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Abstract

Kato’s inequality is shown for the magnetic relativistic Schrodinger operator H 4 ,,
defined as the operator theoretical square root of the selfadjoint, magnetic nonrelativis-
tic Schrédinger operator (—iV — A(z))? + m? with an L2 _ vector potential A(z).
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1 Introduction

Consider the magnetic relativistic Schrodinger operator

Ham =/ (—iV — A(2))2 + m? (1.1)

in d-dimensional space R? with vector potential A(z) := (Ay(x),..., Ag(z)) and rest
mass m > 0, which may be thought of being a quantum Hamiltonian corresponding
to the classical relativistic Hamiltonian symbol /(£ — A(x))2 +m?2, (§,z) € R x R%.
It is known that when A(z) is a real-vector-valued function belonging to [LZ (R%)]? =
L2 (R%RY), it becomes a selfadjoint operator in L?(R?), which is essentially selfad-
joint on C§°(RY) so that Ha,, has a domain containing C5°(R?) as an operator core
(e.g see [CFKiSi87, p.9]). We shall assume that d > 2, as in case d = 1 any mag-
netic vector potential can be removed by a gauge tranformation. For A = 0 we put

Hym = V—A+ m?, where —A is the minus-signed Laplacian —(5—;2 4+ -+ 88—;2) as
1 d

well as a nonnegative selfadjoint operator realized in L?(R?) having the Sobolev space
H?(R?) as its domain.

The aim of this paper is to show Kato’s inequality for this magnetic relativistic
Schrodinger operator H 4, or H 4, —m, when A is a real-vector-valued L12OC function
in R%.

Theorem 1.1. (Kato’s inequality). Let m >0 and assume A to be in [LE (RY)]%. Ifu
is in L2(RY) with Ha mu in L (R?), then the following distributional inequality holds:

loc

Re[(sgnu)H A mu] > Homl|ul, (1.2)
Re[(sgnw)[Ham — mlu] > [Hom — m]|ul. (1.3)

Here sgn is a bounded function in R® defined by

_ ) u@)/u(z)], if u(z) # 0,
(sgnu)(z) = { 0, if u(z) = 0.

Note here that H ,,u with u € L?(R%) makes sense as a distribution in R? (for this,
see Lemma 2.2 with o = 1 and a few lines after its proof). A characteristic feature in
this situation is that H4 ,, is a nonlocal operator defined by the operator-theoretical
square root of a nonnegative selfadjoint operator. It is not a differential operator, and
neither an integral operator nor a pseudo-differential operator associated with a certain
tractable symbol. The point which becomes crucial is in how to go without knowledge
about regularity of the weak solution v € L?*(R%) of equation H Amu = f for a given
f € LL (RY). Thus the present inequality (1.2)/(1.3) differs from an abstract Kato’s
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inequality such as in [Si77] by being basically sharp.

An immediate corollary is the following theorem, which has been known (e.g. [FL-
Sei08], [HILo12]; cf. [193]).



Theorem 1.2. (Diamagnetic inequality) Let m > 0 and assume that A € [L (R%)]%.
Then it holds that for f, g € L*(R%),

|(f, = Mam=mlg)| < (|f], e~ MHom=mlg]). (1.4)

Once Theorem 1.1 is established, we can apply it to show the following theorem on
essential selfadjointness of the relativistic Schrédinger operator with both vector and
scalar potentials A(x) and V(z):

HA,V,m = HA,m + V. (1.5)

Theorem 1.3. Let m > 0 and assume that A is in [L2 _(RY)]? and let V' be in LE _(RY)

with V(x) > 0 a.e. Then Hav,, = Ham+V is essentially selfadjoint on C§°(R?) and
its unique selfadjoint extension is bounded below by m.

We shall show inequality (1.2)/(1.3), basically along the idea and method of Kato’s
original proof in [K72] for the magnetic nonrelativistic Schrodinger operator %(—iv —
A(z))?. As a matter of fact, we follow the method of proof modified for the existing
Kato’s inequality in [I89], [ITs92] for another magnetic relativistic Schrédinger oper-
ator which is defined as a Weyl pseudo-differential operator associated with the same
relativistic classical symbol /(€ — A(z))2 + m2. However, this is not sufficient, and
we need further modifications using operator theory, since pseudo-differential calculus
does not seem useful. Starting from the assumption of the theorem that v € L?
and Hau € Ll , it appears to be impossible to show the regularity of u that
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Oju € Llloc, 1 < j <d, and/or Hpnu € Llloc, which may be due to the fact that
the operators d; - (—A +m?)~Y2, 1 < j < d, are not bounded from L' to L', though
they are bounded from L' to weak L'-space. Therefore we make a detour by going via
the case of the fractional power (H4 m)® with a < 1 in order to show the local L! con-
vergence. Verifying that the assumption implies that (Ha,,)%u € Li . for 0 < a < 1,
we show the asserted inequality first for the case 0 < oo < 1, i.e. inequality (1.2)/(1.3)
with the pair Ha, , Hom, replaced by the pair (Ham), (Hom)®, respectively, and
then for the case o = 1 that (Ham,)*u converges to Ha n,u in LllOC as a T 1, which
will be also shown below. The proof is presented separately according to m > 0 and
m = 0, in a self-contained manner.

Probably a comment may be fair about our starting assumption for u, namely, why
the theorem is formulated with assumption that v € L? and H AmU € Llloc, but not that
both u and H s mu are Llloc. For this question, recall that the original Kato’s inequality
for nonrelativistic Schrédinger operators 3(—iV — A(z))? is stated with assumption
that both u and $(—iV — A(z))*u are L] .. The answer is simply because of avoiding
inessential complexity coming from the fact that H4 ,, is a nonlocal operator.

The relativistic Schrodinger operator Hom = vV —A + m? without vector potential
was first considered in [W74] and [He77] for spectral problems. The magnetic rela-
tivistic Schrodinger operator H 4, like (1.1) is used to study “stability of matter” in
relativistic quantum mechanics in [L.Seil0]. On the other hand, a problem of represent-
ing by path integral the relativistic Schrodinger semigroup with generator Hy4,, has
been also studied. It results in establishing a formula of Feynman—-Kac-It6 type (cf.
[Si79/05]), earlier in [DeRiSe91], [DeSe90] and also in [NOO], and recently extensively

in [HILo12], [HILo13] (cf. [LoHBell]). The problem is connected with a Lévy process
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subordinated from Brownian motion ([Sa99], [Ap04/09]). A weaker version of Kato’s
inequality as well as the diamagnetic inequality was given in our paper [HILol2], to
which the present one is to be a good addition.

In Section 2 some technical lemmas are given, which are used in the proof of the-
orems. They concern some basic inequalities in L? and LP connected with the semi-
groups and/or inverse (resolvent) for the magnetic nonrelativistic (but not relativistic)
Schrédinger operator (—iV — A)% +m?, which is the square of our magnetic relativistic
Schrodinger operator H 4 ,,. For the sake of regularization of H 4 ,y,, its fractional pow-
ers (Ham,m)® with 0 < a < 1 are also considered through the semigroup of the magnetic
nonrelativistic Schrodinger operator to estimate in local L'-norm a kind of difference
between (H 4 ) and (Hgm)“, each applied to a function.

In Section 3 we prove the theorems. Section 4 is to give concluding remarks on how
about the other two magnetic relativistic Schrédinger operators associated with the
same symbol. Appendix provides for an explicit expression of the integral kernel (heat
kernel) of the semigroup e~ ‘I(H0.m)*=m] for the free fractional power (Hp,,)® together
with the density function of the associated Lévy measure n"*(dy). For basic facts on
the magnetic relativistic Schrodinger operator, we refer, e.g., to [LLos01] and [BE11].

Finally, as for the fractional powers for H 4 ,,, we have used the ones defined mainly
through the magnetic nonrelativistic Schréodinger semigroup. But instead, one might
also use another way to define them through the Dunford integral via the resolvent of
the magnetic nonrelativistic Schrodinger operator.

2 Technical Lemmas

Throughout this paper, we denote by (-,-) the Hilbert space inner product which is
sesquilinear, i.e. conjugate-linear in the first argument and linear in the second (the
physicist’s convention), and by (-,-) the bilinear inner product which is linear in both
the arguments.

Our main concern is the operator Ha,, = [(—iV — A)? + m2}% in (1.1) with
assumption that A € [L2 (R%)]%, which is a selfadjoint operator in L*(RY) defined as
the square root of the nonnegative selfadjoint (Schrédinger) operator (—iV — A)? +m?
in L2(R?). For m =0, Hy = | —iV — A|. Among them, the following identity holds:

[Hamul3e = (u,(Ham)*u) = (u, [(—=iV — A)* + m?]u)

d
= Y (=05 — Ajullzz + m?|lulF> = [Haoul7> + m*|ull?s, (2.1)
j=1

with u € C5°(R?) for all the five members and with u € L?(R%) without the second and
third members. The nonrelativistic Schrédinger operator (—iV —A)? +m? concerned is
the selfadjoint operator associated with this quadratic form (2.1), which has C§°(R?) as
a form core (e.g [CFKiSi87, 1.3, pp.8-9]). As aresult, Ha,, has C§°(R%) as an operator
core, in other words, H4,, is a nonnegative selfadjoint operator in L?*(R%) having
domain D[Hy ) := {u € L*(RY); (i0; + Aj)u € L*(R?), 9; = 0/0:;, 1 < j < dj},
being essentially selfadjoint on C$°(R?). Though iV + A = (i01 + A1, ...,i0;+ Ag) is a
closed linear operator of [L?(R%)]? into itself with domain D[iV + A] := {(u1,...,uq) €
[L2(RN]% (i0; + Aj)u € LA(R?), 9; :=8/9,,, 1 < j < d}, we will also abuse notation
to write the first term of the fourth member of (2.1) as ||(—iV — A)ul|3,.
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For the proof of Theorem 1.1, however, we need to consider H 4 ,, also on L? spaces,
and further the fractional powers (Ha )%, 0 < o < 1 of Hy p,. The aim of this section
concerns the issue such as some estimates connected with them.

As for the constant m, if otherwise stated, we assume in this section that m > 0,
and keep assuming it also in Section 3, until we come to consider the case including
m = 0 at the final stage of the proof of Theorem 1.1.  Therefore, in case m > 0,
H 4 m has bounded inverse (H,,) !, as well as [(—iV — A)? +m?] has bounded inverse
[(—iV — A)? +m?]~L.

2.1 Some inequalities connected with magnetic nonrela-

tivistic Schrodinger operators on L?
The operators H4,, may be considered not only in L? but also in LP, 1 < p < oo,
in particular, for p = 1. The square of H4,, becomes a magnetic nonrelativistic
Schrédinger operator (—iV — A)%2+m?2. Some basic inequatilies are given which are con-
nected with the magnetic nonrelativistic Schrodinger semigroup e~t(Ham)® and inverse
(resolvent) ((Ham)?) ™! on LP, though not with the magnetic relativistic Schrédinger
semigroup e~*#4.m and inverse (resolvent) (Ha,,)~'. They will be useful throughout
the paper.
In the beginning, let us repetitively confirm the notations to be used:
(Ham)? = (=iV = A +m?,  (Hao)® = (—iV - A)?,
(HO,m)2 =-A+ m2, (H070)2 = —A.
Lemma 2.1. Let A € [L} (R%)]%. Then:
(i) Let 1 <p < oo. Form >0,

|’6_t(HA’m)2HLp_>Lp < He_t(HO’m)2HLp_>Lp = ‘|e_t(_A+m2)HLp_>Lp < et <1, t>0.
Form >0 and 8 > 0,
I(Ham)?) P Neese < [(Hom)®)  Norspo, >0,

(i) Let 1 < p < oo. e tH00)*(_iVv) / ¢=t(Ho.0)* (_A) can be extended to be bounded
operators on [LP(RY)]4/ LP(RY):

le 00 (i) || pra_yppopa < Crpt ™2, (e HOO* (“A) oy < Copt ™, >0,

with constants C1p > 0 and Cay, independent of t.

(iii) Let m > 0. ltlA’me_(HAvm)2 and (HAm)26—75([7”‘”)2 can be extended to be
bounded operators on L*>(R%): fort >0,

Vg me ™ Ham oy 2 < (2et) ™2, [ (Hagm)Pe HamP |2y o < (et) ™
(iv) et V=iV + A) and (iV + A)e " V=D can be extended to be bounded

operators on [L*>(RH)]?: fort > 0,

' 1
e VA6V + Al gegasizoe < (35)7,

€

i 1
GV + A)e™ V= oo e < (55) 2



The assertion (ii) of Lemma 2.1 may be an LP version of (iii) or (iv) below, though
only for a special case of the minus-signed Laplacian —A without vector potential A(z).

Proof of Lemma 2.1. (i) (reference with comment) This is due to the ingenious
observation given for the magnetic nonrelativistic Schrédinger operator (—iV — A(x))?
with A € L% in [Si79, Theorem 2.3, p.40], [Si82, Sect. B13, p.490], since (Ha,,)? =
(—iV — A(z))? + m? is nothing but a magnetic (nonrelativistic) Schrédinger operator
plus the constant m?. Following the arguments there we have, for 1 < p < oo and for
every u € C3°(RY),

]e*t(HA’m)2u| < e*t(HO”")zlu\ = e*mQte*t(*A)|u|, pointwise a.e.,
so that e~(Ham)® LP(R?) C L°(R%) N LP(RY), in fact, for u € LP(RY),
_ 2 2t —t(— 2
le™ ) o < el D ulll e < ™ ulle < Jlullpe, 0.

So we can consider e~!(fam)* also as a bounded linear operator mapping LP(R?)
into itself. Further, it becomes a contraction semigroup. We may use the notations
(Ham)?, Ham also meaning operators (HA»m)zzw (Ha,m)p in LP when there is no fear
of confusion. Futhermore, for the crucial assertion (i), we refer to [Si82, Corollary
B.13.3, p.491].

(ii) (reference with comment) In fact, e t(=2) hecomes a holomorphic semigroup on
LP(RY), 1 < p < oo, for Ret > 0. Then for any f € LP(RY), v(t) := e =) f gives
a unique solution of the heat equation %v(t) = Av(t) (see e.g. [K76, IX.§1.8, p.495]
and [K76, IX.§1.6, Remark 1.22, p.492]). This implies that e~*(=®) has range in the
domain D[(—A)] of (—=A), equivalently, that te~*~2)(—A) is uniformly bounded from
LP(R?) into itself for real t > 0, and so is t'/2e7H=2)(—id;) for each j = 1,2,...,d.

(iii) (proof) If we are in L?, the assertion are evident by the spectral theorem,
because (H,)? and Ha,, are nonnegative selfadjoint operators in the Hilbert space
L2(RY). Indeed, it is easy to see that for u € C§°(RY),

_ 2 _ 2 — —
le= ") Hy g 72 = (u, (Ham)Pe” 2 Ham)"u) < Sup Ae M lulf2 = (2et) " ull?e,
>0

_ 2 _ 2 — —
e (Ham)PulZe = (o, (Ham) e FmP ) < sup N2l = ()2 Jul 7.

This shows (iii).

(iv) (proof) These inequalities follow from (ii). Indeed, for the first one, since
; 2 d d ; 2
|l CNAGY + AT =Y et T 6; + A7
j=1
for ¢ = (p1,...,904) € [C(RY)]4, we have only to show that for each j

—t(—2V — 2. -
lle H(=iV=A) (zaj—{—Aj)ngH%; < (2et) 1”‘:@“%/2'



This is seen as follows: For m > 0, we have by (ii)

”e_t(_z‘V—A)2 (i@j + Aj)‘ﬂj ”%2

— 2 N ) . _ |
= || A Hop o [H Y, (005 + A))? +m®) 2)[((i0; + A)? + m?)~V2(i0; + A7))ey 12
< & (et [H3L, (0 + A3)? + mD) (05 + AR + m) V200, + Al

< ™ (2et) sl
Letting m | 0, we have the result.

The second one is shown similarly. This shows (iv), ending the proof of Lemma
2.1. ]

Remark. Nontriviality of the assertion (ii) of this lemma lies in that iV + A does not
commute with the operator (iV + A(z))? = Z;l:l(iaj + Aj(z))% or (Ham)?

2.2 Estimate of a kind of difference between (H4,,)* and
(Hom)® in local L'-norm

In this subsection, we consider the fractional powers (Ham,)* = [(—iV — A)? +
mQ]O‘/z, 0 < a < 1, and provide several lemmas to estimate in local L'-norm a kind
of difference between (Ha ,,)* and (Hom)®, each applied to a function w. They are
needed to prove Theorem 1.1. Of course, the case for @« = 1 turns out to be our
operator itself: (Ham)! = Ham = [(—iV — A)? + mz]%

Now, a general definition of the fractional powers is given of a positive selfadjoint
operator S in a Hilbert space L?(R?) with domain D[S]. It appeals to the following
representation formulas to be suggested from the identity for the gamma function I'(3),
s B = ﬁﬁ)foootﬁ_le_“dt witht>0and 0< g8 <1:for0<a<]l,

1

a, — g—(1-a) - -
S =8 Su T —a)

o0
/ t=%e S Sudt, u € DI[S].
0
We shall use these formulas, taking for S the nonrelativistic Schrédinger operator
[(—iV — A)? + m?] = (Ham)? and/or [-A + m?] = (Hom)?, but not the relativistic
Schrodinger operator H 4, and/or Hp . Thus for f € L?(R?),

(Ham)Pf = [(=iV = AP+ m?
- P(15> /OOOtg—le—tu—iv—/*)”mz}fdt 0<p<2), (22
2

and similarly for (Ho,)™? = [~ A+m?]75/2 in case A = 0. Therefore, for u € C§°(R?),
we have

(Ham)u = [(—iV — A)? + mA¥ 2%y
_ 21a/ 12TtV iy AV 4 dt
I'(55%) Jo
= 1121—06/ t= 2 e Ham) (H ) ?udt, (0<a<2), (2.3)
(55%) Jo



for u in the domain of (Ha,,)?, and similarly for (Hy.,)* = [-A + m?]*/? in case
A = 0. Here note that H,,/Hom, as well as S = (—iV — A)? + m?/ (—A +m?),
has bounded inverse, since we are assuming in this section that m > 0. It may be
instructive to recognize that for 0 < av < 1 the last integral of (2.3) exists not only for
u € D[(Ham)?) but also for u € D[Ha ], because by Lemma 2.1(iii)

2 (t+a)
8 e (Hp Pl < 6 e 0 Ho | | ot 12 = O 57,

Lemma 2.2. Let 0 < o < 1. Assume that A is in [L2 (RY)]. Then if ¢ € C§°(RY),
then (Ham)p € L2(RY). In fact, it holds for every compact subset K in R? that

1 1

I(Ham)*¢llre < [K12[((m° +1)2 + 1)+ [ Al | 22(50)] [Vl oo (i) + 0l oo (1] (2:4)
for all € CP(RY) with suppp C K, where |K| denotes the volume (Lebesgue mea-
sure) of K.

Proof. Let ¢ € C’{)’O(Rd with supp¢ C K. Then for 0 < a < 1, we have

)

(0, (Ham) 2%) = (¢, [(=iV — A)* + m?]*¢)
(<,0, —iV — A)? +m? + 11%)

(0, [(—=iV — A)> + m® + 1]p)

I(Ham)*elZ2

IA A

. m2 1%
-~ H(—N—A)souiz+<m2+1>ueouiz=HH/S Ro)2. . (2.5)

Here for the first term of the last second member recall our abuse of notation mentioned
after (2.1). Hence

[(Ham)"¢ll 2
1
< IVellze + 1Apll L2 + (m? + 1)2 [l 2
1
< K2V oll oo iy + AN 2oy [0l oo (1) + (m* + 1)2 [ K[Vl 0]| oo (1) < 00

which is finite by assumption on A and ¢. This shows the desired assertion. O

By this lemma, for 0 < a < 1 we can define a distribution (Ha ,)%u for u € L?(R9)
by
((Ham)u, ¢) = (u, (H-am)*¢) = /(U(HA,m)aﬁb)(fC)d%
or

((Ham)u, @) = (u, (Ham)"¢) = /(U(HA,m)aéf))(ﬂf)d%
for ¢ € C$°(R?), because, for every compact set K in RY, we have

(Ham)uwd) = [(u, (Ham)*@)| < lull 2| (Ham) 8|2
lull 2 [(1K 2 (m2 4+ 1)2 + 1)) + |[A] |2 (0]
X [IV@l Lo (i) + 91l Lo ()]
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for all ¢ € C3°(R?) with supp ¢ C K. This says that (Ha,,)%u is a continuous linear
functional on C§°(R?), and so a distribution on R

Next, we study some properties of (Ha,,)® in the case A = 0, namely, (Ho )" =
(—A + mz)a/Q, 0 < a < 1. This is the §-power of the nonnegative selfadjoint op-
erator Ho,, = —A + m? on L2(RY) or also a pseudo-differential operator defined
through Fourier transform having the symbol (|¢]? + m?)®/2. The function £
(|€]? + m?)*/2 — m® is conditionally negative definite in R% (e.g. [ReSi78, Appendix
2 to XIII.12, pp. 212-222]; [IkW81/89, p.65]), so that, for each fixed ¢t > 0, the func-
tion et +m?)/2=me] jq positive definite. We note that this is a specific case of a
Bernstein function, providing the kinetic term of more general non-local Schrodinger
operators which we have studied in [HILo12].

As a result, its Fourier transform is a nonnegative function for each ¢ > 0, which is
nothing but the integral kernel ky"*(¢,z) of the semi-group e H(Hom)*=m® gatisfying
Jga kg (t,z)dz = 1. We see further the operator (Hom)%u, say with u € C§°(R?),
have an integral operator representaion:

(Hom) w)(x) = ([=A +m?|3u)(z) = (FH(E° +m?) 2 Fu) ()

= m®u(z) / (e 4 ) — ule) — Iyjery y - Vaul@)]n™ (dy),
ly|>0
(2.6)

where n™%(dy) is a o-finite measure on R?\ {0} depending on m >0 and 0 < a < 1,
ly|*

called Lévy measure, which satisfies f‘y|>0 lfwnm’a(dy) < o0. The Lévy measure is

known [IkW62, Example.1, p.81] to be given from k;"*(¢,z) through
1 m,x m,x
Uty - ey, Lo, 2.7

In our case, it has density: n"™%(dy) = n"*(y)dy.

For the expressions for the integral kernel k("*(¢,z) of e t(Hom)*=m®] anqd the
density function n™(y), see Appendix, (A.2). For o = 1, they are explicitly given
(e.g. [I89, (2.4ab), (2.2ab), pp.268-269], [LLos01, 7.11 (11)]) as

m A\ (d41)/2te™ K (g41) 2 (m(z?4+12)1/2)
ot B 2(%) (z2+12) (@074 ) m > 0, .
0 (t? :I’.) - F(% . ( ) )
m(d+1)/2 (z2442)(d+1)/2> m = 0;
m | (d+1)/2 Kat)/2(mlyl)
m,1 2(37) Tz m > 0,
) = r(et) (2.9)
7(@+1)/2 [y]d+T m =0,

where K, (7) is the modified Bessel function of the third kind of order v, which satisfies
0 < Ky(r) < Cmax{r7", 7'_%}6_7—, 7 > 0 with a constant C' > 0 when v > 1.
For our later use, let us calculate the commutator [(Ham)?, ¢] with ¢ € C§°(R?).

Here for two operators U and V', their commutator is denoted by [U,V]:= UV — VU.
We have

[(Ham)? ¥] = (=iV — A)*p — p(—iV — A)?
(iV + A) (V) + (iVY)(iV + A)
[(AY) +2(iV + A)(iVY)] or = [(—AY) + 2(iVY)(iV + A)], (2.10)



as quadratic forms, i.e. for suitable functions u, v in R

(u, [(Ham)? ¥]v) = ((iVY)(iV + A)u,v) + (u, (iV)(iV + A)v)
= (u, (AY)v) + 2(u, (iV + A)(iV)v)
or = (u, (—AY)v) +2(u, (iVY)(iV + A)v).

Here note that [V + A, ¥]v = (iVy)v as well as iV + A, (iVy)]v = (—A¢)v. In fact,
it holds more generally with two R%-valued functions A and B that for a function v in
Rd

[(Ham)* = (Hpm)*lv
= (iV 4+ A)((iVy) + vA)v + ((iVy) — ¥B)(iV + B)v + Y A(iVv) — iV (¢ Bv).
(2.11)

Indeed, the left-hand side of (2.11) can be seen to be equal to
(¥ — AP — (=¥ — B)o
= [(iV + A)(iV + A)¢p — ¢(iV + B)(iV + B)Jv
(iV 4+ A)[((iVY) + Y A)v + (iV(Yv) — (iV)v)]

+ [(((VY) —¥B) — (¥(iV) + (iVY))] (iV + B)v
= (iV 4+ A)((iVy) + v A)v + (iV + A)(¢iV)

+ ((iVy) — ¥ B)(iV + B)v — iV (¥ (iV + B)v)

= (iV 4+ A)(((VY) + vA)v + ((iVy) — »B)(iV + B)v + Y A(iVv) — iV (¢ Bv).

This shows (2.11). Taking B = A in (2.11) yields the third member of (2.10), which
implies the fourth and fifth members.

—

For the next lemma, we briefly mention the weak L'-space L. (X), given a measur-
able subset X of R%. It is by definition the linear space of all measurable function f
on X such that

11y, = Sl;}gal{xEX; [f(@)| > a}] (2.12)

is finite, where |Y| denotes the volume (Lebesgue measure) of the measurable set
Y C R% Ll (X) is not a Banach space, because || f|| L1, is not a norm but a quasi-norm,
as it does not satisfy the triangle inequality. However, it holds that ||f + ¢/l Ly <
2([fllzy, + llgllzy ). Tt is shown that Ll (X) is a quasi-normed complete linear space
(see e.g. [G10, Def.1.1.5, pp.5-6]). We have || fl|z1 < [|f]lz1, so that L'(X) C Ly, (X).
If f, — fin L., then the {f,} converges to f in measure (e.g. [G10, Prop.1.1.9, p.7]).
We say “f is locally in LL?”, if, for every compact set K in R? f belongs to L. (K).
In some literatures L. (X) may be denoted also by L1'>°(X) (Lorentz space).

Lemma 2.3. Let 0 < a < 1. Let ) € C°(RY). Then for the commutator [(Hom)%, ],
it holds, with a constant C, dependent on 1 and « but independent of m > 0, that (i)
for1l < p< oo,

I[(Hom)®, ¢lulle = [|(Hom)® ($u) — (Hom) ullr < CallullLe, (2.13)

for all u € LP(RY). Therefore if both u and (Hom)®(Yu) are in LP, then v(Hom)u is
m LP, and
[ (Hom)"ullLr < Callullze + [|(Hom)® ($u)| Le;

10



(ii) for p =1,
I(Hom)®s ¢lullpy, = [|(Hom)* () — (Hom)ullry < Callullzt, (2.14)
for all u € L' (RY).

Remark. Inequality (2.13) does not hold for p = 1, and instead we have (2.14) with
the L'-norm on the left-hand side replaced by the L!-quasi-norm. This is dependent
on the Calderén-Zygmund theorem (For this see Proposition 2.4 below).

Proof of Lemma 2.3. (i) As the second-half assertion follows from the first, i.e.
inequality (2.13), we have only to show (2.13), and even only for u € C5°(R?), since
C5°(RY) is dense in L2(RY). The proof for the case a = 1 was given in [ITs92, p.274,
Lemma 2.3] by using the integral operator representaion (2.6) of Hy,, = vV—A + m2.
The proof for the case 0 < a < 1 will be similar. So only an outline of it is given.

Use (2.6) to rewrite [(Hom)*, ] as

([(Hom)®, Ylu)(z) = — /I |>0[¢(fﬂ +y) = (@) — Iy <y - Voo (2)]u(z + y)n™* (dy)

- /0 V@G ) @l )
= : (Lu)(x) + (Tou)(z). (2.15)

We esimate the LP norms of Iyu and Isu in the last member.
First, rewrite I u as

(Lu)(z) = —/O Y l[w(wﬂ/) —(x) = Ijjyj<1yy - Voo (2)]u(z + y)n™(dy)
<lyl<

. /|y|>1Wx +y) = p(@)ulz +y)n™ (dy).
Hence

() ()] < V2] e /

Plutarln™ )42l [ b)),
0<lyl<1

ly[>1
so that for 1 < p <

1
1l = ([ 1) @)Pdz)” < (0120l e + 20 0] )l
where

wgees [ ey, apess [ ittaney), (210
ly|>1 0<ly|<1

where the former is finite, and the latter is finite for all 0 < k < 1.

Next, for Iou, we use the folllowing known fact on an operator 7" on LP(R?) with
Calderén—Zygmund kernel K : R%\ {0} — C (e.g. [St70, I1.3, pp.35-42], [G10, Theorem
5.3.3, p.359], [MSc13, Def.7.1, Prop.7.4, Theorem 7.5, pp.166-172]). It is the integral
kernel which satisfies, for some constant B > 0, the following conditions:

(i) |K(x)| < Blz|~¢ for all x € RY

(ii) f|x|22|y| |K(z) — K(x —y)|dz < B for all y # 0;

(iii) fR1<|z|<R2 K(x) dr =0 forall 0 < R} < Ry < o0.

11



Proposition 2.4. Let

(Tf)(x) := lim K(z —y)f(y)dy.
A0 Jiz—y|>e
Then
ITflle < Cpllfllze, 1<p<oo,
ITfllz, = Sup a [{z e R% |(T£)(2)] > a}| < Chllfllpe p=

This proposition is being just used in the proof of Lemma 2.3 (i).

We continue the proof of Lemma 2.3 (i). It still remains to deal with Iou, which is
rewritten as

(Lu)(z) = =) lim O, () (x5 — yj)n™ (x — y)u(y)dy.

j=1 40 Je<|yl<1

Here each zj-n™%(z), 1 < j < d, is a Calderén-Zygmund kernel (see Appendix, (A.2)),
so that we have by Proposition 2.4 with 1 < p < oo there exists a constant C}, > 0
such that

VAN

[2ullr < CpllVllzeelluflr, 1 <p<oo,
I2ullpy, = supgsg al{z € RY |(T2u)(x)| > a}| < CL|VYllze ullr, p=1.

Thus we obtain

I(Hom)®, ¢]ul|ze [Mullze + || Toul| e

<
< (VP + 2080 [z + Cpl|Vabllzee) [[ull v,

showing (i) for 1 < p < oc.
Next, for (ii) for p = 1, we have

I(Hom)™, Ylullry, < 2(Ivullpy, + H2ullzy,) < 20 Lullp + 2 Lull
< 20V + 20 [l + CLIV o) [Jull 1,

because [|Iyul|py < |[[yul[z:. This shows (ii), ending the proof of Lemma 2.3. O

When A € L%, our selfadjoint operator S := (—iV — A)? + m? originally is being
defined as the selfadjoint operator in L?(R?) associated with the closed quadratic form
(2.1). As already noted in the proof of Lemma 2.1 (i), it also makes sense as an operator
in the spaces LP(R?), 1 < p < oo, referring to the result [Si79, Theorem 2.3] or [Si82,

Sect. B13]) that the Schrédinger semigroup e~ = e~ (=iV=2)?+m?] gatisfies

|e—t[(—z‘V—A)2+m2}g| < emtl=A+m?] lq] (2.17)

pointwise for any g € L*(R%). This yields that for 1 < p < oo, e~tHam)* ig a bounded
operator of LP(R?) into itself for all ¢ > 0, which also is a contraction semigroup.

Thus, the fractional powers of S such as S2 = (Ha,,)® in (2.3) equally make sense
in LP(RY).

Now, we give two crucial lemmas, Lemmas 2.5 and 2.6.

12



Lemma 2.5. Let 0 < a < 1 and assume that A is in [L2 (RD)]?.  Then: (i) if

loc
u € L2(RY), one has for x, ¢ € C§°(R?)
IXI(Ho.m)* = & (Ham)ullze = [x (=2 +m? 20 = 9[(~iV — 4 + )5 )ul]
< Caamxullull 2, (2.18)
where Cq Ay, 18 a constant which depends on 0 < o <1, A, m > 0, x and ¥, and

which tends to co as a T 1.
(ii) In particular, when A =0, (2.18) reads: if u € L*(RY), one has

IX[(Hom)™, lullr < Cao,mxpllull L2 (2.19)

For A = 0, inequality (2.19) seems more useful, compared with (2.14), Lemma 2.3.
We are now going to prove Lemma 2.5.
Proof of Lemma 2.5.

(i) We have only to show (2.18) when u € C5°(R?), since C5°(R?) is dense in
L%*(R%). Note then that Ho,u and Ha,,u belong to L?(R?).
We use formula (2.3) for (Ho,m,)" as well as (H4,,)" to calculate

[(Ho,m)a¢ — ?ﬁ(HA’m)a]u
1 © LT ) i 2
— I‘(2;.1)/0 t 2 [e t(Ho,m) (Ho’m)2¢_w(HA7m)2€ H(Hoam) ]udt
=1

L T s Ay | oo m)? (L O)(H A )
-, dt)le " !
6=0

2
1 o0 «@ d 1 d 2 2
- - dit—s — do — | ¢—0t(Ho,m) —(1-0t(Ha,m)
r2;a)/0 th/o Bl ve Ju

(
1 /Oo _a
= — [ dtt 2
L(%%) Jo
d Lo -
= ( /O a6 [0 H0 [(Ho 2 — (Hp )] e~ =4 ).
Then by integration by parts,
[(Hﬂ,m)aw - w(HA,m)a]u

1 t=o00
— o |5 (I [(Hon) b (Ha) Pl A g
F(T) 0 o
oo 1
+ oy / dit2 / a6 (0. [(Ho )0 = (g )]~ an) )
2I(5%) Jo 0

00 1
= (;—a)/ dt t_% / do (e_et(HO””)Q [(Ho,m)2w . w(HA,m)ﬂ 6_(1_6)t(HAvm)2)u'
0 0
(2.20)

Here we do two notes for (2.20). First for its second member, the boundary value at
t — oo of the first term also vanishes, because the part

e_m(Ho,m)?[. ' ']6_(1_9)t(HA,m)2 — o0t (=A+m?) B .}e—(l—e)t[(—iV—A)Q—l-m?]
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contains the factor e=™"t. Second for its last member, note that the middle factor in
the integrand is, by (2.11) with A :=0, B := A, equal to

[(Hom)?t — (Ham)?] = [iV((iVe) — pA) + ((iVy) —pA)(iV + A)]  (2.21)

as quadratic forms.
Substituting (2.21) into (2.20), we have with x € C§°(R9)

X[(Hom)* ¢ — ¢ (Ham) Ju

o0 1
= or(ze) / dtt™s / d9x<6_9t(H°*m)2iV((iV¢)_q/}A) e—(l—@)t(HA,mF)u
2=a) |, ;

o (%
& = o« ! 0t(H 1-0)t(H 2
+2—a/ dtt2/ dGX( —0UHom)* ((574h) — Y A) (iV + A) e~ (1O Ham) )u
2I(55%) Jo 0
=: Isu+ Iyu. (2.22)

We estimate the L! norm for Isu and Iyu in (2.22). Note that e *—iV=4* ¢ >0, is a
contraction on LP(R?), 1 < p < oo.

First, for Isu, integrate its absolute value in x to get

[0 o0 o 2 1
Taulln < / f5em tdt/ a6
Il < e | 0

x||x[e PR GV)] (V) — pA) e DUV | (2.23)

Then by Lemma 2.1 (ii) for p = 1, the Schwarz inequality and Lemma 2.1 (i)

| ul = e / "
ullrr < —5— e
x ||x\|Loo||e MR @V) sz (V) — A) e OET=A Y|

(0% 0 a 2 1
S 2—0&/ t_ie_m tdt/ d0
21(%5%) Jo

% ||| oo Ca1 (88) 2| (V1) — A 2 e~ DUV =APy |

Cna

0o 1
_1+7a —mt
_W;a)/0 | Al 699) = vl

Here recall that ||(iVi) — ¢ A| 72 < 00 by assumption on A and notice also that
o
/ e = T(A52 ) m e
0
which diverges as a T 1 with m > 0. Thus we have

Ciial'(==2
sl 19T CS) 7y — Al ol ] o (2.24)

< — = °
F(25a)m )

14



Next for Iyu, in a similar way, we have from (2.22)

o

00 1
Il < gz [ ¢ e [ anl(e S (V) - wa)
2F(T) 0 0
X [(iV + A) e ===y (2.25)

Then by the Schwarz inequality and Lemma 2.1 (iv)

(073 0 a 2 1
I < t~2e ™Mty / do oo ||e0H=2)
Il < spamgy [ Ee e [ a0l s
x (V) — YA [(iV + A) e~ A=DHV=A2]y )
« ® _a —m ! —Ot(— .
<o [ Ee [ a0l e S g 6T9) — Al
2I(55%) Jo 0
X [0V + A) e A-OU=V=D%y)
[e'e) 1
o a2 . 1/2
< i | R [ I 6V9) ~ Al (i)l
QF(T) 0 0
d 1/2 « °  _lta —mZ2t ! do .
= () gy [, e [ e N 694 — Al

Then we have

dy12 ol (}59) .
[Laullpr < (2*) o 1a |GV e) = pA| ol o x| zoe 1wl 2 (2.26)
e F(Ta)m 2

Putting (2.24) and (2.26) together in view of (2.22), we have

HX[(HO,m)%/} - T/’(HAm)a]uHLl
< 2| Isull + [[Laull )
2011 + (2%)1/2 O‘F(PTQ) H

m=* D59

< (V) = YAl oo ]| 2 (2.27)

This yields (2.18), showing Lemma 2.5 (i).
(ii) Inequality (2.19) is immediately derived by putting A = 0 in (2.18).
This shows Lemma 2.5 (ii), completing the proof of Lemma 2.5. O

From Lemma 2.5 we have the following lemma, which we shall need, in particular,
the assertion (ii), in the proof of Theorem 1.1.

Lemma 2.6. Let 0 < o < 1. Assume that A € [L2 (R%)]%.

loc
(i) If w € (C> N L?)(RY), then (Ham)%u is locally in L*(RY).
(ii) If u € L2(R) with (Ham)%u € L (RY), then (Hom)%u is locally in L*(R?).

loc

Proof. (i) Let u € (C* N L?)(R%). Then for 1 € C$°(R?),

w(HA,m)au = (HO,m)a(¢u) + ('QD(HA,m)a - (HO,m)aw)u-
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Put K = supp®. Then, since vu is in C§°(RY), the first term (Hom)*(vu) on the
right-hand side belongs to L?(R%), as we can see from (2.6) (with 1u intead of u) or
Lemma 2.2 (2.4) with A = 0 (with 9u instead of ¢). For the second term restricted
on K, it belongs to L'(K), as we see by Lemma 2.5 (2.18). Therefore 1)(H ,)%u is
in L(K), so that (Ha,)%u is locally in L'(R?). This proves the assertion (i).

(ii) Let u € L? with (H4 ;)% € L. and let K be an arbitrary compact subset of
R9. Take x, ¥ € C§°(R?) with 0 < x(x) < 1 such that x(z) = ¥(z) =1 on K. Then
since

w(HO,m)au - w(HA,m)au = _[(HO,m)aa ¢]u + ((HO,m)aw - w(HA,m)Q)U,

we have by Lemma 2.5 (2.18) with A = 0 as well as with non-zero A

[(Hom)u = 9 (Ham) ull 1 (x)

= [Ix¥[(Hom)u — (Ham)*ull| L1 (1)

< |Ix[(Hom)® ¢lull gt + [Ix (Hom) ¢ = $(Ham)®)ull 1
< (Ca0mxw + Caamx)lull 2 < oo.

Since by assumption (Ha )% is locally in L*(R?), we have (Ho,,)%u is locally
LY(R?). This proves the assertion (ii), ending the proof of Lemma 2.6. O

3 Proof of Theorems

We show only Theorem 1.1 and Theorem 1.2. As for Theorem 1.3, essential selfad-
jointness of H4 v, follows from Theorem 1.1 by its standard application in Kato’s
original paper [K72]. In fact, one can show in the same way as in [I89, Theorem 5.1].
So the proof is omitted. The assertion that Ha v, = Ham +V > m is trivial because
HA,m > m.

In this section, we keep assuming that m > 0 before come to the final part (iii) of
the proof of Theorem 1.1.

3.1 Proof of Theorem 1.1

The proof will proceed similarly to Kato’s original proof [K72] (e.g. [ReSi75, Theo-
rems X.27 (p.183), X.33 (p.188)]) for the magnetic nonrelativistic Schrodinger operator
7 (—iV — A(2))? and to a modified one [I89], [ITs92] for another magnetic relativistic
Schrédinger operator. However, if one could show the assumption of the theorem that
u € L? with Hymu € Llloc implies that Oju € Llloc7 1 <j <d, and/or Hymu € LIIOC,
there should be no problem. The obstruction seems to come from the fact that the
operators 0; - (—A + m2)_1/2, 1 < j < d, are not bounded from L' to L', though
bounded from L' to LL. The strategy we adopt to bridge this difficulty is, in the
beginning, to make a detour by considering the case (H4,,)* for a < 1, putting the
very case o = 1 aside, however, to handle the local convergence in L'. In fact, in the
preliminary stage (Lemmas 3.1 and 3.2), we show first that if (Ha,,)%u € L{.., then
(Ham)u® — (Ham)%u locally in L as § | 0, where already recognizing with Lemma
2.6 that (Ho,,)%u is locally in L, and next that the assumption H4 ,u € Li . implies

loc

that (Ham)%u € Ll for 0 < a < 1, and (Ha,m)%u converges to Ha pmu in LllOC as

loc

16



a T 1. In the second main stage, with m > 0, we show first for 0 < a < 1 that the
asserted inequality, i.e.

Re((sgnw)[(Ham)® —m®u) = [(Hom)® —m®[ul, (3.1)

holds, and next for o = 1, appealing to the just above mentioned fact that (H 4 ,)%u —
Hy mu in L11OC as a T 1. The final stage will deal with the remaining case for m = 0
and a = 1.

We provide two lemmas, which play a crucial role in the proof of Theorem 1.1.

For a function f locally in L'(R?), we write its molifier as fo = ps* f, 0 <5 <1,
where ps(z) := §~%p(x/5), and p(z) is a nonnegative C> function RY with compact
support supp p C {z; |z| <1} and [ p(x)dz = 1.

Lemma 3.1. Let 0 < a < 1. Let u € L*(R%), so that u® := ps*u — u in L* as § | 0.
If (Ham)u € L (RY), then (Ham)®u® = [(—=iV — A)2 + m?]*?u — (Ham)*u =

loc

[(=iV — A)% 4+ m?)*?u locally in L' (R?) as § | 0.

Proof. Let u € L? and let (Ha ;)% € L (R?). Then by Lemma 2.6 (ii), (Homn)u

loc

is locally in L' and since u® € C* N L2, we have by Lemma 2.6 (i) that (Ha,)%u’ is
locally in L'. The important is: thanks to the integral operator representation (2.6)
of the operator (Hp )%, the convolution commutes with (Hp ;). Therefore we have
((Hom)*u)? = (Hom)*u’, which converges to (Hpm,)%u locally in L' as 6 | 0. Then
for K a compact subset in RY, let x, v € C°(R?) with 0 < x(z) < 1 on R? and
x(z) = ¢(x) =1 on K. We have

H(HA,m)aué - (HA,m)aUHLl(K)

= [Ixv(Ham)* (@ — )|l 1 k)

= |Ix[ = (Hom)*¢ + ((Hom)*% — Y(Ham)*)] (u® — w)|| (xy

< Ix(Hom) 9 (u® — w)|| g1 + X[(Hom) 9 = Y (Ham)*)(u® —u)| 1.

The second term in the last member of the above inequality is, by Lemma 2.5 (2.18),
less than or equal to Cy Ay llu® — ul|z2. The first term is equal to

X ([(Homn)®, 9] + 9 (Hom)®) (u = )| 1
< |IX[(Hom)® ]’ = u) |l 2+ [IXO[(Hom)*u® — (Hom)*ull|
< Cogmacw e’ = ull 2 + [|((Hom)*w)® — (Ho,m) ull 1,

where we have used for the first term Lemma 2.5 (2.19) for A = 0 and for the second
the fact that (Hom,)%u® = ((Hom)%u)? because by assumption (Hp,)%u is locally in
L' and u € L%. Tt follows that

I(Ham)*u® = (Hamn)“ull 11 (x)

< Coomaw e’ = ull 2 + 1] 2o [|((Hom)*w)® — (Hom)*ull 11 + Coamyllu® = ull 2,

which approaches zero as ¢ | 0. This proves Lemma 3.1. O
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Lemma 3.2. Let 0 < o < 1. Let u € L*(RY) and Hamu € LL (RY). Then
(Ham)u = [(—iV — A)? + m?|*%u is also in L (RY), and {(Ham)*u} converges
to Hamu in LE (RY) as a 1 1. Namely, for any ¥ € CRY), ||W(Ham) | is
uniformly bounded for 0 < a < 1, and {t(Ham)*u} converges to WH 4 mu in L'(R9)

as a1 1.

Proof. Let 0 < a < 1. To begin with, suppose with 1 € C$°(R?) that some
u € L?(R?) satisfies the equation

w(HA,m)au = (HA,m)_(l_a)wHA,mu + [¢7 (HA,m)_(l_a)}HA,mU“ (32>

This holds at least if u € D[H ], and hence, in particular, if u = ¢ € C§°(R?). Note
here that (Ha ) has D[H4,,] as an operator core, while Hy ., has C’go(Rd) as an
operator core.

Now, let v € L*(R?%) with Hapmu € Llloc(Rd), just what is assumed by Lemma 3.2.
The first term on the right-hand side of (3.2) is in L*(R%), since by Lemma 2.1 (i) with
p=1, (HAM)_(I_O‘) is a bounded operator which is a contraction mapping L'(R?)
into L'(R%), bounded uniformly for 0 < o < 1 and strongly continuous there, so long
as m > 0. The term on the left-hand side of (3.2) exists as a distribution. The second
term on the right-hand side lies in the dual space of the space D[H 4], considered as
a Hilbert space equipped with the graph norm [[v||3, + ||[Hamv|[*>. Here recall (2.1)
and note that for ¢ € C§°(RY)

I(Ham)*Sllze = |(Ham)™ " Hagmlliz < | Hamdll -

Thus all the three terms on the left- and right-hand sides of (3.2) exist also as distri-
butions.

To show the assertion of the lemma, take a C'°° cutoff function x with compact
support, a similar one of which has already been used before, such that 0 < y(z) <1
in R? with y(x) = 1 on supp . As ¢ = x holds, so does ¥(Ha m)%u = X (Ham)u.
Then consider the (3.2) multiplied by ¥, i.e.

G(Ham) =X (Ham) T Hamu+ X [0, (Ham) T Ha (3.3)

The first term on the right of (3.2) (and hence (3.3)) converges to Y Ha ,nu as a T 1,
since (Ham,m)~ 1~ is an operator on L'(R?), bounded uniformly for 0 < o < 1 and
strongly continuous there, so long as m > 0. So we have only to show the second term
of (3.3), i.e. X[, (Ham) =¥ Hamu lie in L'(R?), being uniformly bounded, and
converge to 0in L' as o 1 1.

Use formula (2.2) to rewrite this second term on the right of (3.3) as

X[, (Ham) N Ha pu

e / dtt 2"y [pe Ham)® _ = UHamy Hy
0

e
= — 1 /OO dt t_H—Ta X /1 do i |:€—9t(HA,m)2we—(l—G)t(HA,m)2:| Hy ml
L(+3%) Jo o df ’
= ll—oz / dttl_Ta [(HA,m)27¢] 6_(1_9)t(HA’m)2HA,mU- (34)
(%) Jo
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Recall identity (2.10) for the commutator [(Ham)? 1], indeed, the first of the two
expressions there and substitute it into the [(Ham)?, ¥] in the last member of (3.4).
Then

X[, (Ham) ™Y Ha mu

00 1
= F(llw)/ dttlza/ do x e~ Ham)® (Ag) e =OMHam) Fy oy
2 /J0 0
00 1
_|_12a/ dttliTa / dexe—et(HA,m) (ZV—}-A)(szp) (1=0)t(H A,m)? HA u
I(55%) Jo 0

=: Isu + Isu. (35)

We estimate the L' norms of Iyu and Igu in (3.5).
First for Isu, integrate its absolute value in x, we have by the Schwarz inequality
1
p(l—J)

00 1
/ e / b || e~ Ham? (Ag) em=OHam F ]
P} 0 0

T /ldQH H
T T(5%) Jo Xize

e ()OI An ],

1 o0 1—a _ 2
< P(la)/o dtt 2 /0 do || x|| 2 [l Ham| o

T2
XA o e OO g ]| o o] 2

! g [ — 220t~ % (Ham)?
e W A A N Pl E e P

X HA@bHLm e_mTz(l—G)tH ENCELTTNNT

[ sull 2 <

Haml| oy pal|ull 2 -
Then by Lemma 2.1 (iii) we have the bound

1 o0 o 7m72 1
P /0 a3 e 2! /O 8 a1 A% e (o) el

1 . m? _ L
< =) /0 dtt™2e” 21 (2e) 1/2/0 (1%%0)172 x| 2 1A o]
P T 2—a 2—a
< 230 2L 2D (2 Al el 39
(2*)
Next for Igu, we are going to show a similar bound

< 71/2F(2_Ta) 2 2_?&

gl < am20) L () F Pl e 69
2
with a constant, depneding only on x and A,
Croa = [IVxl32 +m2 Iz + I Al %, (3.8)

which is bounded since A € L% _(R?). The proof is to integrate the absolute value of
Isu in x to get

Heullrr <

[e) o 1
= / dttT / deXA,m(tvea X,¢7U), (39)
r'(452) Jo 0
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where we put

Xt 05 %, 0, ) = erfet(HA,m) (iV + A)(iVip)e~ 10 (HA,m)2HA7muHL1 . (3.10)

Somewhat crucial is the estimate of X4 ,,(¢,6; x,%,u) in (3.10) which we are going to
do, where the parentheses (-, ) below stand for the L? inner product:

Xam(t,0;x, ¢, u)
=|(x, e O HAm)® (57 4 A)(Z'Vzb)e_(l_e)t(HAvm)2HA,mu) |
= (e Ml H gy - (Ha o) 76V + A)(iV)e —“—")“HAM)QHA,mu) |
=|(e —Ot(HAm)* T 4 X (Ham) L0V 4 A)(1Vep)e~(1-OHHa, m)® H m)|
< le= P Ham Hy X2 | (Ham) "GV 4+ A) iV p)e GO Ham) By |, (3.11)
In the last member of (3.11), the first factor and the second are estimated as follows:

O Fam) F g Xl < €™ Ha

d
2 . 1/2
= e STI(0; + A xIZe +mPIx)12e] Y
=1
2
< e [Vx]2 + [x A2 + m2|x]12:]

— ey (3.12)

1/2

| (Ham) H(6V + A)(iV)e™ (1=0)t(Ha,m)* Hamul|
< H(HAvm)i (iV+ A) HL2—>L2H iVip) HL He (A=0)t(H 4 m)” HAvaL2—>L2HuHL2

_mZ _@a-=o
< [ e O e T ]

< vaHLOO mT(l o (26@)1/2“““L2- (3.13)
2

Here in (3.12) and (3.13) we have used (2.1), Lemma 2.1 (iii), and that || (Ham) ' (iV+

A)HLQ_)L2 < 1. From (3.12) and (3.13) we obtain

2 o0 —x 7n2
Vol i [ a005" e [0 ) a9l

2

2 o a m? -
g [ 5 [ oAl el s

of which the last member yields (3.7) with (3.8).
Thus, taking (3.5) into account and putting together (3.6) and (3.7), we see the L!
norm of the second term on the right-hand side of (3.3) estimated as

X[, (Ham) ™"~ Hamull 10
< | Lsullpr + ([ Zoul 11
D(5)

= T(59)

2—a
() 220 |x| o | A 2 + 47 (2) T Cra IV |l 2

(3.14)
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Since the last member of (3.14) tends to zero as a 1 1, because I'(z) 1 0o as z | 0 and

hence —— — 0 as o T 1, we see the left-hand side uniformly bounded for 0 < o < 1,

INCo
and convergent to zero as a T 1. This shows the desired assertion of Lemma 3.2. [

Now we are in a position to prove Theorem 1.1.

Comletion of Proof of Theorem 1.1.

As (1.2) and (1.3) are equivalent, we have only to show (1.3). The proof is divided
into three parts, (i) the case where m > 0 and 0 < a < 1, (ii) the case where m > 0
and o = 1, (iii) the case where m =0 and a = 1.

(i) The case where m > 0 and 0 < o < 1. We prove in two steps, treating first
the step (i-I) for u € (C* N L?)(RY), and next the step (i-IT) for general v € L? with
(HAvm)au € L}

loc®

(i-I) For u € (C*NL*)(RY) (0 < a < 1).
For a function v(z) € C*°(R?) and € > 0, put ve(z) = y/|v(z)|? + 2. Then note
that v (z) > ¢, and, since v.(7)? = |v(x)|? + &2, we have

—[o(@)llo(@ + )| + [o(@)* = —ve(@)ve(@ +y) + ve (). (3.15)
Then we will show that u. = \/|u|? + €2, & > 0, satisfies that

Refu(@)([(Hapm)® — m®]u)(@)] > ue (@) ([(Hom)® — m®](ue — £))(z), pointwise a.c.,

(3.16)
which amounts to the same thing as
Re ﬁg) ((Ham)® — m®Ju)(@)| > ((Hom)* —m(ue —))(),  (3.17)

pointwise a.e., and so in the distribution sense. Here note that the function u. — ¢ is
nonnegative, C*° and has the same compact support as u.

We show (3.16) or (3.17) first for u € C§°(R?) and then u € (C°*° N L?)(R%). To do
so, we employ analogous arguments used in [193, p.223, Lemma 2| for the case a = 1,
i.e. for Hp p, —m. We will use the same notation S as in Section 2 for the selfadjoint
operator (—iV — A(z))? + m? in L?(RY), which may be considered as the magnetic

nonrelativistic Schrodinger operator with mass % with constant scalar potential m?2.

Then we have H 4, = S%. Since the domain of Hy4 ,, includes C§° (]Rd) as a operator
core, [H A, —m]u can be written as s-limyjot ™! (1 — e*t[HAﬂ"*m])u. It is known from
the theory of fractional powers of a linear operator (e.g. see [Y78, IX, 11, pp.259-261))
that the semigroup e~ (Ha.m)* =] with generator (Ha ,m)* = S% is obtained from the
semigroup e~ with generator S as

o—tl(Ham)*—me],, _ { et [ fra (Ve Mud), >0,

3.18
U, t=0, ( )

where fort >0and 0 < a < 1, ft% (M) is a nonnegative function of exponential growth
in A € R given by

27i) ! faﬂoo e —t= gy A>0
a()\) = ( o—1i00 ’ = 3.19
s { ¢ 220 (3.19)
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with o > 0, where the branch of 22 is so taken that Re 22 > 0 for Re z > 0. In passing,
we note that equation (3.18) is valid even for 1 < a < 2, though we don’t need this
case in the present paper.

We continue our preceding arguments and recall that ]e*ts u| < e~ t=Atm?] |u| point-
wise a.e., what is referred to in (2.17). It follows with (3.18), (3.19), that

e~ tlHam) =m]y | < gt /0 fo (Ve SuldA
< [T g ey
0

= ¢~ t(Hom)™=m®] ) (3.20)

poitwise a.e. Hence for ¢ > 0
—t[(Ha,m)*—m?]

t

1 — e~ tl(Ho,m)*—me]

t

1—e

e ) @)] > (o)
[ )@ = @)(

poitwise a.e. Now put n™%(t,y) := 1k("“(t,y), taking account of the relation (2.7)

between the integral kernel ky"“(t,y) of e *l(Hom)*=m®] and the density (function)
n™*(y) of the Lévy measure.
Then we see, by (2.6), the right-hand side of (3.21) equal to

lu(z)| lu(z)] — |u(z + y)]] kot(t,y)
ly[>0

[ul) (@), (321)

dy

- /| >0 [u(@)|[u(z + y)| — |u(@)]* ] n™(t, y)dy
- U (T )U\T —u .CCZ nm,a

- /|y>0[ (2)ue(w +y) — ue(e)”] (t,y)dy

=ue@[ = [ el y) o) ~ Iy Veulo) 4 )]

for every e > 0, where we used (3.15) and the y-rotational invariance of kj (¢, y) or
n™%(t,y). Notice the integral [ — f|y|>0 o ] of the last member is equal to that with

(ue — €) in place of u., i.e.

1 — e~ tl(Hom)*=m?]
( . (ue =€) ) ().
Thus we have from (3.21)

_t[(HA,m)a_ma] 1 — e_t[(HO,m)a_ma]

Re [@( " u) (a:)} > ue(a:)< " (ue—&?))(m). (3.22)

Then letting ¢ | 0 on both sides of (3.22), we obtain (3.16). Indeed, recalling the func-
tion u. —e has compact support, the right-hand side tends to that of (3.16). For the left-
hand side, since u is in the domain of (H 4 ,,)*—m®, we have ¢t~} [1—e~HHam)*=m])y
[(Ham)® —m*u in L?, and pointwise a.e. by passing to a subsequence. This shows
(3.16)/(3.17) for u € C§°(RY).

1—e

Next we show (3.16)/(3.17) when u € (C*® N L?)(RY). Take a sequence {u,} €
C3°(R?) such that u, — u in (C* N L2)(R?), i.e. in the topology of C*°(R?) as well
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as in the norm of L2(R%), as n — co. Then from the case u € C§°(R%) above, we have
for all e > 0

Re

unl®) (101, 00 ma]un)m] > ([(Hom)™ — m®)(tne — ) (),

Une(T)

pointwise, and hence for any ¢ € C§°(R?) with ¥ (z) > 0,

Un

Re<¢, ((Ham)* — ma]un)> > <¢, [(Hom)® = m*](un,e — €)>

n,e

for all € > 0. Here the bilinear inner product (-,-) is an integral with respect to the
Lebesgue measure dx, and also considered as the one between the dual pair of the test
functions and the distributions: (C§°(R?), D'(R?)). Therefore

Un

Re<[(HA7m)a — ma]( w), un> > <[(H0,m)°‘ —m)Y, Uy — 5>.

Un,e

As we have that u, — u and u, . — u. in (C*° N L?)(RY) as n — oo, so do we that
(ﬂ)z/) — (u%)¢ It follows by Lemma 2.2 that

Un,e

Jo = (Hag)® = me] ()9

Ue

Un

[(Han)® = m®(

Un,e

in L? as n — 0o, so that

Re{ [(Ham)® = m] (<), ) = [(Hom)® = m1, (e —)).

Ug

Thus we obtain

([(Ham)™ = m*Ju) (fv)] > ([(Hom)™ = m*)(ue —€)) (2), (3.23)

pointwise a.e., and so in the distribution sense, and hence (3.17) for u € (C*®NL?)(RY).
(i-11) For general u € L*(RY) with (Ham)*u € L (RY) (0 < o < 1).

loc

Put u® = ps * u. Then u’ € C*° N L2, so by (3.23) in step (i-I) above

w2
(. (Ham)® = ma]ué)] > [(Hom)® = m®)((u')e =€), (3.24)

pointwise a.e., and also in the distribution sense, for all € > 0 and all § > 0.

We first, for fixed e > 0, let § | 0, and next € | 0. In fact, if § | 0, then v’ — u
in L? as well as a.e. by passing to a subsequence of {u%}. Hence u®/(u?). — @/u. a.e.
and by Lemma 3.1, (Ha )%’ — (Ha )% locally in L', and therefore also a.e. by

Re

passing to a subsequence. Since !%‘ < 1, it follows by the Lebesque dominated
convergence theorem that on the left-hand side of (3.24),

(u5)5 Ue



locally in L' as 6 | 0. On the other hand, for the right-hand side, since
(W) = 2) = (e — )] < | (W) — 1] < [Jud] = Jul| < | = ul,

we have (Hom)*((u®)e — &) = (Hom)*(us — ) in D’ (in the distribution sense). This
shows that (3.23) holds for u € L*(R?) with (Ha,m)% € Li_(R?). Next let ¢ |
0. Then w/u. — sgnu a.e. with [u/u.| < 1, so that the left-hand side of (3.23)
converges to Re((sgnu)[Ha,m —m]u) a.e., while the right-hand side of (3.23) converges
to [(Hom)® — m®|u| in D’. Thus we get (3.1), showing the desired inequality for

O<a<l.

(ii) The case where m >0 and a = 1.

Once the inequality (3.1) is established for 0 < o < 1, we let a 1 1, with u €
L2(RY) with Hamu € Ll (RY). Then, as o 1 1, by Lemma 3.2, we have (Ham)%u —
Hypmu in L and also trivially m® — m. The left-hand side of (3.1) converges to
Re((sgnu)[Ham — mlu) in L, while the right-hand side converges to [Ho,, — m]|ul
in distribution sense, so that we have shown the desired inequality (1.3).

(iii) The case where m = 0 and o = 1. This follows from the case (ii) for m > 0,
i.e. by tending m | 0 in the equality (1.3) with m > 0.

To see this, let u € L?(R?) with Hyou € Li_(R?). Then, noting that Hao =
| -1V — A|, we see by the argument done around (2.1) that the domains of the operators
Hym and H 4 coincide.

We also see that Haou € Li (R?) with u € L?(R?) implies H ,u € L _(RY). In

loc
fact, we can show the following fact.

Lemma 3.3. Let u € L?(R?). Then Ha nu € L (RY) if and only if Hagu € L, (RY).
In fact, for ¢ € C§°(R?) it holds that

Y Hamullpr = [0 Hagu] 1] < (J(d)ﬂ”ﬂlltbllL#d2 [l 2 (3.25)

with a constant C'(d) depending only on d.

Proof. We have for ¢ € C3°(R?)

Ham¢ — Hagd = (=V — A)? + mH)Y2¢ — | =iV — Al¢
- 'd
(7 — A2+ om) 2] 7 — /0 ST = A 4 om?) V2] d
2 1
_ ”;/ ((—V — A)2 + m?) "2 do. (3.26)
0

Multiply (3.26) by v € C§°(RY) with () > 0, and integrate the absolute value in z,
then we have

A

m2 1
[ a6~ A0l 1 < T [T = 2 4 6mt) 20, o
2 1
< [+ om?) 2 ao
m2

1
:2/0 [ -2+ 6mt) gl @)des, (327
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where the second inequality is due to Lemma 2.1 (i) with 5 = 2 and p = 1. Note also
that the operator (—A 4 m?)~1/2 in (3.26) has the following positive integral kernel:

2m?=t Kg_1)/2(mlz|)

(A +m?) V2 (z) = (27r)% (mla])d-1/2

m >0, (3.28)

with K, (7) the modified Bessel function of the third kind of order v, which was also
referred to around (2.8)/(2.9). In fact, use the expression (2.9) for the integral kernel

~tHom — o—[~Atm?)1/2

of e and integrate it in ¢ on (0, 00), then we have

(—A+m2)_1/2(x)—/ kOt @) e ™ dt
0

dt.

_ [ @)% tK (g41)/2(m(a® +2)1/?)
—Jo o (22 + t2)(d+1)/4

Change the variables 7 = m(z? + t2)'/2, so that 2tdt = %dT, and use %M =

T TV
— K:ji@, then we see the last member above be equal to

o 4 Kay1))2(T )QTd _ 1 > md+1 d Ka-1,(7)) 21
sy diL KT = — drl Tdr [T] 72d7
mlz| (21) (r/m)z M (2m) "z Jmla| TaTL 17z m
_2mdTt Kgoqya(mlz))
= AT

@)% (mlz))

which yields (3.28).
As it holds that 0 < K, (1) < C[r™* V7~ Y%]e™", 7 > 0 with a constant C' > 0
when v > 0, so does

K (4—1)/2(0"*m|z]) < 1
O2m)z)) T~ (0 Pmlz])@D)”

Then we see from (3.27) by the Hardy—Littlewood Sobolev inequality (e.g. [LLosO01,
Chap.4, Sect. 4.3]), checking p = d+2 satisfies the relation i i d Ly 2 =2,

\\wHAm¢—¢HA 0®|| 1

(0"/2mlz — )
< / avg@v [ [ Ba-nye 0(y)| dady
< ) Rixz ) (@ 2mje — g
d md+1
g”w/ 400D l| oy (102
2 (QW) > Jo L+
— o) —= (%) o 160 2, 191122 (3.29)

with a constant C'(d) > 0 depending on d.

Now, to show the desired inequality (3.25), let v € L?(RY) and assume that either
Hpmu or Hagu in Li (R?), say, for instance, the latter Haou € Li_(R?). There
exists a sequence {¢,,}°° | in C5°(R?) which converges to u in L2 asn — oo. We see by
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(3.29) that {(VHam — VHa0)pn}S2, is a Cauchy sequence in L, so that there exists
v € L'(RY) to which it converges in L':

(YHAm —VHap)pn — v, n — oo.

Since ¥D[Hapo] € D[Hap], we see {tVHaopn} converge to vHaou € LY(R?) in
the weak topology defined by the dual pairing (L'(RY), D[Hao]). So {¢VHambn}
becomes a Cauchy sequence also in this weak topology o(L(R?), D[H¢]), converging
to v—1)H 4 ou, which also belongs to L* (R%). Therefore the existing limit of {1y H Am®n}

should be written as ¥ H 4 ,,u to satisfy
v =YHmu+PHzou.
Thus we have seen (3.29) implies

[ Hamu—pHaoulr < C(d)mQWHLdsz2 [ 2 (3.30)

Hence we have by the triangle inequality ||a| — [b]| < |a— b| we have (3.25). This shows
(3.25) for the general u, ending the proof of Lemma 3.3. O

Now, we come back to the proof of Theorem 1.1 to continue the case (iii) The case
where m =0 and o = 1.

We show that, as m | 0, the left-hand side and the right-hand side of (1.3) with
m > 0 converge to those with m = 0.
As for the left-hand side, the sequence { ||[H 4, —m]ul|?, } of the quadratic forms
is increasing as m decreases and converges to ||[Haoul|2, as m | 0, because
(—iV — A2 (=iV — A)?

o =l = o S Ty - A —m] < Hap=|-iV -4

for m > m/ > 0. This shows the convergence of the left-hand side of (1.3). As for the
right-hand side, it is easy to see that, as m | 0, Hom|u| = (—A + mQ)%\u\ converges
to HJJu| = (—A)%|u] in the distribution sense, because one can show that, for any
Y € C§°(R™), {Hom} converges to Hiw as m | 0, by using their integral operator
representation formula (2.6) with o = 1; in fact, it is due to the convergence of the
Lévy measure n™!(dy) to the Lévy measure n%!(dy) on R%\ {0}, which amounts to the
same thing as, observing (2.9), the convergence of density n™!(y) to density n%!(y).
This shows the case m = 0, completing the proof of Theorem 1.1. O

Remark. From the proof of Theorem 1.1 above, in particular, (i-II), which relies on
Lemma 3.1, we see Theorem 1.1 (Kato’s inequality) also hold for (H4,)%, (Hom)* in
place of H m, Hom with 0 < a < 1, that is, (3.1) hold for 0 < a < 1 if u € L*(R?)
with (Ham)%u € [LL (RY)]9. As a result, Theorem 1.2 (Diamagnetic inequality) also

loc

holds for (Ham)*, (Hom)"

3.2 Proof of Theorem 1.2

This has already been implicitly shown in the proof of Theorem 1.1. In fact, by the
same argument used to get (3.20) from (3.18), (3.19), even for all 0 < a < 1, we have
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for f, g € Cgo(Rd)
((f, e MUHam*=melgy) < gmet / .
< em™t / fua (1], e g)dA
/ fos (], €A g1y

= (|f|, e tHom = g)).

Then this is of course also valid for f, g € L?(R%). O.

)(f.e 5 g)|dA

M\Q

4 Concluding Remarks

In the literature there are three kinds of relativistic Schrédinger operators for a spinless
particle of mass m > 0 corresponding to the classical relativistic Hamitonian symbol
V(€ = A(7))? + m? with magnetic vector potential A(x), depending on how to quantize
this symbol. One of them is of course the one Hy,, in (1.1) treated in this paper,
and the other two are defined as pseudo-differential operators, differing from H 4,
defined as an operator-theoretical square root. In [I12, 113], their common and different
properties were discussed mainly in connection with the corresponding path integral
representations for their semingroups.

The other two relativistic Schrodinger operators are defined by oscillatory integrals,
for f € C°(R?), as

2
N = gt [ [ ey (e a) e s
— i(z—y)- (Ler .
= (271r)d //Rdx]gd =y (E+A( ))\/mf(y)dydﬁ, (4.1)

) 1
V=t [ em‘”f\/ (€= [ A= 0)s -+ 09)ds)” + m f(w)aye
R4 x R4 0
ei(f—y)‘(§+f()l A((1-0)z+6y)do) /€2 + m2 f(y)dydE. (4.2)

R4 xRd

G
20

(4.1) is a Weyl pseudo-differential operator with mid-point prescription given in [ITa86]
(also [I89, [NaU90]) and (4.2) a modification of (4.1) given in [IfMPO07]. Note that these
two HSZTL and Hfzn are denoted in [I12, 113] by slightly different notations H1(41) and
Hj(f), respectively, while our Hy ,, in (1.1) by HS’).

What in this section we should like to call attention to is that Kato’s inequality of
distributional form was missing for Hﬁlgzn or our Hy ,, in (1.1), although there already

exist for the other two ng{an in (4.1), Hfzn in (4.2), indeed it was shown for ngllzn
in [I89, I1Ts92] under some suitable conditions on A(z) (which differ from A € L2 ),
and to be shown in the same way for H1(422n (cf. [I113]). Therefore, at least the case of
Theorem 1.1 with A = 0 turns out to have already been known.

Let us briefly mention here some known facts for nglzn, Hfzn and Hﬁf’)m.
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1°. With suitable reasonable conditions on A(z), they all define selfadjoint op-
erators in L?(R?), which are bounded below. For instance, they become selfadjoint

operators defined as quadratic forms, for Hglgn and H @ ) , when A € L1+5 (R4 RY) for

some & > 0 (cf. [I89, 113, [IPMPO7]), while for Hﬁf’ : when A € I2 (R4RY) (e.g.
[CFKiSi87, pp.8-10] or [I13]).
In fact further, they are bounded below by the same lower bound, in particular,

HY >m, =123

2°. Hf)m and Hf) are covariant under gauge transformation, i.e. it holds for

every ¢ € S(R?) that Hgiv¢ = einglle*w, j = 2,3. However, Hillzn is not.
3°. All these three operators are different in general, but coincide, if A(z) is linear

in z, ie. if A(x) = Az with A : d x d real symmetric constant matrix, then
Hﬁll)m = HI(L‘Q)m = Hfzn So, this holds for uniform magnetic fields with d = 3.

Appendix

The aim is to derive the following expressions for integral kernel kq"“ (¢, ) of semigroup
e~ (Ho.m)*=m] and density function n™® of Lévy measure n™%(dy) for 0 < a < 1,
which are mentioned in the neighbourhood of (2.7), (2.8)/(2.9):

met o) . g L
ko' (t,z) = dd/ e T8 2 s1n(tr2 sin 27r)(mQ 4 r)i(ﬁfl)
m(2m)2|z|271 Jo
x Ky_y((m?+7)2[a])dr (A1)
21+5 gin (%71’) (2m)2 F( +1) m dta Kd+a (m|x|)
n™ = ( T (A.2)
T 2 ||

(A.2) is essentially the same as v in [ByMaRy09, (2.7), p.4877], which is calculated for

t[(—A+ma/2)a/2

the heat semigroup e~ —m] instead of our e~t(Ho.m)*=m] Indeed, putting

™
sin(7z)

n (A2) m= m'= to rewrite it with Euler’s reflection formula Pz -z) =

yields eq. (2.7) in this reference with m replaced by m/'.
To show (A.1) and (A.2), we use another formula (3.18)/(3.19) to express the

semigroup e~ tHom)® = e~t(=A+m*)2 (0 < a < 1) for the fractional power:

@) = [ ([T hgee A s way,

where e t(=2+m%) ig the heat semigroup multiplied by e~™"t:
—t(—A+m?) o 1 m2t_ (&= y)2
( W) = s [ u(y)dy.

The f; 2(s) in (3.19) is rewritten as

1 [ a
fra(s) = / e s 0=t cos 30 gin (srsin ) — tr2 sin SO0+ 0)dr (t>0, s>0),
T Jo
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where the integration path is deformed to the union of two paths re=(—oo < —r < 0)
and re”(0 < r < o), where I < 6 < (see [Y78, IX, 11, pp.259-263]).

Then we take 6 = 7 to have
tr2 sin gm)dr

(7 H0m)" ) (2)
:/Oodsl 1 . —m%—% > —sr—tr%cos%wsin(
0 T (4ms)2 0
o _g_ mPan)a?
gmm + )8t | s
0 52

1

m(4m)

o Y cos & a
/ dre """ 2T sin(trz sin

X Kg_l((m2 + r)%|x]) dr,
2

LW NS

0
o0
y 1/ 7tr%cos%”sin(tr% singﬂ)(mz—i—r)%(g_l)
21 o

m(2m)2
where we have used the representation formula of the modified Bessel function of the

1

)

third kind, K, (z) [GrR94, sect. 8.432. 6, p.969]:
o0 ZQ

K, (z) (;)V/O e"TwtvTlat, v > -3, 2>0.

(t, ) of the semigroup e~{(Ho.m)* = tyrng out

)

It follows that the integral kernel kj"*
kgm’a(t,:c) D= e_t[(HOvm)a_ma}(x)
m>t oo a N
= ‘ R— / —trd cos gm sin(tr?2 sin 9m)(m? + r)%(gfl)
m(2m)2|z|27t Jo
x Ky ((m?+7)2]a])dr.
This shows (A.1).
Next, we have
d
%k(gn’a(t?x)
1 > d a 5 o o
= 4 a1 / dr — [et( —r2cosgm) sin(tr2 sin §n)
(2m)2|z| 2 Jo dt
x(m? 4 )2 6Ky ((m? 4 7)2a)
2
)sin(tr? sin S + 2 sin ST cos(tr? sin gm
a_ 1
VK, (m® + )2 ]al).

o
o3
/ dr [(mo‘ —r2cos§m
0
t(mafr% cos Sm)(, 2
xe 2™ (m* +r)

D=

1
- o \d, d1
2|z| 2

B 7(27)

Then by the fact (2.7), we have, as ¢ | 0,

nmﬂ(tv l’) -t
_> N
dt

_ sin G
(2m) 2] 27!

29

—_ lkgn’a(t, x)
d
ko9 (t, ‘
0 ( x) -0
/Cnmﬁwﬁ@DﬁKdﬂm%wﬁm)
0 2



Here the integral on the last member above is equal to
X 2\ (24-1) 2 2\ 2
/ (m? +72)203 TKaq_(m” +77)2x]) 27dT  (r:=77)
0 2

= 2/ a%fl(QQ_mQ)HTQKgil(a‘.TD %da (a — (m2+7'2)%
m 2 (a2 _mg)i

2 o0 — o
_ / 0T (@ = m2)3 Ky (ala]) (alz]) da.
2

|2 Jm

Then we use the following formula [EMOT54, Chap.X (K-Transforms), 10.2.(13),
p.129]:

o0
/ 227 (2% — ) K, (zy)(zy)2de = 24a” Ty R T (u 4 1)Ky (ay),
a
y>0, p>-—1,

reading with = §, —v = $—1 and with “»” in place of “~v"because K_, () = K, (7).
to finally obtain

m,a Sin%W apy e, (2i)nq

n"™%(x) = —— g a2 m? |z| 7 2 TVT(G + 1) K dsa (m|z])
7(2m)2 |x|2 2

2% sin (§7)(2m)2T(§ + 1), m | d1a Kaga (mial)

da
™ 27 2|

If @ = 1, this expression reduces to

which is nothing but the first formula of (2.9), and we see that n™%(x) tends to n™!(x),
1

as a1 1 because I'( + 1) = 2.

The authors would like to thank an anonymous referee for very careful reading of
the manuscript and valuable comments improving the paper.
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