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ABSTRACT 

Biliary epithelial cells possess an innate immune system consisting of Toll-like receptors 

(TLRs). Although human bile contains LPS in normal as well as diseased livers, 

lipopolysaccharide (LPS) physiologically does not elicit an inflammatory response in the 

biliary tree. This absence of a response to LPS could be due to the "endotoxin tolerance" 

speculated to maintain innate immune homeostasis in organs. Our aim here is to clarify the 

presence and molecular mechanisms of endotoxin tolerance of biliary epithelium. In nuclear 

factor-κB (NF-κB)-DNA binding assays using three cultured human intrahepatic biliary 

epithelial cell (HIBEC) lines, all the cells responded to LPS (TLR4 ligand) by activating 

NF-κB, but pretreatment with LPS for 24h effectively induced tolerance against any 

subsequent stimulation with LPS (endotoxin tolerance). This tolerance was also induced by 

pretreatment with Pam3Cys-Ser-(Lys)4 trihydrochloride (Pam3CKS4, TLR1/2 ligand). Then, 

real-time PCR and Western blotting revealed that LPS- treatment up-regulated the expression 

of IRAK-M (a negative regulator of TLR signaling), but did not affect IL-1 

receptor-associated kinase-1 (IRAK-1, an essential molecule of TLR signaling), in HIBECs. 

Moreover, immunohistochemistry revealed that IRAK-M was diffusely expressed in 

intrahepatic bile ducts. This study showed that the mechanism of endotoxin tolerance exist in 

the intrahepatic biliary tree and possibly is induced by the expression of IRAK-M in 

intrahepatic biliary epithelium, suggesting that the endotoxin tolerance is important in 

maintaining innate immune biliary homeostasis. 

 

Key Words: biliary epithelial cells, endotoxin tolerance, innate immunity, Toll-like receptor, 

IRAK 
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INTRODUCTION 

The intrahepatic biliary tree is anatomically connected to the duodenum. Human bile 

contains microbial products termed pathogen-associated molecular patterns (PAMPs) which 

might be secreted from hepatocytes which take up PAMPs from portal blood inflowing in the 

gastrointestinal tract and infrequently might be derived from the duodenum (1-5). Therefore, 

the luminal surface of the intrahepatic bile duct is continually exposed to PAMPs via bile 

and/or portal blood. We have recently shown that biliary epithelial cells possess essential 

components of the innate immune system including Toll-like receptors (TLRs) which 

recognize PAMPs in normal or diseased livers (5). Physiologically, however, PAMPs do not 

elicit an inflammatory response in biliary lining epithelial cells of intrahepatic bile ducts. This 

failure to respond to PAMPs, especially lipopolysaccharide (LPS), could be due to "endotoxin 

tolerance." This tolerance can be considered a protective mechanism that prevents damage to 

the body by avoiding excessive inflammation, for instance, in sepsis patients and also that 

attenuates the immune response of intestinal epithelium against the resident intestinal 

bacterial flora under physiologic conditions. The phenomenon and molecular mechanisms of 

endotoxin tolerance have been investigated extensively in immunocytes such as 

monocytes/macrophages (6-9) and also in organs such as the intestines which contain 

intestinal bacterial flora (10). However, no such studies have been done in the intrahepatic 

biliary tree.   

TLR interacts with an adaptor protein, myeloid differentiation factor 88 (MyD88), which 

recruits IL-1 receptor-associated kinase (IRAK) (11,12). To date, four different IRAK-like 

molecules have been identified: two active kinases, IRAK-1 and IRAK-4, and two inactive 

kinases, IRAK-2 and IRAK-M. IRAK becomes activated in association with tumor necrosis 

factor (TNF) receptor-associated factor 6 (TRAF6), leading to the activation of several 



                                                           HARADA  - 4 - 

distinct signaling pathways, including nuclear factor-κB (NF-κB) and mitogen activated 

protein kinase (MAPK) (13). Among the four IRAKs, IRAK-M negatively regulates TLR 

signaling by inhibiting the activation of IRAK-1 and MyD88 (14). LPS-tolerant cells exhibit a 

significantly suppressed LPS-induced activation and degradation of IRAK-1 and diminished 

IRAK-1-MyD88 association (15) (Fig.1). In addition, as a negative regulator, Toll-interacting 

protein (Tollip) functions through its ability to potently suppress the activity of IRAK after the 

activation of TLRs (10,16) (Fig.1). These results imply that the induction of tolerance may 

affect the expression and/or functions of intracellular intermediates downstream of TLRs.  

We hypothesized that endotoxin tolerance in the intrahepatic biliary tree is important to 

maintaining innate immune biliary homeostasis and possibly associated with the pathogenesis 

of biliary diseases. In this study, we tried to clarify if and how tolerance is induced by LPS in 

the human intrahepatic biliary epithelium by using cultured biliary epithelial cells and human 

liver tissues. 



                                                           HARADA  - 5 - 

MATERIALS AND METHODS 

PAMPs and Antibodies 

LPS (Ultra pure, purified from E.coli strain 0111:B4, TLR4 ligand) and 

Pam3Cys-Ser-(Lys)4 trihydrochloride (Pam3CSK4, synthetic cationic lipohexapeptide analog, 

TLR1/2 ligand) were purchased from InvivoGen (San Diego, CA, USA). Antibodies specific 

for human TLR4 and IRAK-1 (rabbit IgG, polyclonal, Santa Cruz Biotechnology, Santa Cruz, 

CA, USA), and human IRAK-M (rabbit IgG, polyclonal, Chemicon, Temecula, CA, USA) 

were used for Western blotting and immunohistochemistry. 

Isolation of Biliary Epithelial Cells and Cell Culture 

A fresh liver specimen was mechanically diced and enzymatically digested with 

collagenase, and then biliary epithelial cells were immunomagnetically separated from the 

digested cells using CD326 (EpCAM) MicroBeads (Miltenyi Biotec K.K., Tokyo, Japan) 

(17,18). Three kinds of human intrahepatic biliary epithelial cells (HIBEC1-HIBEC3) were 

used between passages 4 and 6 in this study. These were lines of cultured cells established 

from background liver tissue showing a normal histology remote from metastatic foci in 

surgically resected liver with metastatic tumors. These cells were grown as monolayers in a 

standard medium containing fetal calf serum (Invitrogen, Tokyo, Japan) in a 5% 

CO2-humidified incubator at 37oC. The cell lines had been confirmed to be biliary epithelial 

cells by the expression of a biliary-type cytokeratin (CK19) and a marker of polarity (cystic 

fibrosis transmembrane conductance regulator, CFTR). These cells were stimulated with LPS 

(1μg/mL) for 2h, 3h or 24h at 37°C and then used for the preparation of samples for the 

NF-κB assay, polymerase chain reaction (PCR), and Western blotting, respectively, as shown 

below. 
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Real-time PCR 

 Quantitative PCR was used for the measurements of TNF-α, IRAK-1, IRAK-M, and 

Tollip mRNAs. Total RNA was isolated using the RNeasy Total RNA System (Qiagen, Hilden, 

Germany) following the manufacturer’s instructions. For synthesizing a cDNA template for 

PCR, total RNA was reverse transcribed with an oligo-d(T) primer and reverse transcriptase. 

Real-time PCR was performed for quantitative analyses according to the standard protocol 

using the SYBR Green PCR Master Mix and ABI PRISM 7700 Sequence Detection System 

(Applied Biosystems, Tokyo, Japan). Specific primers for TNF-α, IRAK-1, IRAK-M, and 

glyceraldehyde 3 phosphate dehydrogenase (GAPDH, positive control) were designed to meet 

specific criteria using Primer Express Software (Applied Biosystems). 

Western blotting 

Cultured cells were homogenized in protein extraction reagent (Pierce, Rockford, IL, 

USA) with protease inhibitors and then centrifuged. Supernatants were separated by sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (20μg protein/lane) and 

electrically transferred to a nitrocellulose membrane. The membrane was blocked with 1% 

bovine serum albumin, and then incubated with antibodies specific for human IRAK-1, 

IRAK-M, and TLR4 (0.5μg/ml). Reactive bands were visualized with anti-mouse or 

anti-rabbit immunoglobulin conjugated to a peroxidase-labeled dextran polymer (Envision™, 

Dako, Tokyo, Japan) and a benzidine reaction. 

NF-κB DNA-binding assay 

NF-κB activity was measured based on the DNA-binding capacity of NF-κB using a 

TransAMTM NF-κB Kit (Active Motif, Carlsbad, CA, USA) (5,19). Briefly, nuclear extracts 

(5μg proteins) were incubated in 96-well plates coated with NF-κB consensus double-stranded 
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oligonucleotide (5'-AGTTGAGGGGACTTTCCCAGGC-3') and then with the supplied 

primary anti-NF-κB antibody and subsequently with a secondary peroxidase-conjugated 

antibody. After a colorimetric reaction, the optical density was read at 450nm. Competition 

experiments were conducted with the 22bp double-stranded DNA, either wild-type (see above) 

or mutated: 5'-AGTTGAGCTCACTTTCCCAGGC (with three mutated bases underlined). 

Preparation of human liver tissue and immunohistochemistry 

All tissue specimens were collected from the hepatobiliary file of our department. 

Informed consent to conduct research was obtained from all patients. This study was approved 

by the Kanazawa University Ethics Committee.  

Formalin-fixed specimens: A total of 8 surgical liver specimens were obtained from patients 

with a histologically “normal liver” (mean age 72yr, male/female=5/3). These specimens were 

obtained from non-neoplastic parts of livers surgically resected for a metastatic tumor. All were 

neutral formalin-fixed paraffin-embedded tissues; 4μm-thick sections were prepared for routine 

histologic observation and immunohistochemistry.  

Immunohistochemistry: Deparaffinized sections heat-treated in citrate buffer were incubated 

overnight with antibodies against human IRAK-M (1μg/ml), and then with the ENVISON 

system for 1h. After a benzidine reaction, sections were counterstained with hematoxylin. As a 

negative control, normal rabbit IgG (1μg/ml) was used for the primary antibody; this always 

resulted in negative staining. 

Statistical analysis 

Data were analyzed using the paired t-test and p<0.05 was considered statistically 

significant. 
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RESULTS 

NF-κB activation and TNF-α mRNA production on treatment with LPS and Pam3CSK4

 HIBECs were stimulated with LPS (1μg/ml) and Pam3CSK4 (300ng/ml) and the activation 

of NF-κB and production of TNF-α mRNA were measured by conducting a NF-κB 

DNA-binding assay and quantitative analysis using real-time PCR, respectively. A small 

amount of NF-κB was observed in cells without any stimulation, while significant upregulation 

of NF-κB activity was obtained on stimulation with LPS and Pam3CSK4. As shown in Fig.2, 

LPS and Pam3CSK4 upregulated the NF-κB activity 4.1-fold and 3.2-fold in HIBECs, 

respectively, when compared to untreated cells. In addition, TNF-α mRNA expression in 

HIBECs was also upregulated by LPS and Pam3CSK4, 294-fold and 229-fold, respectively. 

Furthermore, as shown in Fig.3, the TNF-α mRNA expression induced by LPS and Pam3CSK4 

was markedly and gradually reduced on and after 6h. 

Endotoxin Tolerance induced by pretreatment with LPS and Pam3CSK4

We first examined the ability of LPS to induce tolerance to innate immunity. HIBECs were 

pretreated with LPS (1μg/ml) for 24h. Pretreated cells were washed and replaced with new 

standard medium and subjected to another LPS challenge. The NF-κB activity and TNF-α 

mRNA levels were subsequently assayed. Consequently, HIBECs pretreated with LPS 

developed tolerance to a subsequent LPS challenge (homo-tolerance): the degree of 

LPS-induced NF-κB activity was significantly decreased from 4.1-fold (first LPS challenge) to 

1.6-fold (subsequent LPS challenge) and the TNF-α mRNA level was also significantly 

decreased from 294-fold (first LPS challenge) to 6.5-fold (subsequent LPS challenge), 

compared with no stimulants (Fig.2).  

Next, HIBEC cells were pretreated with Pam3CSK4 (300ng/ml) for 24h and subjected to 

another LPS challenge. Pretreatment with Pam3CSK4 also significantly decreased both NF-κB 
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activity (2.8-fold) and the TNF-α mRNA level (11.0-fold) in response to a subsequent LPS 

challenge (cross-tolerance) (Fig.2). 

Expression of IRAK-1, IRAK-M, Tollip, and TLR4 in HIBECs 

 The mRNA expression of negative regulators of TLR intracellular signaling, IRAK-M 

and Tollip, and their changes on the treatment with LPS (1μg/ml) and Pam3CSK4 (300ng/ml), 

were examined. Baseline levels of both IRAK-M and Tollip mRNAs were detected without 

any stimulation by PCR. However, real-time PCR revealed that IRAK-M expression was 

significantly increased by the treatment with LPS and Pam3CSK4 for 3h, but that Tollip 

expression was not affected by any treatment (Fig.4). In addition to the mRNA level, the 

IRAK-M protein level was also examined by Western blot analysis. As shown in Fig.5, a faint 

band corresponding to IRAK-M was observed in unstimulated (non-tolerant) HIBECs and the 

expression of IRAK-M was confirmed to be significantly upregulated in the cells treated with 

LPS or Pam3CSK4 at 24h post-stimulation (LPS-tolerant cells). 

Previous studies reported that IRAK-1 (essential for TLR intracellular signaling) and 

TLR4 (LPS receptor) are down-regulation in LPS-tolerant cells (9,10,20,21). To verify these 

mechanisms of endotoxin tolerance in HIBECs, the expressions of IRAK-1 and TLR4 were 

examined in LPS-tolerant HIBEC cells. As shown in Fig.4 and Fig.5, IRAK-1 mRNA and 

protein were constitutively expressed in unstimulated (non-tolerant) HIBECs and there was no 

significant difference in mRNA and protein levels with and without LPS or Pam3CSK4 

treatments. TLR4 protein was also constitutively expressed in unstimulated (non-tolerant) 

HIBECs, and was not decreased, rather slightly increased in HIBEC1, by neither LPS nor 

Pam3CSK4 treatment (Fig.5).  

Expression of IRAK-M in human intrahepatic bile ducts 
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By immunohistochemistry, IRAK-M was mostly detected in the cytoplasm of biliary 

epithelial cells of the intrahepatic large bile ducts, septal bile ducts, and interlobular bile ducts, 

and also bile ductules (Fig.6) (22). The expression pattern in biliary epithelial cells was 

similar at the different levels of the intrahepatic bile ducts. In addition, IRAK-M was diffusely 

expressed in the cytoplasm of hepatocytes and in the nucleus of several hepatocytes and in the 

cytoplasm of several infiltrating mononuclear cells and endothelial cells. 
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DISCUSSION 

LPS, the major structural component of the outer wall of Gram-negative bacteria, is a 

potent activator of the immune system. The recognition of LPS is predominantly mediated by 

TLR4 (12,23,24), and involves the binding of LPS with a LPS-binding protein which 

physically associates with a complex comprising TLR4 and the TLR4 accessory molecule 

MD2. We have previously demonstrated that biliary epithelial cells express TLR4 and MD2 

(5,25,26). Moreover, under serum-free conditions, LPS-induced NF-κB activation was 

markedly reduced in HIBECs, because serum contains LPS-binding protein, suggesting that 

biliary epithelial cells also require LPS-binding protein for the recognition of LPS through 

TLR4 (26). The activation of TLRs subsequently leads to common downstream signaling 

events, including the activation of MyD88/IRAK kinase, MAPKs and NF-κB, which 

contribute to the production of (pro)inflammatory cytokines and peptide antibiotics. Our 

previous study demonstrated that biliary epithelial cells produce a peptide antibiotic, human 

beta-defensin 2, in response to LPS via the activation of TLR4 and NF-κB (17).  

Large quantities of LPS are known to induce the overproduction of cytokines causing 

septic shock while suboptimal doses could induce tolerance to subsequent exposure to LPS 

(27). This endotoxin tolerance is an important mechanism to maintain the homeostasis of 

intestinal epithelial cells which constitutively face commensal flora (10). Although human 

bile contains LPS in normal as well as diseased livers, biliary epithelial cells are thought to 

possess a similar mechanism of tolerance to that seen in the intestine, because intrahepatic 

biliary epithelium is continually exposed to various PAMPs including LPS in bile (2,3,5), but 

PAMPs do not elicit an inflammatory response in biliary epithelial cells in vivo. In present 

study, we found that pretreatment with LPS for 24h significantly induced tolerance to a 

subsequent challenge as assessed by the activation of NF-κB and production of TNF-α mRNA 
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in HIBECs, demonstrating the presence of endotoxin tolerance in biliary epithelial cells.  

Among all forms of PAMP-induced tolerance, LPS-mediated homo-tolerance has been 

most extensively studied, but molecular mechanisms of TLR4-mediated tolerance have not 

been fully clarified. Recent studies have found that IRAK-M plays a critical negative 

regulatory role in signaling via TLRs in monocytes/macrophages (14). IRAK-M–/– 

macrophages stimulated with LPS displayed increased NF-κB and MAPK activation, 

compared with IRAK-M+/+ macrophages and endotoxin tolerance was significantly attenuated 

in IRAK-M–/– cells (14). It is well established that after the treatment with LPS, the structural 

complex formed by MyD88, IRAK-1, IRAK-4, and TRAF-6 induces a series of 

phosphorylation events that conclude with the activation of two mediators central to the 

immune response, NF-κB and AP-1 (28). It has been suggested that IRAK-M might block the 

aforementioned signaling pathways, especially the signaling between MyD88 and IRAK-1, by 

binding to the complex (14,28). In the present study, we showed that IRAK-M protein was 

faintly detectable in untreated HIBECs and the expression of IRAK-M mRNA and its protein 

was up-regulated in LPS-treated HIBECs, implying that the induction of IRAK-M interferes 

with the association between IRAK-1 and MyD88 and is crucial to LPS-induced endotoxin 

tolerance in biliary epithelial cells. Furthermore, using human liver tissue sections showing 

normal histology, we confirmed that IRAK-M is expressed in vivo. Consequently, IRAK-M 

was constitutively expressed in the cytoplasm of biliary epithelial cells, irrespective of 

intrahepatic biliary levels. This finding suggests that the expression of IRAK-M is associated 

with a decrease or loss of responsiveness to PAMPs in bile and/or portal flow. In addition, 

immunohistochemistry revealed that hepatocytes also constitutively express IRAK-M. 

Hepatocytes physiologically face to PAMPs originated from intestinal bacterial flora via 

portal blood. In this study, we could not confirm the presence of endotoxin tolerance in 
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hepatocytes, but hepatocytes also possess IRAK-M-associated tolerance systems similar to 

those of biliary epithelial cells. 

Induction of endotoxin-tolerance is not specific for the initiating action of LPS, because 

engagement with TLR/IL-1 receptor (IL-1R) family members other than TLR4, also results in 

resistance to a subsequent challenge with the respective ligands (29). We demonstrated that 

pretreatment with Pam3CSK4 (TLR1/2 ligand) for 24h also could effectively induce tolerance 

to further stimulation with LPS (TLR4 ligand). This cross-tolerance against LPS (TLR4 

ligand) by PAMPs recognized by TLR2 such as peptidoglycan and lipoteichoic acid was 

already demonstrated in monocytes and intestinal epithelial cells (9,10,29). The present study 

revealed that Pam3CSK4 as well as LPS could induce IRAK-M expression in HIBECs. This 

finding suggests that endotoxin tolerance caused by an up-regulation of IRAK-M expression 

is also associated with cross-tolerance to LPS induced by Pam3CSK4.  

As other mechanisms of endotoxin tolerance, involvement of the down-regulation of 

TLR4 expression (10,21) and degradation of IRAK-1 has been reported (9,10,20). To test 

these possibilities, we examined the expression of IRAK-1 and TLR4 in LPS-tolerant 

HIBECs. IRAK-1 mRNA expression was not altered in response to LPS or Pam3CSK4 and 

levels of IRAK-1 and TLR4 proteins were well-conserved. This finding suggests that the 

degradation of IRAK-1 and TLR4 protein would be unlikely in LPS-tolerant HIBECs. 

Moreover, Tollip has been reported as a suppressor molecule in TLR intracellular signaling 

(10,16,30). Various intestinal epithelial cells constitutively or inducibly express a large 

amount of Tollip (10,31). The inhibition of TLR signaling by Tollip appears to be mediated 

through an ability to suppress the activity of IRAK after the activation of TLR2 and TLR4. 

Biliary epithelial cells as well as intestinal epithelial cells were also demonstrated to express 

Tollip mRNA in this study. However, a distinct up-regulation of Tollip mRNA expression was 
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not found in response to LPS nor Pam3CSK4 in HIBECs, indicating that Tollip is not 

associated with the molecular mechanism underlying LPS-tolerance in biliary epithelial cells.  

In conclusion, this study demonstrated endotoxin tolerance in the intrahepatic biliary 

epithelium and suggests that the expression of IRAK-M is crucial to LPS-induced tolerance in 

biliary epithelial cells. It is speculated that endotoxin tolerance is important in maintaining 

innate immune biliary homeostasis and also that an impaired tolerance to LPS is associated 

with the pathogenesis of biliary diseases. 
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FIGURE LEGENDS 

 

Fig.1   A schema for signaling pathway consisting of Toll-like receptors (TLRs), their ligands, 

and signaling molecules. IL-1 receptor-associated kinase-M (IRAK-M) and 

Toll-interacting protein (Tollip) act as negative regulators of intracellular signaling 

pathways. LPS, lipopolysaccharide; Pam3CKS4, Pam3Cys-Ser-(Lys)4 

trihydrochloride; MyD88, myeloid differentiation factor 88; TRAF6, tumor necrosis 

factor receptor-associated factor 6; NF-κB, nuclear factor-κB.  
 

Fig.2  NF-κB activation (A) and TNF-α mRNA production (B) induced by treatments with 

LPS and Pam3CSK4  and endotoxin tolerance induced by pretreatment with LPS and 

Pam3CSK4 in HIBECs. A: NF-κB activity levels were measured by NF-κB-DNA 

binding assay and the y-axis shows a relative increase compared with unstimulated 

samples. NF-κB activity in HIBECs was increased 4.1±0.4-fold (mean±S.E.M) by LPS 

(1μg/ml) and 3.2±0.7-fold by Pam3CSK4 (300ng/ml). This DNA-NF-κB binding 

activity was effectively competed for by the wild-type consensus oligonucleotide, but 

not a mutated oligonucleotide (data not shown). Next, HIBECs were pretreated with 

LPS or Pam3CSK4 for 24h and subjected to another LPS challenge. Pretreatment with 

LPS and Pam3CSK4 significantly decreased NF-κB activity 1.6±0.3-fold and 

2.8±0.4-fold, respectively, in response to a subsequent LPS challenge. B: Quantitative 

analysis of TNF-α mRNA production using real-time PCR. The quantification data 

were normalized to the expression of the housekeeping gene GAPDH and the y-axis 

shows an increase in specific mRNA over unstimulated samples. TNF-α mRNA 

expression in HIBECs was upregulated by the treatment with LPS and Pam3CSK4 

294±89-fold and 229±77-fold, respectively, compared with no stimulants. The degree 
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of LPS-induced TNF-α mRNA production was significantly decreased 6.5±3.8-fold 

and 11.0±2.6-fold by the pretreatment with LPS and Pam3CSK4, respectively. Data 

represent the mean±S.E.M from duplicate experiments using HIBEC1-HIBEC3. 

*<0.05. 

 

Fig.3  TNF-α mRNA production induced by treatment with LPS (1μg/ml) or Pam3CSK4 

(300ng/ml) for the period indicated. TNF-α mRNA was measured at 3, 6, 12, and 24h 

after the treatment by using real-time PCR. The quantification data were normalized to 

the expression of the housekeeping gene GAPDH and the y-axis shows an increase in 

specific mRNA over unstimulated samples. The relative increase of TNF-α mRNA 

expression caused by LPS and Pam3CSK4 treatment was 326.2 and 253.2 at 3h, 98.7 

and 21.5 at 6h, 15.7 and 6.5 at 12h, and 1.1 and 1.5 at 24h, respectively. Values are the 

average of data obtained using HIBEC1-HIBEC3. 

 

Fig. 4 Quantitative analysis of the expression of IRAK-1, IRAK-M and Tollip mRNAs 

induced by treatment with LPS and Pam3CSK4 in HIBECs. The data obtained 

real-time PCR were normalized to the expression of the housekeeping gene GAPDH 

and the y-axis shows an increase in specific mRNA over unstimulated samples. 

IRAK-M mRNA expression in HIBECs was upregulated 3.4±0.5-fold (mean±S.E.M) 

and 3.1±0.6-fold by treatment with LPS (1μg/ml) and Pam3CSK4 (300ng/ml) for 3h, 

respectively. The expression levels of IRAK-1 and Tollip mRNAs in HIBECs were not 

affected by any treatment: the relative increase of IRAK-1 mRNA expression was 

1.1±0.2 and 1.0±0.3 and that of Tollip mRNA was 1.1±0.3 and 1.3±0.2 on treatment 

with LPS and Pam3CSK4, respectively. Data represent the mean±S.E.M from duplicate 
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experiments using HIBEC1-HIBEC3. *<0.05. 

 

Fig.5  Western blot analysis of IRAK-1, IRAK-M, and TLR4 protein levels. HIBEC1 and 

HIBEC2 cells were treated with LPS (1μg/ml) or Pam3CSK4 (300ng/ml) or left in 

medium alone for 24h. Total protein was isolated from these cells and the expression 

of IRAK-1, IRAK-M, and TLR4 proteins was analyzed by Western blotting. IRAK-1 

protein was constitutively detected in the cells not treated with stimulant (non), and this 

expression was not affected by any treatment. IRAK-M protein was also detected in the 

cells under normal conditions (non), but its expression was significantly upregulated 

by the treatment with each LPS and Pam3CSK4. TLR4 protein was also constitutively 

expressed in the unstimulated HIBECs and no degradation of TLR4 was found, rather, 

TLR4 levels increased slightly in HIBEC1, on LPS or Pam3CSK4 treatment. 

 

Fig. 6  Immunohistochemistry for IRAK-M (A and C) and a negative control (B and D) using 

human liver sections showing a normal histology. IRAK-M is mostly expressed in the 

cytoplasm of biliary epithelial cells of large bile ducts (A, large arrow) and interlobular 

bile ducts (B, arrow). Hepatocytes also express IRAK-M in their cytoplasm and part of 

the nucleus (C, arrowheads). Moreover, IRAK-M-positive infiltrating mononuclear cells 

(A, arrowheads) and endothelial cells (A, small arrows) are also found. (B) and (D) are 

negative controls using nonimmune rabbit IgG instead of the primary IRAK-M antibody 

in a serial section adjacent to that shown in (A) and (C), respectively. Specific positive 

stainings in (A) and (C) is abolished in (B) and (D). 














