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We have introduced effects of spin-orbit interaction nonperturbatively to the ultrasoft-pseudopotential
scheme accompanied by two component spinor wave functions. Application to the electronic structure calcu-
lations of some heavy elements successfully reproduced results of the all electron approaches. The magnetic
anisotropy energy and the orbital magnetic moment for alloys, which have shown a good agreement with the
previous results, demonstrated broad capabilities of the approach.
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I. INTRODUCTION

Spin-orbit interaction �SOI� is a relativistic effect on elec-
trons and is included automatically by solving the Dirac
equation.1 In electronic structure calculations, this effect has
been introduced by a direct treatment or a perturbative ap-
proach for the Dirac equation. In density functional ap-
proaches to the system which requires SOI, all electron ap-
proaches have been popular, while the pseudopotential
approach has a potential to study structural and dynamical
properties of systems for heavy elements.

Recently, the self-consistent treatment of bispinor wave
functions was used for the study on the dilute magnetic
semiconductors.2,3 For the heavy elements, Corso et al. de-
veloped a relativistic ultrasoft pseudopotential �USPP� and
reported the application to Au and Pt bulk systems.4 For
those materials which include heavy elements, details of the
electronic structure depend on the SOI, reflecting on, for ex-
ample, structural properties of material. As another important
issue, SOI is an origin of magnetic anisotropy for magnetic
materials.

In this work, we implemented the electronic structure cal-
culations by using the fully relativistic pseudopotential5 for
the bispinor Kohn-Sham equation.6 For the application to
nonmagnetic materials, we presented spin-orbit effects ex-
plicitly on the electronic band structure and, for magnetic
materials, we challenged to estimating the magnetic aniso-
tropy energy �MAE� for CoPt and FePt. To treat such mate-
rials that contain transition metal elements, the USPP has
been an important device for the plane-wave method.7 The
present scheme, which has been coded in line of the Car-
Parrinello method,8 is essentially the same as previously
published.4 As a result of implementation, we believe that the
scheme has a potential to study effects of SOI with a wide
range of freedom by combining the molecular dynamics.9

II. FORMALISM

The theoretical formulation is based on the bispinor wave
function �i, which has two components, �i1 and �i2, where
the index i specifies an orbital among the set of Kohn-Sham
orbitals ��i�.10–13 Each component is expanded with plane-
wave basis set. The electron density n�r�, and the spin den-
sity m�r� are found by expanding the density matrix, �, as

follows; ��r�=n�r��0 /2+�kmk�r��k /2, where �0 and
�k �k=x ,y ,z� are the unit and the Pauli spin matrices, re-
spectively. The elements of the density matrix are given by

����r� = �
i

f i��i��r��i�
* �r� + �

pqI

Qpq,��
I �r���p

I ��i	��i��q
I 	
 ,

�1�

where f i is the occupation number of the ith Kohn-Sham
orbital and the second term in parentheses corresponds to a
localized part of the electron density, which is peculiar to the
USPP scheme.14,15

For each atom, this term augments the electron density by
using localized charge density functions Qpq,��

I �r� and pro-
jector functions �p

I �r�, centered at the nuclear position. In the
relativistic formulation, �p

I �r� has the spinor form,

�p
I �r� = � j��

I �r�Y j,	
sgn����r̂� , �2�

where the indices of j ,	, and � are the atomic relativistic
quantum numbers and the index of p specifies the combined
one, p= �j ,	 ,� ,��. The last index of � specifies the number
of augmentation for reproducing scattering properties of the
realistic atom in an all-electron calculation.14 The spin-
angular harmonic function Y j,	

sgn��� can be defined, depending
on the quantum number, for j= � + �1/2�, 	=m+ �1/2�
��=−�−1
0�, as follows:

Y j,	
− �r̂� =�� + m + 1

2 � + 1
Y�,m�r̂��1

0



+� �− m

2 � + 1
Y�,m+1�r̂��0

1

 , �3�

and for j= l− �1/2�, 	=m− �1/2� ��= � �0�,

Y j,	
+ �r̂� =��− m + 1

2 � + 1
Y�,m−1�r̂��1

0



−� � + m

2 � + 1
Y�,m�r̂��0

1

 , �4�

where Y�,m is the spherical harmonic function.
The augmented charge density of Qpq,��

I �r� has a 2�2
matrix form in the spinor indices. As in the original
approach,7 the function has the pseudized form,
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Qpq,��
I �r� = �

LM

Cpq
LMQpq,��

I,LM �r�YLM�r̂� , �5�

where Cpq
LM is a coefficient induced by the Clebsch-Gordan

coefficients.
In practice, this scheme is easily developed from the non-

collinear scheme which has been implemented previously.6,9

The formalisms of the Kohn-Sham energy �Etot� and the
Kohn-Sham equation are written down by replacing the
atomiclike orbitals to the relativistic version ��p

I �, paying at-
tention to the spinor matrix form of Qpq,��

I �r�. In Etot, the
nonlocal part of pseudopotential VNL is given by

VNL = �
pqI

��q
I 	Dpq

�0�I��p
I � . �6�

The quantities �p
I �r�, Dpq

�0�I, Qpq,��
I �r�, and Vloc

ion�r� character-
ize the USPP and are obtained from calculations for an iso-
lated atom.5,14 The last quantity Vloc

ion�r� is the local part of
pseudopotential. Compared with the previous scheme,9 the
number of local orbitals ��p

I � is increased twice. In our
implementation, the augmented density Qpq,��

I �r� has been
pseudized, allowing the interested system to become larger
in applications.

The target systems in the present work are metallic, treat-
ing the occupation number of f i as noninteger values in the
vicinity of the Fermi level. According to this, for a self-
consistent treatment, we used the functional form,16,17

Ftot=Etot−Sel /�, where Sel /� is an entropic energy of an
electron and 1/� specifies a scale of energy width for smear-
ing at the Fermi level. The self-consistent solution is ob-
tained by minimizing the energy functional of Ftot.

III. PSEUDOPOTENTIAL PREPARATION

The present scheme requires a relativistic version of US-
PPs. The relativistic effect including spin-orbit interaction
can be taken into account by solving the Dirac equation for
the part of an all-electron calculation and introducing the
j-dependent atomiclike radial function instead of the
�-dependent function in the conventional scheme.14 Follow-
ing the previous works,18,19 in which they neglected the mi-
nor component of radial wave function at the radius far from
the nuclei, we only considered the major component for
pseudo-wave function. This approximation could be assumed
for a wide variety of elements. Additionally, it allows us to
use almost all parts of the scalar relativistic �conventional�
USPP generation code14 without complex cumbersome
modifications.

For an open shell, the electron occupation at each atomic
level is distributed in the ratio of multiples in the j-dependent
level. For lead, the atomic energy levels obtained agree with
the results in the previous work.19 The details of generation
will be published elsewhere.5

The relativistic version of USPP for Fe is generated with
the similar parameters used in the previous work.6 For Co,
we generated the pseudopotential in a similar way as Fe, but
used the ionic reference state consisting of �3d�7�4s�1�4p�0.5

valence electrons with 3s- and 3p-semicore electrons. The
exchange-correlation form of Cepaly-Alder-Perdew-Zunger
is used in this work.20

IV. APPLICATION

A. Band calculations for lead, gold, and platinum

The typical heavy metal is an application for demonstrat-
ing the developed scheme. We applied to lead and the two
noble metals of gold and platinum, all that have a fcc crystal
structure. We took in the plane-wave basis the energy cutoffs
of 40 and 300 Ry for wave functions and charge densities,
respectively. The sampling k points of Monkhost and Pack
with the 10�10�10 mesh was used for constructing the
self-consistent densities ��r�.21 The Fermi-Dirac distribution
function with 1/� of 27 meV was taken into account in the
smearing at the Fermi level.

The band dispersions are presented at the experimental
lattice constant for lead in Fig. 1. The spin-orbit splittings are
found remarkably around the 
, W, and K points, while the
SOI does not affect eigenvalues so largely at the Fermi level
for this material. The eigenvalues of the fully relativistic ver-
sion at typical k points are compared with the previous cal-
culation and experimental data in Table I. Our results are in
good agreement with the all-electron approaches.22 For gold
and platinum, it was also found that the band dispersions �not
shown� were very similar to the results of the previous the-
oretical works.4,25

Table II presents the equilibrium lattice constant and the
bulk modulus for lead, gold, and platinum, compared with
the experimental data. Concerned with the lattice constant,
the agreement with experiment is within 0.6%. For the bulk
modulus, our result shows the larger values than the values
of experiment, which is similar to the result of other theoret-
ical calculations. In Table II, the effect of SOI �difference
between SR and FR� is relatively large �6%� for the bulk
modulus of lead. On the whole, however, the SOI does not
change the physical quantities so significantly.

FIG. 1. Band dispersions of lead. The thick and thin curves
represent dispersions of fully relativistic and scalar relativistic
cases, respectively. The dispersions for the 5d state are not shown.
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B. Magnetic anisotropy energy for FePt and CoPt

To demonstrate the fully relativistic approach, MAE is
one of good physical quantities. The SOI mainly contributes
this quantity. CoPt and FePt are the typical materials to study
in the previous theoretical approach.27–30

The structure of present calculations has an ordered
atomic arrangement of a fcc alloy, in which the same element
distributes in the same �001� layer, alternatively. The unit cell
of the calculation has a magnetic atom �Co or Fe� at the
origin and a platinum atom at the center of the tetragonal
cell. The experimental lattice constants are used in the cal-
culation: a=5.08, c=7.01 a .u. for CoPt, and a=5.16,
c=7.15 a .u. for FePt.29 Both parameters correspond to
slightly compressed cells along the c axis with respect to an
ideal fcc lattice.

We estimated the total energy difference as the MAE;
Ftot�110�−Ftot�001�, where the direction in the square brack-
ets specifies the magnetization direction in the tetragonal lat-
tice. To estimate the MAE in the bulk materials, it is neces-
sary to include a large number of k sampling points, as in the
previous study.29 We used the 22�22�22 mesh for k space,
resulting in 10 648 points. We also used the same conditions

for the energy cutoffs and the Fermi level smearing as in the
previous section of nonmagnetic bulks.

The MAE and the total spin magnetic moment are pre-
sented in Table III, compared with the data of all-electron
approaches. In both materials, the magnetic easy axis is cor-
rectly predicted, and the data estimated for �100� magnetiza-
tion �not reported here� are very similar to that of �110�. The
latter implies a small anisotropy within �001� planes. Our
MAE of FePt is in good agreement with the value of all-
electron approaches. For CoPt, the MAE obtained is smaller
than the values of the all electron. The previous values esti-
mated from theoretical and experimental approaches are still
dispersive in a relatively wide range, and the effect of orbital
polarization which has been ignored here should improve the
MAE in CoPt.29

In Table IV, we compare our result with the previous data
on atomic magnetic moments. The formalism for the orbital
moment, which is described in the Appendix, is based on the
work in Ref. 31. Overall agreement is very satisfactory, com-
pared with all-electron approaches. The result is presented
for two magnetization directions of �001� and �110�. For
CoPt, the orbital moment in Co is largely decreased from
�001� magnetization to �110�, while the moment in Pt is in-
creased. Interestingly, the above relation in orbital moment
between �001� and �110� is observed also in the all-electron
calculation. This kind of agreement, although the change in
orbital moment is small, is also true for FePt.

TABLE I. Eigenvalues �in eV� of a fully relativistic version at
the typical k points for lead, compared with the all-electron ap-
proach. USPP specifies results of the present work and the values in
parentheses were measured by the angle-resolved photoelectron
spectroscopy.

k USPP RAPWa �exp.b� k USSP RAPWa �exp.b�


 −11.55 −11.4 �−11.4� W −6.43 −7.2

5.10 −1.97

8.48 −0.73

L −7.92 −8.2 X −6.52 −6.7 �−6.8�
−4.13 −4.5 −3.28 −3.6 �−3.4�

K −6.61 −6.7 �−6.9�
−2.44 −2.8 �−2.7�
−0.93 −1.2 �−1.0�

aReferences 22 and 23.
bReferences 24.

TABLE II. The equilibrium lattice constant �a� and the bulk
modulus �B0� for lead, gold, and platinum, compared with the data
of an all-electron approach �AE� and the experimental data �exp.�.
SR and FR specify the cases of scalar relativistic and fully relativ-
istic pseudopotentials, respectively.

a �a.u.� B0 �GPa�
SR FR FRa AEb exp.c SR FR FRa AEb exp.c

Pb 9.27 9.30 9.35 48.6 45.6 43.0

Au 7.68 7.66 7.64 7.637 7.71 194 198 198.1 195 173.2

Pt 7.42 7.43 7.40 7.370 7.41 300 296 292.0 297 278.3

aReferences 4.
bReferences 25.
cReferences 26.

TABLE III. Magnetic anisotropy energy �MAE� and the total
spin magnetic moment for CoPt and FePt. The latter is presented for
values of the �001� magnetization.

MAE �meV/f.u.� ms �	B�
USPP AE USPP AE

CoPt 0.52 1.5a 1.052b 2.28 2.29a 2.146b

FePt 2.61 2.8a 2.734b 3.33 3.26a 3.205b

aReferences 28.
bReferences 29.

TABLE IV. Atomic spin and orbital magnetic moments �in 	B�
for CoPt and FePt. The radius of 2.5 a.u. was used for all atomic
spheres. The magnetization direction is specified in square brackets.

Spin Orbital

USPP AE USPP AE

CoPt Co 1.926 1.91a 1.803b 0.102 0.11a 0.089b

�001� Pt 0.377 0.38a 0.394b 0.061 0.07a 0.056b

CoPt Co 1.929 1.809b 0.069 0.057b

�110� Pt 0.377 0.398b 0.078 0.073b

FePt Fe 3.016 2.93a 2.891b 0.067 0.08a 0.067b

�001� Pt 0.338 0.33a 0.353b 0.046 0.05a 0.042b

FePt Fe 3.020 2.893b 0.062 0.061b

�110� Pt 0.340 0.355b 0.059 0.055b

aReferences 28.
bReferences 29.
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V. CONCLUSION

The SOI was introduced in the USPP scheme accompa-
nied by two component spinor wave functions. The applica-
tion to the simple metal consisting of the heavy elements
successfully reproduced the results of all-electron ap-
proaches. Our fully relativistic scheme was tested in estimat-
ing the MAE and orbital magnetic moment for alloys, CoPt
and FePt. The present work implies a considerable potential
in the pseudopotential plane-wave method to study the mag-
netic anisotropy as well as the structural and dynamical prop-
erties in relativistic systems.

ACKNOWLEDGMENTS

The computation in this work was partially carried out
using the facilities of the Super computer Center, Institute for
Solid State Physics, University of Tokyo. This work has been
partially supported by the Japan Society for the Promotion of
Science �JSPS� under Project No. 16310081. One of the au-
thors �T.O.� would like to thank the JSPS for financial sup-
port �Project No. 17540292�.

APPENDIX A: ORBITAL MAGNETIC MOMENT

We present the formalism of an orbital magnetic moment
in the USPP method. The average of the orbital angular mo-
mentum operator at Ith atomic sphere can be written as fol-
lows:

��k	I = ��k	I,PW + ��k	I,VB �k = x,y,z� , �A1�

��k	I,PW = �
i

f i��i��k��i	I, �A2�

��k	I,VB = �
ipq

f i��i��q
I 	�k,pq

I ��p
I ��i	 . �A3�

The contribution is divided into two parts, namely, the plane-
wave part ��k	I,PW and the augmented �Vanderbilt’s� part
��k	I,VB. The expectation value, ��i ��k ��i	I, can be calcu-
lated by using the expansion of the wave function at the Ith
atomic site;

�i��r� = �
�m

Yl,m�r̂I�R�m,i��rI� . �A4�

For applications in the text, we included � up to two. The
matrix element �k,pq

I on local orbitals is presented by

�k,pq
I = �

0

rc

� j1�1�1
�rI�� j2�2�2

�rI�rI
2drI�Y j2,	2

sgn��2���k�Y j1,	1

sgn��1�	 ,

�A5�

where the indices of p and q are read as the composites of
�j1 ,	1 ,�1 ,�1� and �j2 ,	2 ,�2 ,�2�, respectively. The radial in-
tegral in Eq. �A5� can be found in the generation process on
the Fourier component for Qpq,��

I �r�.
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