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In this paper, we present a path integral hybrid Monte Carlo �PIHMC� method for rotating molecules
in quantum fluids. This is an extension of our PIHMC for correlated Bose fluids �S. Miura and J.
Tanaka, J. Chem. Phys. 120, 2160 �2004�� to handle the molecular rotation quantum mechanically.
A novel technique referred to be an effective potential of quantum rotation is introduced to
incorporate the rotational degree of freedom in the path integral molecular dynamics or hybrid
Monte Carlo algorithm. For a permutation move to satisfy Bose statistics, we devise a multilevel
Metropolis method combined with a configurational-bias technique for efficiently sampling the
permutation and the associated atomic coordinates. Then, we have applied the PIHMC to a helium-4
cluster doped with a carbonyl sulfide molecule. The effects of the quantum rotation on the solvation
structure and energetics were examined. Translational and rotational fluctuations of the dopant in the
superfluid cluster were also analyzed. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2713395�

I. INTRODUCTION

Chemical processes in helium nanodroplets have been
revealed to exhibit exotic properties due to quantum fluctua-
tions of the medium.1–4 Unlike in the usual condensed envi-
ronments, for example, molecules dissolved in the ultracold
nanodroplet of 4He atoms are found to rotate freely in an
effective manner.5 This behavior arises from the superfluidity
of the nanodroplet. Conversely, the nanodroplets can be re-
garded as an ideal matrix for performing the spectroscopic
measurements, since the helium nanodroplets are character-
ized by extremely low temperatures and the superfluidity.1,2

While the spectroscopic measurements have been carried out
using the nanodroplets consisting of several thousand atoms,
recent experimental advances allow the study of clusters con-
taining one to about 20 helium-4 atoms, showing the size
dependence on the molecular motion doped in the
clusters.6–10 Very recent spectroscopic study on the doped
helium clusters reveals rich size dependence of the dopant
rotational fluctuation in the size up to N=72.11 In this paper
�paper I� and a companion paper �paper II�,12 molecular fluc-
tuations of the dopants in the helium-4 cluster are studied in
detail using a path integral simulation technique. In the paper
I, we present a path integral hybrid Monte Carlo method for
rotating molecules in quantum fluids. In the paper II, cluster-
size dependence on the rotational fluctuation of a carbonyl
sulfide �OCS� molecule is analyzed, being connected with
the onset of the superfluidity of the helium-4 clusters.

Microscopic fluctuations in the helium-4 clusters at finite
temperatures have theoretically been studied by quantum
simulation techniques.13 The pure helium-4 clusters were

first studied by the path integral Monte Carlo �PIMC�
method, which predicted that the superfluidity can be ob-
served even in a finite system such as clusters.14 Then, the
structural fluctuations of the doped helium-4 clusters were
examined by the PIMC calculations where the dopant mol-
ecule was approximated as a classical object fixed at the
origin.3,15–18 The solvation structure of the dopant in the su-
perfluid helium-4 cluster was characterized via the long ex-
change cycles of the helium paths arising from the Bose
statistics. Although the effect of the rotational fluctuation of
the heavy dopant had been expected to be small on the struc-
ture, the significant effect was found even in the density
profile of the helium-4 around the molecule using the
ground-state quantum Monte Carlo �QMC� method.19 Also,
the rotational fluctuation of the dopant in superfluid, which is
dramatically influenced by the quantum fluctuation of the
medium, cannot directly be accessed since the molecule is
fixed in space. Then, the molecular rotation in the helium-4
clusters at the ground-state was studied by the QMC
techniques.20–24 For finite temperature calculations corre-
sponding to the experimental condition, we developed a path
integral hybrid Monte Carlo �PIHMC� method to handle the
molecular rotation quantum mechanically, and reported pre-
liminary results on the OCS molecule in a helium-4 cluster.25

Independently, Zillich et al.26 and Blinov and Roy27 ex-
tended the PIMC technique to rotating molecules in super-
fluids. In this paper, we present the full account on our PI-
HMC method for rotors in superfluids.

The path integral hybrid Monte Carlo method for rotat-
ing molecules in superfluids consists of two types of trial
moves, since the system to be sampled is characterized by
two types of variables; one is the path variables describing
translational and rotational fluctuations of the system, and
the other is the permutation needed to satisfy the Bose sta-
tistics. In the PIHMC method, the path variables are sampled
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by the so-called hybrid Monte Carlo �HMC�.28–30 Unlike the
standard Metropolis method, the HMC simultaneously
moves the whole systems coordinates on the basis of equa-
tions of motion. The trial configuration generated by the mo-
lecular dynamics is accepted or rejected by a suitable Me-
tropolis criterion. In the present study, a novel technique to
incorporate the quantum rotational motion, which is referred
to be an effective potential of quantum rotation, is presented
to construct a path integral molecular dynamics or hybrid
Monte Carlo for rigid bodies. On the other hand, the permu-
tation and the associated path variables are sampled by a
multilevel Metropolis method developed by Ceperley.13 In
order to enhance the sampling efficiencies, we apply an idea
of a configurational-bias Monte Carlo31 to the multilevel Me-
tropolis method.

This paper is organized as follows. The methodology is
described in Sec. II. Computational details are given in Sec.
III. Calculated results on a doped helium-4 cluster
OCS�4He�64 are presented in Sec. IV. Methodological aspects
are discussed in Sec. V.

II. METHODOLOGY

A. The partition function

We consider a system consisting of a linear molecule and
N helium-4 atoms; the molecule is modeled as a rigid rotor.
The OCS molecule is chosen as a dopant in the present study.
The system is described by the following Hamiltonian:

H = �
i=1

N+1
pi

2

2mi
+

L2

2IOCS
+ VHe–He + VHe–OCS. �1�

The first term in Eq. �1� is the translational kinetic energy
represented by the linear momentum of the ith particle pi

with the associated mass mi. Here, the last particle labeled as
N+1 is assigned to the center of mass of the OCS molecule.
The second term is the rotational kinetic energy by the an-
gular momentum of the OCS molecule L with the moment of
inertia IOCS. The helium-helium interaction VHe–He is repre-
sented by the sum of a pair interaction, and the helium-OCS
interaction is written as

VHe–OCS = �
i=1

N

vHe–OCS�ri − rN+1,�� , �2�

where ri is the position of the ith particle and � represents
the orientation of the molecule in the laboratory frame.

In order to obtain a discretized path integral expression
of the partition function, we first write the partition function
at an inverse temperature �=1/kBT as the product of a high
temperature density matrix ����� at ��=� /M in the coordi-
nate space by13,32

Z =
1

N!�P � ¯� ��
s=1

M

dR�s�d��s�	
��

s=1

M

��R�s�,��s�,R�s+1�,��s+1�;��� , �3�

where R denotes collectively the atomic positions including

the center of mass of the molecule: R= �r1 , . . . ,rN+1�; the
superscript s labels the imaginary time slice. The summation
in Eq. �3� is taken over all possible permutation P to account
for the indistinguishability of the helium-4 atoms. In the
present study, the high temperature density matrix is approxi-
mated by

��R,�,R�,��;���


 �tra�R,R�;����rot��,��;����int�R,�,R�,��;��� .

�4�

Here, �tra�R ,R� ;��� and �rot�� ,�� ;���, respectively, de-
note the density matrices of the free translation and rotation
at the inverse temperature ��, and �int�R ,� ,R� ,�� ;��� rep-
resents the interacting part of the density matrix. The trans-
lational density matrix is written by33,34

�tra�R,R�;��� = �
i=1

N+1 � mi

2����2�3/2

e−�i=1
N+1�mi/2���2��ri − ri��2

�5�

and the rotational density matrix by32

�rot��,��;��� = �
J=0

	
2J + 1

4�
e−��BOCSJ�J+1�PJ�e · e�� , �6�

where the rotational constant BOCS=�2 /2IOCS and PJ is a
Legendre polynomial. The unit vector e represents the mo-
lecular axis of the OCS with respect to the laboratory frame.
Unlike the translational density matrix, the rotational density
matrix cannot be simplified further analytically. Thus, we
define a potential function urot using the above rotational
density matrix: e−��urot��,���
�rot�� ,�� ;���. We refer to it
as an effective potential of quantum rotation. Here, we con-
sider the high temperature limit of the effective potential. At
enough high temperature, the effective potential can be ex-
pressed by

��urot��,��� =
�

2
IOCS
M

2 �2 + const, �7�

since the rotational density matrix at the high temperature
can be written by �rot�� ,����e−�1/4BOCS����2

where cos �
=e ·e�.35 Thus, the effective potential essentially works as a
“restoring force” with a characteristic frequency 
M

=�M /�� regarding the angle � for linear rotors.
Regarding the interacting part of the density matrix, �int

is written based on a hybrid use of a pair density matrix
approximation13,36 for the He–He correlation and an expres-
sion exact up to O�����4� by Marx and Müser32 and Taka-
hashi and Imada37 for the He–OCS correlation as

�int�R,�,R�,��;���

= e−���UHe–He�R,R��+VHe–OCS�R,��+Vcorr�R,���, �8�
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where UHe–He is written by the sum of an effective interaction
defined via the exact pair density matrix.38,39 The higher or-
der correction term Vcorr can be written by32,37

Vcorr =
����2

24 ��
i=1

N+1
�2

mi
� �VHe–OCS

�ri
�2

+
�2

IOCS
�� �VHe–OCS

�e
�2

− �e ·
�VHe–OCS

�e
�2		 . �9�

When we neglect the correction term Vcorr, Eq. �8� becomes
the hybrid expression of the pair density matrix and the
primitive approximations which has been used in PIMC cal-
culations of the fixed OCS molecule dissolved in the
helium-4 clusters.3,17 Using the above expressions, the parti-
tion function in the discretized path integral can be summa-
rized as

Z =
1

N!�P �
i=1

N+1 � miM

2���2�3M/2� ¯� ��
s=1

M

dR�s�d��s�	
�e−S��R�,���,P�, �10�

where the imaginary time action S��R� , ��� ,P� is written by

S = �
s=1

M

�
i=1

N+1
miM

2��2 �ri
�s� − ri

�s+1��2 + ���
s=1

M

urot���s�,��s+1��

+ ���
s=1

M

�UHe–He�R�s�,R�s+1�� + VHe–OCS�R�s�,��s��

+ Vcorr�R�s�,��s��� . �11�

Here, �R� denotes the coordinates collectively over all time
slices: �R�= �R�1� , . . . ,R�M��, and ��� is defined similarly.
Then, sampling method is constructed so as to generate con-
figurations of the system proportional to the following
weight �:

���R�,���,P� � e−S��R�,���,P�. �12�

In the present study, the path variables �R� and ��� and the
permutation P are sampled using two types of trial moves.
The path variables are sampled by the HMC move based on
a path integral molecular dynamics method, and the permu-
tation by the multilevel Metropolis method combined with
the configurational-bias Monte Carlo technique. To guarantee
the symmetry of the underlying Markov chain, the selection

of the type of move �HMC or permutation� should be proba-
bilistic rather than deterministic in the course of the
simulation.31 In the following two subsections, these meth-
ods are described separately.

B. Path-variable sampling

The hybrid Monte Carlo28–30 is a method that combines
molecular dynamics �MD� and Monte Carlo �MC� tech-
niques. Unlike the conventional MC, whole system coordi-
nates are simultaneously updated by equations of motion.
The trial configuration is then accepted by an appropriate
Metropolis criterion as in MC. The HMC algorithm has been
proven to yield the canonical distribution as long as a time-
reversible and area-preserving numerical integration algo-
rithm is employed to solve the equations of motion; this
condition is needed so as to guarantee the microscopic de-
tailed balance.29 In the present study, the HMC method is
used to sample the path variables �R� and ��� with the per-
mutation P fixed. In the following, appropriate equations of
motion are described.

First, we define an effective potential function Weff using
the imaginary time action: Weff=S /�. Then, the partition
function can be regarded as the configurational integral of a
polymeric system at the inverse temperature � characterized
by Weff.

40,41 As in our previous study,39 we adopt the staging
variable ui

�s� to describe the configuration of the “polymers”
instead of the real space coordinate ri

�s� to enhance the sam-
pling efficiency. Detailed description on the staging variables
can be found elsewhere.30,39,42 The fictitious momentum pi

�s�

conjugate to the staging coordinate ui
�s� and the associated

fictitious mass mi
��s� are introduced to sample the transla-

tional fluctuations. Regarding the rotational fluctuation of the
molecule, we define the fictitious angular momentum L�s�

expressed in the body-fixed frame at each time slice and the
related fictitious moment of inertia IOCS� . Then, an effective
classical Hamiltonian Heff is written by

Heff = �
s=1

M

�
i=1

N+1
�pi

�s��2

2mi�
�s� + �

s=1

M
�L�s��2

2IOCS�
+ Weff��U�,���,P� .

�13�

Here, �U� denotes the set of all the staging coordinates over
the imaginary time slices. On the basis of the effective
Hamiltonian, equations of motion for ui

�s� are derived as

dui
�s�

dt
=

pi
�s�

mi�
�s� ,

dpi
�s�

dt
= −

�Weff

�ui
�s� = �− mi
0

2�2ui
�1� − uPi

�1� − uP−1i
�1� � −

1

M
�
s=1

M

�V/�ui
�1� �s = 1�

− mi
�s�
M

2 ui
�s� − �1/M��

s=1

M

�V/�ui
�s� �s � 1� ,� �14�
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where P−1 denotes an inverse permutation: P−1i= j if Pj= i,
and V=UHe–He+VHe–OCS+Vcorr. Here, a characteristic fre-
quency 
0=1/�� and the staging masses mi

�s�= �s / �s−1��mi.
The derivative of V regarding the staging variable �V /�ui

�s�

can be evaluated efficiently using �V /�ri
�s� via a recurrence

relation.30,39 On the other hand, quaternion parameters43 are
used to specify the orientation of the molecule at each time
slice. The quaternion parameters at the imaginary time slice s
is denoted by Q�s�= �Q0

�s� ,Q1
�s� ,Q2

�s� ,Q3
�s��. The definition of

the parameters is followed by the Goldstein convention.44

Then, the equations of motion for rigid linear rotors can be
written by45

dQ�s�

dt
=

1

2
A�
�s��Q�s�,

dL�s�

dt
= T�s�, �15�

where T�s� denotes the torque on the molecule at the imagi-
nary time slice s. The matrix A�
�s�� is a 4�4 antisymmetric
matrix defined by

A�
�s�� =�
0 − 
x

�s� − 
y
�s� − 
z

�s�


x
�s� 0 
z

�s� − 
y
�s�


y
�s� − 
z

�s� 0 
x
�s�


z
�s� 
y

�s� − 
z
�s� 0

� , �16�

where 
�s� is a fictitious angular velocity in the body-fixed
frame: 
�s�=L�s� / IOCS� for the rigid rotors. In the laboratory
frame, the torque at a time slice s, TL

�s�, can be calculated by

TL
�s� = − e�s� �

�Weff

�e�s� = − e�s� �
1

M

�

�e�s� �u
rot���s−1�,��s��

+ urot���s�,��s+1��� − e�s�

�
1

M

�

�e�s� �VHe–OCS�R�s�,��s�� + Vcorr�R�s�,��s��� .

�17�

Equations �14� and �15� are used to generate trial configura-
tions in the hybrid Monte Carlo method.

The PIHMC method is summarized as follows. We start
with an initial state of the system ��U� , �Q��, and resample
the fictitious linear and angular momenta �P� and �L� from a
Maxwell distribution. Path integral molecular dynamics is
then used to move the whole system for time increment of
nMD��t where �t is the time step of the MD calculation
and nMD is the number of MD steps in one HMC cycle. The
trial configuration is accepted or rejected based on the Me-
tropolis criterion,

AHMC = min�1,e−��Heff� , �18�

where AHMC is the acceptance probability, and �Heff is the
change in the total energy Eq. �13� as a result of the move.
We can introduce a multiple time step method to further
discretize the time step �t as �t=nRESPA�
t, which can be
done systematically by the reference system propagator al-
gorithm �RESPA� method.46 We comment on the integration
method of the above equations of motion. As described

above, a time-reversible and area-preserving integrator has to
be used to maintain the detailed balance condition in the
HMC move. Such an integrator for rigid bodies has been
developed by Matubayasi and Nakahara.47 In the present
study, we adopted their method for numerically solving Eqs.
�14� and �15�.

C. Permutation sampling

In the present study, we sample the permutation together
with the associated path variables using the multilevel Me-
tropolis method implemented by the bisection algorithm.13

To accelerate the sampling efficiency, we apply an idea of
the configurational-bias Monte Carlo �CBMC�31 to the bisec-
tion method.

We first describe the sampling procedure briefly. The
time slice at s=1 is chosen at random in the range �1,M�; we
select two time slices at s=1 and m+1. Atomic coordinates
at time slices outside the interval �1,m+1� are kept to be
fixed. For the multilevel sampling, the permutation and the
successive m−1 time slices in the interval are partitioned
into l+1 levels with a condition m=2l. At a level k��1�, 2k−1

time slices are located in every 2l−k slices in �1,m+1�; this
corresponds to the imaginary time increment ��k=2l−k��.
The top level �k=0� is assigned to the permutation of the
particle labels between the time slices at s=1 and m+1.
Then, the permutation and the associated atomic coordinates
are sampled from the top to the bottom level l. Here, we
abbreviate all the variables as x= �x̄ ,x0 ,x1 , . . . ,xl� where x0

denotes the permutation P, xk the variables at a level k, and
x̄ the fixed variables in the multilevel Metropolis move. For
later use, we define a distribution function �k describing
each level as

�k�x� � e−Kk�x̄,x0,. . .,xk;��k�−Uk�x̄,x0,. . .,xk;��k�, �19�

where Kk and Uk are the kinetic and interacting action at the
inverse temperature ��k.

48 In the present study, the end-point
approximation for the He–He correlation and the primitive
approximation for the He–OCS correlation are used for Uk

except the final level l where �l�x�=��x�.
At the top of the multilevel Metropolis method, the per-

mutation is sampled between the selected time slices at s
=1 and m+1. According to the heat bath method, the sam-
pling probability is constructed using the kinetic action at the
inverse temperature ��0. Then, a trial permutation is ac-
cepted based on the Metropolis criterion. When the trial per-
mutation is accepted, we sample the associated path vari-
ables between the selected end points with the given
permutation; this sampling is performed by the bisection
method with the condition ri�

�m+1�=rPi
�m+1�, where the primed

coordinates denote the new coordinates generated by the trial
moves. The bisection algorithm combined with CBMC can
be described recursively. If the trial move at a level k−1 has
been accepted, we generate ncb sets of the atomic coordinates
involved in the permutation at the level k by

114308-4 Shinichi Miura J. Chem. Phys. 126, 114308 �2007�
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ri,j� �s� = 1
2 �ri�

�s−�sk� + ri�
�s+�sk�� + ����k� �j = 1, . . . ,ncb� ,

�20�

where �sk=��k /�� and � denotes normally distributed ran-
dom three vector with zero mean and unit variance. Then, we
select a trial configuration out of ncb configurations, which is
denoted as xk�, according to the following probability pk

int:

pk
int�xk�� =

e−Uk�x̄,x0�,. . .,xk�;��k�

Wk
int�n�

, �21�

where the normalization constant Wk
int�n� is written by

Wk
int�n� = �

j=1

ncb

e−Uk�x̄,x0�,. . .,xk,j� ;��k�. �22�

Similarly, we generate ncb−1 sets of the atomic coordinates
for the backward move as

ri,j
�s� = 1

2 �ri
�s−�sk� + ri

�s+�sk�� + ����k� �j = 2, . . . ,ncb�

�23�

and the corresponding normalization factor by

Wk
int�o� = e−Uk�x̄,x0,. . .,xk;��k� + �

j=2

ncb

e−Uk�x̄,x0,. . .,xk,j;��k�. �24�

Then, the trial configuration at the level k is accepted by

Ak�x�,xk
�,xk�

�� = min�1,
Wk

int�n�
Wk

int�o�
e
Uk−1� , �25�

where 
Uk−1=Uk−1�x̄ ,x0� , . . . ,xk−1� �−Uk−1�x̄ ,x0 , . . . ,xk−1�, and
the variables xk� and xk�

� are described below. If this configu-
ration is accepted, we go on to the next level. We continue
this procedure recursively until we reach the final level. Only
if the final level is accepted, the permutation and the associ-
ated path variables are updated to new one. Here, the overall
acceptance is written by Aperm=�k=0

l Ak.
We justify the above procedure. We write the set of the

additional �ncb−1� configurations except xk� at a level k as
xk�

�. Similarly, we write �ncb−1� configurations for the back-
ward move at the level k as xk

�. Then, we impose the detailed
balance condition for every particular choice of the sets xk�

�

and xk
� at each level, which is referred to be the “superde-

tailed balance” condition,31

�k�x�
�k−1�x�

Tk�xk�,xk
�,xk�

��Ak�x�,xk
�,xk�

��

=
�k�x��

�k−1�x��
Tk�xk,xk

�,xk�
��Ak�x,xk

�,xk�
�� , �26�

where Tk�xk� ,xk
� ,xk�

�� is a sampling probability at the level k.
The sampling probability is written by Tk= pk�xk��pk

int�xk��
where pk is defined by

pk�xk�� �
e−Kk�x̄,x0�,. . .,xk�;��k�

e−Kk−1�x̄,x0�,. . .,xk−1� ;��k−1�
. �27�

Equation �27� corresponds to the procedure described by Eq.
�20�. Acceptance probability �25� is sufficient to satisfy the
superdetailed balance condition Eq. �26� at the level k. By

multiplying Eq. �26� over whole levels, we can verify that
the total move satisfies the detailed balance condition. We
can recover the standard bisection method using the kinetic
action, which is called the free-particle sampling,13 when
ncb=1. The configurational-bias move incorporates the effect
of the interatomic interaction in the free-particle sampling.
Computational efficiency on the method will be presented
elsewhere.49

III. COMPUTATIONAL DETAILS

The calculated system consists of N=64 helium-4 atoms
and a OCS molecule at the temperature 0.37 K. The number
of discretization was chosen to be M =216 corresponding to
1/��=80 K. The rotational constant of the OCS molecule
was taken from a gas-phase experimental value50 BOCS

=0.202 86 cm−1, which was used to construct the effective
potential of quantum rotation tabulated on a fine grid. The
potential of Aziz et al.51 was used as a pairwise interaction
between two helium atoms. The morphed potential of How-
son and Hutson52 was adopted for the He–OCS interaction.
Path integral hybrid Monte Carlo calculations were per-
formed for the system obeying Bose-Einstein statistics for
both quantum and fixed OCS cases. For comparison, the sys-
tem obeying Maxwell-Boltzmann statistics was also exam-
ined.

Here, we briefly examine the systematic error arising
from the discretized expression of the path integral. In Fig. 1,
we show the total energy of the 4He–OCS dimer �H� as a
function of 1/M. Temperature of the dimer was controlled to
be T=0.37 K and the OCS molecule was fixed at the origin.
Path integral calculations were performed using the standard
primitive approximation40,41 and the Takahashi-Imada �T-I�
approximation32,37 for M =50, 100, 200, 400, and 800. In the
case of the primitive approximation, the energy is found to
be slowly convergent to the numerical exact value. To obtain
the accurate energy, we need the time slices more than 800.
On the other hand, the energy by the T-I approximation

FIG. 1. Averaged total energy �H� for the He–OCS dimer at 0.37 K calcu-
lated by the primitive and Takahashi-Imada �T-I� approximations as a func-
tion of 1/M. The OCS molecule is fixed at the origin. Open triangles are for
the primitive approximation and open circles for the T-I approximation. The
numerically exact result for the system is indicated by dashed line, which
was reported in Ref. 55. Energies are in units of kelvin. The error bar is
expressed at 95% confidence level, and is smaller than the size of the cor-
responding data symbol when it is not shown.
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quickly converges to the exact value within the statistical
error; the energy of M =400 reaches the exact one. Regarding
the fully quantized 4He–OCS dimer, see Table I where the
averaged energies by the primitive and T-I approximations
with M =200 are collected. The total energy is found to be
remarkably improved using the T-I approximation compared
with the primitive counterpart. In the calculations of the
OCS�4He�64 cluster, we adopted the number of discretization
M =216 with the T-I approximation, which gives good com-
promise between the computational cost and the accuracy.

IV. RESULTS

We first show the density distribution of the helium at-
oms around the OCS molecules ��r� in Fig. 2. For a linear

molecule, we can write ��r�=��z ,r� in terms of cylindrical
coordinates. The density distribution in the case of the quan-
tum dopant is presented together with the fixed dopant coun-
terpart. In both cases, a well-developed solvation shell struc-
ture is found around the molecule. Since the density of the
bulk liquid helium is �=0.022 Å−3, much higher density re-
gion than the bulk is formed in the first solvation shell. A set
of peaks seen in the first solvation shell reflects the He–OCS
interaction; see Fig. 2 in Ref. 52 for details on the interaction
potential. The highest peak in the solvation shell is located
around the C atom where the He–OCS interaction is a mini-
mum. We find that the rotational fluctuation of the OCS mol-
ecule gives large effects on the density distribution in the
first solvation shell; the helium density in the first solvation
shell is remarkably broadened by taking account of the mo-
lecular rotation. For example, the highest density around the
C atom is 0.23 Å−3 in the case of the fixed OCS, and the
rotational fluctuation reduces the peak density to 0.16 Å−3.
The effect of the quantum statistics on the density distribu-
tion is found to be much milder; the Bose statistics makes the
density distribution slightly broader compared with the
Boltzmann counterpart for both fixed and quantum dopant
cases.

It is interesting to decompose the density distribution
using the length of exchange cycles among the helium at-
oms, since the superfluid state of the cluster can be charac-
terized by the long exchange cycles comparable to the sys-
tem size.13,14 We denote the radial density profile of the
helium atoms involved the exchange cycle with the length P
�for P=1, . . . ,5� as ��P��r�. In the case of the superscript P
=6, ��6� represents the density profile of the helium atoms
involved in long exchange cycles with P�6. The radial den-
sity profile ��r� and the components ��P��r�, which are mea-
sured from the OCS center of mass, are presented in Fig. 3.
A subpeak at r=3.7 Å in the primary peak of the total den-
sity profile comes from the highest peak density around the
C atom seen in Fig. 2. As previously found in PIMC calcu-
lations of the fixed OCS in the helium clusters,3,16 the total
density profile is composed of two major components: one is
��1� and the other is ��6�. Other components from short ex-
change cycles P=2, . . . ,5 add only small contributions to the
total density profile. According to Kwon et al.,3,16 we may
regard �P=1

5 ��P��r� as a local disturbance of the superfluidity,
and ��6��r� as a superfluid component. As seen in the figure,
dominant contribution of the nonsuperfluid component is
found in the first solvation shell; highest peak is located at
the substructure of the total density profile where the OCS-
helium interaction is a minimum. The rotational fluctuation
of the molecule remarkably reduces the peak density of ��1�,
and on the other hand, augments the ��6� component in the
first solvation shell. Here, we define the first solvation shell
using the minimum of ��r� at r=5.9 Å. The coordination
number in the first solvation shell was calculated to be 21 for
both quantum and fixed OCS cases. In the first solvation
shell for the fixed OCS case, the superfluid component ��6�

occupies 74% in the total density, and the rotational motion
enhances the occupancy to 81% due to the above structural
changes in the density distributions. Note that the above su-
perfluid component does not exactly correspond to the super-

TABLE I. Averaged total energy �H� for the fully quantized He–OCS dimer
at 0.37 K calculated by the primitive and Takahashi-Imada �T-I� approxima-
tions with M =200. The exact result was reported in Ref. 55 by the basis set
calculations. Energies are in units of kelvin. Statistical error in the last digit
at 95% confidence level is indicated in parentheses.

Primitive T-I Exact

�H� −28.81�4� −26.51�4� −26.32

FIG. 2. The total helium density distribution around the OCS molecule
��z ,r� in the OCS�4He�64 cluster �top: ��z ,r� for the quantum OCS case;
bottom: ��z ,r� for the fixed OCS case�. z is the molecular axis and r the
radial distance from the z axis. The OCS center of mass is located at the
origin and the molecule is oriented as O–C–S from +z to −z. All distances
are in units of angstrom.
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fluid response to an imposed rotation, although ��6��r� quali-
tatively captures the superfluidity around the molecule.
Draeger and Ceperley18 have developed an estimator of the
local superfluid response where each cycle’s contribution is
properly weighted so as to recover the total superfluid re-
sponse about a given rotation axis.

The energies of the doped clusters are collected in Table
II. As seen in the density profiles, the solvation structure
around the molecule is remarkably broadened in the first
solvation shell by including the rotational fluctuation of the
dopant. This results in the smaller He–OCS and He–He in-
teraction energies compared with the fixed dopant energies.
The translational kinetic energy decreases with including the
molecular rotational fluctuation. This is also ascribed to the
density decrement of the first solvation shell. The resulting
total energy in the case of the quantum dopant is found to be
smaller than that of the fixed dopant case. It is worthwhile to
note that the rotational kinetic energy is 9.68 K, which is
much larger than the corresponding classical value 0.37 K.

Similarly, the increase from the classical value is also ob-
served for the translational kinetic energy of the OCS mol-
ecule.

Next, we present the results on imaginary time fluctua-
tions of the OCS molecule. We first show translational mo-
tion of the center of mass of the OCS molecule. The trans-
lational correlation is well described by the following mean
square correlation function:

R2��� = ��rN+1��� − rN+1�0��2� , �28�

where rN+1��� denotes the center of mass position of the OCS
molecule at an imaginary time �. This correlation function is
periodic in �0,��. The correlation function at �=� /2 reflects
the quantum delocalization of the center of mass of the mol-
ecule. For a free OCS molecule, the correlation function can
be expressed analytically,53

R2��� =
3��2

mOCS
� �

�
�1 −

�

�
�� , �29�

where mOCS denotes the total mass of the OCS molecule. The
calculated results are presented in Fig. 4. Since the molecule
interacts with the surrounding helium atoms, the translational
fluctuation is suppressed compared with the free OCS mol-
ecule for both clusters. This causes the translational kinetic
energy increase of the OCS molecule from the classical
value �see Table II�. It is found that the R2�� /2� for the Bose
cluster is larger than that for the Boltzmann cluster:
R2�� /2�=0.87 Å2 for the Bose cluster and 0.70 Å2 for the

FIG. 3. �Color online� The radial density profiles of the helium atoms mea-
sured from the OCS center of mass are shown for the quantum OCS �upper
panel� and the fixed OCS �lower panel�. Total density profile ��r� �black
solid line�, ��1��r� �red solid line�, ��P��r� for P=2, . . . ,5 �black dashed
lines�, and ��6��r� �blue solid line� are presented. All distances are in units of
angstrom.

TABLE II. The translational kinetic energy ��Ttra��, the rotaional kinetic energy ��Trot��, the He–OCS, and
He–He interaction energies ��VHe–OCS� and �VHe–He��, and the total energy ��H�� for the OCS�4He�64 cluster
obeying the Bose-Einstein statistics. The translational kinetic energy of the OCS molecule ��TOCS

tra �� is also
shown. The energies are presented for the quantum and fixed OCS cases and are in units of kelvin. Statistical
error in the last digit at 95% confidence level is indicated in parentheses.

�Ttra� �Trot� �VHe–OCS� �VHe–He� �H� �TOCS
tra �

Quantum OCS 791�1� 9.68�6� −587.5�2� −807.0�4� −593.9�9� 9.7�1�
Fixed OCS 813.4�6� ¯ −615.0�2� −818.8�2� −620.4�5� ¯

FIG. 4. �Color online� The mean square correlation function of the OCS
center of mass in the imaginary time, R2��� for the Bose cluster �blue solid
line�, and the Boltzmann cluster �red solid line�. The R2��� function for the
free OCS molecule �black solid line� is also presented. The error bar of
R2�� /2� is expressed at 95% confidence level.
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Boltzmann cluster. This indicates that the effect of the spatial
confinement of the OCS molecule by the surrounding solvent
atoms is weaker in the case of the Bose cluster than the
Boltzmann counterpart. This is due to the slightly broader
density distribution of the helium atoms around the molecule
when the Bose statistics is taken into account.

Finally, we examine the rotational motion of the OCS
molecule.54 The rotational fluctuation can be probed by the
following orientational correlation function:

C��� = �e��� · e�0�� , �30�

where e��� is a unit vector proportional to the molecular axis
at an imaginary time �. This correlation function is again
periodic in the imaginary time interval �0,��. Calculated cor-
relation functions are presented in Fig. 5 for the Bose and
Boltzmann clusters. The correlation function for an isolated
OCS using the gas-phase experimental BOCS

=0.202 86 cm−1 is also presented; here, we used the follow-
ing analytical expression of C��� for a free linear rotor with
a rotational constant B:55

C��� =
1

Z�e−2B� + �
J�0

e−�BJ�J+1��JeB2J� + �J + 1�e−B2�J+1���	 ,

�31�

with Z=�J=0
	 �2J+1�e−�BJ�J+1�. Suppression of the orienta-

tional fluctuation is found due to the He–OCS interaction in
both Bose and Boltzmann clusters compared with the gas-
phase OCS. However, the orientational fluctuation is much
enhanced in the Bose cluster compared with the Boltzmann
counterpart, indicating the large impact of the Bosonic cor-
relation among the helium atoms on the rotational motion of
the molecule. Using the correlation function for the Bose
cluster, we estimated an effective rotational constant Beff of
the solvated OCS in such a way that the value of C�� /2� was
fitted to the free-rotor expression Eq. �31� at �=� /2; in this
procedure, B was treated as a fitting parameter. The resulting

value was found to be Beff=0.084±0.004 cm−1, which is in
reasonable agreement with the experimental value of the
nanodroplet Beff=0.0732 cm−1.56 An effective moment of in-
ertia Ieff defined by Beff
�2 /2Ieff was estimated to be
201±11 amu Å2, which is comparable with the experimental
value for the nanodroplet, Ieff=230 amu Å2.56 The small �but
non-negligible� discrepancy between the present calculation
and the experimental nanodroplet value will be discussed in
the companion paper II.12 In Fig. 4, we show a free-rotor
correlation function using the estimated Beff. We find the
C��� for the solvated OCS in the Bose cluster is well de-
scribed by the free-rotor C��� with the Beff. This demon-
strates that our method realizes the effective free rotation of
the OCS molecule in the superfluid cluster.

V. DISCUSSION

In this paper, we have presented the path integral hybrid
Monte Carlo method for rotating molecules in quantum flu-
ids. A novel method to handle the molecular rotation in the
hybrid Monte Carlo was developed by introducing the effec-
tive potential of quantum rotation. To account for the Bose
symmetry of the particles, we adopted the multilevel Me-
tropolis method combined with the configurational-bias
Monte Carlo technique. The method was successfully ap-
plied to the OCS�4He�64 cluster in a superfluid state. System-
atic analysis on the molecular rotational fluctuation of the
OCS�4He�N is presented in the companion paper II.12 In the
following, we discuss the techniques developed in the
present study.

A. Molecular dynamics and hybrid Monte Carlo
methods for rigid bodies

Path integral molecular dynamics and hybrid Monte
Carlo methods have been well established to sample the
translational fluctuation in quantum many-body systems
where the indistinguishability of the particles �the Bose-
Einstein or the Fermi-Dirac statistics� is irrelevant.30,57 The
translational density matrix directly leads the harmonic inter-
action in the classical system introduced by the path integral
method. Various efficient sampling techniques were devel-
oped based on a variable transformation �partially� diagonal-
izing the harmonic interaction such as staging or normal
mode variable.30,57 On the other hand, the rotational density
matrix cannot be simplified analytically as in the transla-
tional density matrix �see, for example Eq. �6��. Although
path integral Monte Carlo methods have been devised for
treating rigid rotors,32 molecular dynamics techniques are not
well matured. To our knowledge, Del Buono et al.58 have
developed a path integral molecular dynamics method for
rigid bodies, which was applied to the liquid water at room
temperature. Their method is based on a semiclassical ap-
proximation of the rotational density matrix. In the present
study, the effective potential of quantum rotation is intro-
duced using the exact rotational density matrix which is con-
verged about the quantum number J and is positive.59 This
technique is readily applicable to the molecular dynamics
and hybrid Monte Carlo methods. While the effective poten-
tial method was applied to the linear rotor in the present

FIG. 5. �Color online� The orientational correlation function C��� of the
OCS molecule for the Bose cluster �blue solid line� and the Boltzmann
cluster �red solid line� as a function of the imaginary time �. The size of the
cluster N is 64 for both cases. The free-rotor correlation function with a
gas-phase experimental BOCS �black solid line� and that with a Beff estimated
by the C�� /2� value of the OCS�4He�64 Bose cluster �blue dashed line� are
also shown. The error bar about C�� /2� is expressed at 95% confidence
level.
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study, we can extend the method to other types of rigid bod-
ies such as spherical, symmetric, and asymmetric tops. The
rotational density matrix for the tops at an inverse tempera-
ture �� can be written by �rot�
 ,
� ;��� where 
 denotes
the Euler angles relating the body-fixed frame with the labo-
ratory frame.32 As in the linear rotors, the effective potential
of quantum rotation can be introduced by urot�
 ,
��

−ln �rot�
 ,
�� /��. Even though �rot�
 ,
� ;��� cannot be
accessible analytically, it can be computed numerically to
very high precision. This technique is useful to construct the
path integral molecular dynamics and hybrid Monte Carlo
algorithms for the rigid bodies. The equations of motion by
the quaternion parameters can readily be used for the hybrid
Monte Carlo for rigid bodies. Regarding the molecular dy-
namics, a massively thermostatting technique30,57 may be
useful for the efficient sampling; however, we need more
experiences on this point.

B. Multilevel Metropolis method
with a configurational-bias technique

We have adopted the multilevel Metropolis method13

where the permutation is sampled together with the associ-
ated path variables. In our previous study on the path integral
hybrid Monte Carlo for correlated Bose fluids,39 we used the
free-particle kinetic action to generate the path variables for
a given permutation. Since several particles are simulta-
neously involved in the permutation change, correlation
among the particles must be taken into account in generating
the trial position of the particles for the efficient sampling. In
PIMC calculations for the superfluid helium, correlated
sampling13,60 introducing a force bias in the trial moves has
been employed to generate the trial positions. Including the
effect of atomic interaction in the transition probability is
important to make acceptance ratio higher. As an alternative
to the above correlated sampling method, we have devised
the configurational-bias move31 applied to the multilevel Me-
tropolis method in the present study. At each level, a set of
trial positions is generated by the free-particle kinetic action.
One trial position is selected by a probability proportional to
the external Boltzmann factor calculated by the interacting
part of the action. Then, the trial position is accepted based
on a Metropolis criterion satisfying the “superdetailed bal-
ance” condition.31 In this method, an energetically favorable
position is preferentially selected; overlapping particle posi-
tions are efficiently excluded. This method is easily imple-
mented in an existing bisection code, while the correlated
sampling by Ceperley needs a sampling potential which has
to be numerically calculated prior to path integral simula-
tions.
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