Finite-size dependence of the bridge function
extracted from molecular dynamics simulations
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The bridge function for liquid sodium at=373 K is obtained by using the mean spherical approximation
to extrapolate the pair distribution functigRDF), calculated in molecular dynami¢MD) simulations, be-
yond the half simulation box length for two sizes of the MD system. The bridge function is found to strongly
depend on the total number of particles used in the simulation cell. This dependency leads to a spurious
maximum of the static structure factor at long wavelengths, obtained from the reference hypernetted-chain
approximationRHNC) with the MD system used as a reference systRHNC-MD). A simple self-consistent
procedure, proposed to account for the finite-size effects in the bridge function, allows one to efficiently correct
the RHNC-MD static structure factor for all unphysical manifestations.
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[. INTRODUCTION atomic potential used in the simulation, apds the particle
density of the system. The supersciipbverg(r) in Eg. (2)

In recent years, the reference hypernetted-chain approxindicates that this function is obtained from a molecular dy-
mation (RHNC) has proven to be one of the most successfuhamics ensemble dfl particles. The capitaR in the right-
approaches in the theory of liquid stdtk]. The key input hand side of Eq(2) stands for the extrapolation distance of
quantity in this approximation is the system’s bridge func-the PDF which is limited to half the simulation box length
tion B(r). Bridge functions constructed from the ansatz ofL/2.
the hard spheréHS) system— so-called variational modified ~ Molecular dynamics system interacting via the cutoff po-
hypernetted-chain approximatiod MHNC)—were found to  tentialU.(r) can be considered as a reference system within
produce very reasonable agreement with the molecular dythe RHNC approach. The bridge functid@(r) of such a
namics(MD) results for the pair distribution functioBDF) reference system is calculated from the solution of Efjs.
in a wide class of liquids. For some specific systems, howand(2) as follows:
ever, the success of the VMHNC method is not quite as
spectaculaf2—4]. The main cause of the failure of the VM- B(r)=y(r)—Ing(r)—BU.(r). 3
HNC in those systems is assigned to the principal incapabil-
ity of the HS-based bridge function to mimic the We note that relatior§3) is valid for both short distances
intermediate-distance part of actu&(r), which depends on <R and long distances>R. It was shown earlier that in
the details of the underlying interparticle potential. As anliquid metals, the bridge function depends only weakly on
alternative approach to the VMHNC for such “troubled” the details of the long-range part of the interparticle potential
systems, a procedure of extracting bridge function from mo{3,4]. This means that the bridge function calculated for a
lecular dynamics simulations was propossee Ref[2], and  model MD system can be used to recover the structure of the
references therejn The extraction procedure consists in full system, interacting via uncut potentidl(r), by solving

solving the Ornstein-Zerniké0Z) integral equation1] the OZ equation complemented by the closure
h(r):C(r)'i‘pf C(|F—|7’|)h(r’)dF’, (1) g(r):exq}’(r)_ﬁu(r)"'B(r)]- (4)
We will refer to this method of calculating the PDF as the
supplemented by the following closure: RHNC-MD approach. It efficiently correctgN(r) for the
\ inevitable error caused by cutting off the interparticle poten-
g(r)=g7(r), r<R, tial at a finite distance in simulations, as was shown in Ref.
(2 [4] for the case of liquid aluminum. The RHNC-MD method
c(r)=—=pUcr), r>R, is an especially powerful device for liquid structure calcula-

tions when applied to small MD systems, for which compu-
where c(r) is the direct correlation functiory(r)=h(r) tational cost of simulations is not high. This fact motivated
—c(r), h(r) is the pair correlation functiong(r)=h(r) the authors of Refd.2—4] to study the bridge function de-
+1 is the pair distribution function. In E¢2), 8 denotes the pendence on the simulation box size. The aim of this paper is
inverse temperature K4T with the Boltzmann constarkz  to investigate the impact of a phenomenon disregarded pre-
and the temperaturg U(r) is the cutoff two-particle inter- viously [3,4] — finite-size effects in computer experiments
[5] — on computer-generated bridge functions. Since the
finite-size effects become increasingly relevant for small MD
*Permanent address: Institute for Condensed Matter Physics, dystems and their influence @&q{r) or the static structure is
Svientsitsky St., Lviv 79011, Ukraine. not knowna priori, the subject of the present study is of
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great current interest. In the following, we give a short out-evaluate the structure functions of the full system one needs

line of a self-consistent procedure devised to corBdc) for
finite-size effects.

It is well known that a pair distribution functiogN(r)
obtained in aclosedensemble with fixed number of particles

to use the obtaineB(r) in the RHNC scheme. We will refer

to the just described method aerative RHNC-MD method

to distinguish it from thenoniterativeone given above in the
text. The method was applied earlier by one of the authors to

N, such as, for example, the molecular dynamics ensembletudy the structure of a liquid potassium-sodium afld} In

differs from itsopen systemi.e., whereN is allowed to fluc-
tuate, counterparg(r). The two functions coincide in the
thermodynamic limitN— o only and the difference between
them at finiteN is called finite-size effects in computer simu-
lations. Clearly, if extracted according to Eq4)—(3) the
bridge functionB(r) will depend onN through implicit de-
pendence orgN(r). Two other quantities on whiclB(r)
depends are the potential energy truncation distdcand
the PDF extrapolation distandg, both being thoroughly
studied in Refs[3,4]. We note that, in principle, closui@)

is not correct since it contains a closed system PDF at
<R and the open system PD{h the mean spherical ap-

this report we test its efficiency for the case of a model
monatomic liquid, liquid sodium near freezing.

Il. RESULTS AND DISCUSSION

In order to assess the finite-size dependence of the bridge
functions extracted from molecular dynamics simulations ac-
cording to the procedure described above we performed two
MD runs for model liquid sodium at a temperatuiie
=373 K and density=0.024217 A3 in standardNVE en-
sembles ofN=500 and 2048 particles. The pair potential
was obtained from the second order perturbation theory in

proximation at r>R. This improperness can be corrected the empty-core local pseudopotential with the only parameter

for by transforming obtained in a simulatig(r) into the
open system PDFy(r), i.e., correctingg(r) for finite-size
effects,beforesubstituting it into Eq(2). The simplest pos-

r. set to 1.78 a.u8]. The local field correction factor was
used in the form of Ichimaru and Utsurf@]. The potential
energy was truncated at its third maximura 13.14 A so as

sible expression relating the PDFs in open and closed syge lift the force discontinuity at the truncation distance, and

tems can be written d$]

1 S(0) &2

N 2

g(r)=gM(r)+ [p2gM(r)], (5

(9p2

then shifted at that point to zero. In this way we made both
force and potential energy fields continuous at the cutoff
distance hence improving total energy conservation during
the simulations. To eliminate the potential cutoff part from
the overall dependency of the bridge functiondnwe used
the same potential truncation distance for both simulations.

whereS(0) is the static structure factor of the open system atrp,o equations of motion were integrated by the velocity-
k=0. Relation(5) has the standard for transforming betweeny g et algorithm with the time incremenit=6 fs. For the

ensembles correction term of ordeN1/Its explicit evalua-

first MD system we performed £Qtime steps after initial

tion from the MD method, however, is not practical or, in gqjjlibration and the second system was let to evolute over a

some cases, it is even infeasible. Thus we choose a furth%ré

simplification of Eq.(5) by neglecting the density depen-
dence ofg(r):

S(0)

g(r)=gM(r)+ TgN(r)- (6)

Now this new expressiol6) is well suitable for practical
applications. Provide&(0) is known, Eq.(6) could be used
for correcting the PDF obtained from an MD simulation.
S(0) is not knowna priori, however, but linked tag(r)
itself by standard Fourier transformati¢h]. The fact that

riod of 5x10° time steps. The selected lengths of the
simulations allowed us to achieve the total number of PDF
samples, which is proportional t8(N—1) and the number
of sampled configurations, to be of order*4610' as indi-
cated in Ref[4] necessary for canceling statistical noise in
the PDF. In our simulations we sampled PDF every 10 time
steps. For the PDF extrapolation distanBdsom Eq.(2) we
used the largest values possible, i.e., alhd@t in both simu-
lations.

Pair distribution functions obtained from the simulations
were used to calculate bridge functidd& ) according to the
iterative procedure described above. To solve the OZ integral

S(k) andg(r) are related makes it possible to construct anequation we used a Newton-Raphson roufib@ based on

iterative cycle for evaluatings(0). It consists of alternate
application of the correction to PDF due to E®) for r

numerically inexpensive fast Fourier transforms. The number
of grid points of the potential and step size in numerical

<R and subsequent evaluation of this PDF for the wholentegrations were 1024 points and 0.06 A, respectively. The

range of distances due to Eq%) and(2). Initially we adopt
some trial guess fd®(0), which we obtained from th&lori-
Hoshino-Watabechemd6], and correcg™(r) according to
Eq. (6). Next, the corrected™(r) is substituted into closure

truncation distance used in the integrations 61.44 A is large
enough to neglect the influence of the cutoff part of the po-
tential on the long-wavelength limit d(k) (at least in the
HNC and mean spherical approximatign$he iterations in

(2) and the OZ equation, supplemented by this closure, ishe Egs.(1),(2),(6) cycle were stopped after two successive

solved numerically. The resulting solutiay(r) is Fourier
transformed to calculate new estimate f8(0) and the

values ofS(0) did not differ more than by 0.01% of their
magnitude. A total of 10 iterations were needed to achieve

whole cycle is iterated until a desired convergence isghe desired self-consistency for both MD system sizes. In

reached. As a result we obtaB(r), g(r), andS(k) of the

Fig. 1 we show the converge&f(r) and raw(without finite-

model system interacting via cutoff potential. In order tosize correctionsB'(r) bridge functions for the two systems
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FIG. 1. Converged and raw bridge functions of liquid sodium at ¢ L L .

T=373 K as extracted from molecular dynamics simulations of 2 6 .10 14
500- and 2048-particle ensembles. r A

considered. The converged functions almost coincide with F!G- 2. The RHNC-MD pair distribution function for the 2048-
each other throughout the whole range of distances but for Bartlcle system and raw MD data for_the 500_-parnc|e system. In the
small exception atr~12 A. where the smaller system’s Inset we present the long-range regiong¢f) in more detail.
B(r) takes insignificant negative values. The raw bridge
functions of both systems experience appreciable deviatiopurpose it is instructive to estimate the magnitude of the
from BS(r) for all r. In the region of small separations the corrections to PDF due to relati¢f). By substituting a typi-
deviation becomes negligible thus providing support for thecal for alkali metals value 0.05 f&(0) and adopting typical
universality hypothesis of Rosenfe[d1]. At intermediate number of particles in simulation box to be 500, we find the
distancesB' (r)’s of both MD systems are shifted upwards: correction to be about 1¢ at long distances, wherg(r)
the bigger the system the smaller the shift. The raw bridge~1. Clearly, this quantity is too small to be visually ob-
function of the 2048-particle system additionally has a pla-served on graphs of the PDF's obtained in the two simula-
teau extending front~12 A up to the extrapolation dis- tions. In Fig. 2 we plotted the corrected PDF’'s computed
tanceR~20 A. For larger separatioms>R, B'(r) smoothly ~ from the iterative RHNC-MD scheme when using the 2048-
drops to zero. This behavior of the bridge function agreegarticle MD ensemble as a reference system and the raw MD
well with the reported earlier results for liquid aluminum and data calculated for the 500-particle system. It is seen from
LJ system[4]. As the extrapolation distance of the smaller the figure that the raw and corrected PDF are not distinguish-
system is only~13 A its raw bridge function does not ex- able from each other for all separations. Much bigger sensi-
hibit any plateau. The authors of R4] conjectured that the tiveness to the details of the bridge function is displayed by
appearance of the plateauBi(r) is connected purely with
insufficient statistics of the MD PDF and the noise that this
function contains. They also found that by improving the
PDF statistics, either by increasing the number of particles in 3
the simulation cell or the length of the simulation, one can, in
principle, reduce the plateau to zero. It was established that
total number of 18-10"" PDF samples was sufficiently
large to totally cancel random statistical noise in PDF and , |
remove the plateau. In our study we achieved comparablez
numbers of the PDF samples but the plateau did not disap®
pear. Upon decreasing the total number samples the bridg
function became more noisy but the plateau did not vanish.
We are inclined to conclude, therefore, that the mentioned
plateau is not connected with the random statistical error, | | X/ Li"n“v‘i?§_,22°&§?;°f§f§oo part.
associated with the number of samples, but with a sortof [ [/ ----- raw data for 2048 part.
systematic error present in computer-generated PDF, i.e. - Zi;;ﬁ;ﬂzgtgf‘i:grzo“s part
finite-size effects. Correcting for the finite-size effects effi- 0 3 é 7
ciently diminishes the plateau for all values of the extrapo- k(A
lation distanceR (in Fig. 1 only the data foR~L/2 are
shown). FIG. 3. The RHNC-MD static structure factors as obtained with
Now we move on to discussing the finite-size effects onthe help of 500-and 2048-particle systems and theSgiy for both
the structural properties — pair distribution function andsystems. By open circles we denoted experimental data of Waseda
static structure factor of the investigated system. For thi$12].
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the static structure factor. As seen from Fig. 3, in which weBoth the region of the main peak @&(k) and the long-
show the correctedvia iterative RHNC-MD procedujeand  wavelength region are accurately reproduced.

the raw static structure factofsia noniterative RHNC-MD As conclusions we would like to make the following ob-
method obtained for the two MD systems, the corrected dateservations. The procedure of extracting bridge functions
perfectly coincide with each other. It is important to notefrom molecular dynamics simulations proposed eadf@&r
here that while correctes(k) is the static structure factor of and, based upon it, the noniterative RHNC-MD method are
the opensystem interacting via full potential, the ra8(k) badly affected by finite-size effects in computer experiments.
has no physical meaning. In particular, it should not be conThe corrections to MD-generated PDF’s caused by these ef-
fused with the static structure factor of thwsedMD sys-  fects are not visible on the pair distribution functions but
tem. The largest departure of the raw static structure factorsave profound impact on the bridge functions and the static
occurs in the region of small wave numbérs 0.5 A=, In  structure factor. In the long-wavelength limit they lead to a
that region both rawS(k)’s exhibit additional unphysical spurious maximum ir8(k). A simple self-consistent routine
maximum. This maximum results from the intermediate-proposed in the paper provides a reasonable account of the
distance deviations of the bridge function and is totally re-finite-size effects and makes it possible to avoid unphysical
moved upon applying the correction procedure. We estimatenanifestations in MD simulations of the liquid static struc-
the order of the error brought about by neglecting the finiteture.

size effects in the noniterative RHNC-MD method to be

_abogt 35% ak=0 for t_he system stud_ied. For a comparison, ACKNOWLEDGMENTS
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