we have
〈mi,uj 〉 = 0. Now ui does not lie in Pmi

, that is, 〈mi,ui 〉 6= 0. Moreover, using Propo-
sition 6.2, we obtain 〈mi,ui 〉 = −Q− 1

i . It follows that sets of vectors {m0,m1, . . . ,mn}
and {−Q0 u0,−Q1 u1, . . . ,−Qn un} are dual, that is, 〈mi,−Qj uj 〉 = 1 if i = j and
〈mi,−Qj uj 〉 = 0 if i 6= j. This duality implies that each set is linearly independent,
and therefore forms a basis of E1,n. 2

Lemma 6.6 Relative to the basis {m0,m1, . . . ,mn}, the vector p is (Q0, Q1, . . . , Qn).
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Proof of Lemma 6.6. Since bases {m0,m1, . . . ,mn} and {−Q0 u0,−Q1 u1, . . . ,−Qn un}
are dual by Lemma 6.5, the following equation holds:

p =
n∑
i=0

〈p,−Qi ui 〉 mi .

By the definition of p, we have 〈p,ui 〉 = − 1. So we obtain

n∑
i=0

〈p,−Qi ui 〉 mi =
n∑
i=0

Qimi . 2

Lemma 6.7 Relative to the basis {m0,m1, . . . ,mn}, the Lorentzian space metric is

1 − cos θ0 1 − cos θ0 2 · · · − cos θ0n

− cos θ1 0 1 − cos θ1 2 · · · − cos θ1n

− cos θ2 0 − cos θ2 1 1 · · · − cos θ2n
...

...
...

. . .
...

− cos θn 0 − cos θn 1 − cos θn 2 · · · 1

 .

Proof of Lemma 6.7. Since mi ∈ HS, we have 〈mi,mi 〉 = 1. Now we suppose i 6= j.
Then, by the definition of the weighted n-simplex together with the assumption n ≥ 3,
Πmi

and Πmj
are not ultraparallel. So, using (2.2), we obtain 〈mi,mj 〉 = − cos θi j. 2

6.3 The case where the dimension is two

As we saw in Figure 2, some internal faces of a weighted 2-simplex (∆V , V,W ) in B2 may
be degenerate. So Theorem 6.4 does not always hold when the dimension n is two. But
under the assumption that all internal faces exist, it holds that the following Theorem 6.8,
an analogue of Theorem 6.4. We here note that Πmi

and Πmj
may be ultraparallel for

some mi,mj ∈ HS with i 6= j (see Figure 1 again). We denote by δi j the generalized
distance between mi and mj.

Theorem 6.8 (tilt formula for n = 2 when all internal faces exist) Under the as-
sumptions stated above, the following relation holds: t0

t1
t2

 =

 1 − cosh δ0 1 − cosh δ0 2

− cosh δ1 0 1 − cosh δ1 2

− cosh δ2 0 − cosh δ2 1 1


 Q0

Q1

Q2

 . 2

From now on, we consider the case where some internal faces are degenerate. For
example we assume that only the opposite face of the vertex v2 ∈ V is degenerate (see
Figure 2 again). In this case, we put m2 :=

√
ν1 u0 +

√
ν0 u1. Then m2 is a non-zero

vector in L. Now, by a similar argument to the proof of Lemma 6.5, we can show that two
sets {u0,u1,u2} and {−Q0m0,−Q1m1,−Q2m2} form two bases of E1,2 and are dual

to each other, where Q2 := −〈m2,u2 〉− 1 = −
(
〈u0,u2 〉

√
ν1 + 〈u1,u2 〉

√
ν0

)− 1
(6= 0).

Now using equations 〈m0,m2 〉 = −Q0
− 1√ν1 and 〈m1,m2 〉 = −Q1

− 1√ν0, we can
easily obtain the following corollary:
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Corollary 6.9 (tilt formula for n = 2 with one degenerate internal face) Under
the assumptions stated above, the following relation holds:

(
t0
t1

)
=

(
1 − cosh δ0 1 −Q0

− 1√ν1

− cosh δ1 0 1 −Q1
− 1√ν0

)  Q0

Q1

Q2

 . 2

A List of notation

E1,n : n+ 1-dimensional Lorentzian space,

Rn+1 : n+ 1-dimensional Euclidean space,

〈x,y 〉 := −x0 y0 +x1 y1 + · · ·+xn yn; Lorentzian inner product of x = (x0, x1, . . . , xn) and
y = (y0, y1, . . . , yn),

T+ := {x ∈ E1,n | 〈x,x 〉 < 0 and x0 > 0 }; future cone,

T− := {x ∈ E1,n | 〈x,x 〉 < 0 and x0 < 0 }; past cone,

L := {x ∈ E1,n | 〈x,x 〉 = 0 }; light cone,

L+ := {x ∈ E1,n | 〈x,x 〉 = 0 and x0 > 0 } (⊂ L); positive light cone,

L− := {x ∈ E1,n | 〈x,x 〉 = 0 and x0 < 0 } (⊂ L); negative light cone,

S := {x ∈ E1,n | 〈x,x 〉 > 0 }; side cone,

o := (0, 0, . . . , 0); origin of E1,n,

A tB : disjoint union of two sets A and B,

n (x) := x√
|〈x,x 〉|

; normalized vector of x in E1,n with 〈x,x 〉 6= 0,

H+
T := {x ∈ E1,n | 〈x,x 〉 = − 1 and x0 > 0 } (⊂ T+); upper sheet of the (standard) hy-

perboloid of two sheets,

Hn : hyperboloid model of the n-dimensional hyperbolic space,

∂A : boundary of a set A,

Sn−1
∞ := { ray in L+ started from o }; sphere at infinity of Hn,

HS := {x ∈ E1,n | 〈x,x 〉 = 1 } (⊂ S); (standard) hyperboloid of one sheet,

Pn
1 := {x ∈ E1,n |x0 = 1 },

i := (1, 0, 0, . . . , 0); origin of Pn
1 ,

Bn : n-dimensional open unit ball in Pn
1 centered at i,

Bn := Bn t ∂Bn (≈ Hn t Sn−1
∞ ),

Pn
∞ := { line in the affine hyperplane {x ∈ E1,n |x0 = 0 } through o },
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Pn : n-dimensional real projective space obtained by Pn
1 tPn

∞,

P :E1,n − {o} −→ Pn; radial projection along the ray from o,

ExtBn := Pn −Bn,

Ru :=
{
x ∈ E1,n

∣∣∣ 〈x,u 〉 ≤ 〈u,u 〉−1
2

}
, where u ∈ E1,n,

Pu :=
{
x ∈ E1,n

∣∣∣ 〈x,u 〉 = 〈u,u 〉−1
2

}
(= ∂Ru), where u ∈ E1,n,

Γu := Ru ∩H+
T ,

Πu := Pu ∩H+
T ,

Ω (v) : polar hyperplane of v ∈ ExtBn,

Ψ (v) := Ω (v) ∩Bn; hyperplane in Bn with pole v,

ν := 〈y,y 〉 for y ∈ T+ t S,

(x,y ) := x0 y0 + x1 y1 + · · · + xn yn; Euclidean inner product of x = (x0, x1, . . . , xn) and
y = (y0, y1, . . . , yn),

δu : width of u ∈ T+ t L+ t S, that is,
δu := − 1

2
log |〈u,u 〉| if u ∈ T+ t S

δu := − 1
2

log (u,u )
(
= − log(u0

√
2)
)

if u = (u0, u1, . . . , un) ∈ L+,

V := {v0,v1, . . . ,vn}; set of independent points in Pn,

Vin :=
{
v ∈ V

∣∣∣v ∈ Bn
}
,

Vex :=
{
v ∈ V

∣∣∣v ∈ ExtBn
}

(= V − Vin),

|v0v1 · · ·vn| : n-simplex in Pn with a vertex set V ,

∆V : generalized n-simplex in Bn with a vertex set V ,

Fi : hyperplane in Pn through {v0,v1, . . . ,vi−1,vi+1, . . . ,vn} ⊂ V ,

Φi := Fi ∩∆V ; opposite face of vi ∈ V (i.e., the internal face opposite to vi),

W : set of weights,

(∆V , V,W ) : weighted n-simplex in Bn,

∆̂V : lift of (∆V , V,W ),

V̂ : lift of V ,

mi : point in HS with Φi ⊂ Pmi
and ∆V ⊂ Rmi

,

p : normal vector to ∆̂V with 〈p,x 〉 = − 1 for x ∈ ∆̂V ,

ti := 〈mi,p 〉; tilt of (∆V , V,W ) relative to Φi,
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νi := 〈ui,ui 〉, where ui ∈ V̂ ,

di : generalized distance between mi ∈ HS and ui ∈ V̂ ,

Qi := 2
edi+νi e− di

,

θi j : dihedral angle between Φi and Φj,

δi j : generalized distance between mi ∈ HS and mj ∈ HS.
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