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Abstract 

Lateral hypothalamic neuropeptides, orexins, have been recognized as one of the most 

important regulators of sleep/wakefulness states. Besides, these peptides are also 

regarded as an important factor that regulates feeding behavior, owing to their 

localization within the lateral hypothalamic area, the classic “feeding center”, 

pharmacological activities, and the fact that prepro-orexin mRNA is upregulated when 

animals are fasted. This review summarizes the role of orexins in the regulation of 

feeding behavior and body weight homeostasis in relation to other systems that involve 

orexinergic neurotransmission. 

 
 

Introduction 

Orexins are hypothalamic neuropeptides identified in 19981. Several studies showed 

that orexin deficiency causes narcolepsy in humans and animals, implicating these 

hypothalamic neuropeptides in play a critical role in the regulation of sleep/wakefulness 

states2-6. However, orexins were initially recognized as regulators of feeding behavior, 

firstly because of their exclusive production in the lateral hypothalamic area (LHA), a 

region known as the “feeding center”, and secondly because of their pharmacological 

activity; intracerebroventricular (ICV) injection of orexins induced feeding behavior in 

rats and mice1,7-9.  Recent studies suggested that further orexins play further roles in 

the coordination of emotion, energy homeostasis, reward system, drug addiction, and 

arousal10-17. This review focuses especially on the role of orexins in the regulation of 
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feeding, body weight and energy homeostasis in relation to other systems in which 

orexins are shown to be involved (Fig. 1). 

 

1.Overview of the orexin system 

1-1.Orexins and their structures 

In 1998, we identified novel neuropeptides, orexin A and orexin B, from rat brain 

extracts as two endogenous ligands for two orphan G-protein-coupled receptors by a 

method so-called "reverse pharmacology", which utilized receptor-expressing cell lines 

as the assay system1. Molecular cloning studies showed that both orexin A and orexin B 

are derived from a common precursor peptide, prepro-orexin. An mRNA encoding the 

same precursor peptide was independently identified by de Lecea et al. as a 

hypothalamus-specific transcript18.  de Lecea et al. predicted that the transcript 

encoded a polypeptide precursor that is proteolytically cleaved to produce two 

isopeptides, and named them as hypocretin-1 and hypocretin-2 (corresponding to orexin 

A and orexin B, respectively).   

Orexin A and orexin B constitute a novel distinct peptide family, showing no 

significant homology with any other peptides19.  Structural analysis of purified peptide 

showed that orexin A is a 33-amino-acid peptide with an N-terminal pyroglutamyl 
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residue, two intra-chain disulfide bonds, and C-terminal amidation. This structure is 

completely conserved among mammalian species (human, rat, mouse, cow, sheep, dog 

and pig).  Orexin B is a 28-amino-acid, C-terminally amidated linear peptide. Amino 

acid sequences of various species of orexin B show that there are several inter-species 

differences, although highly conserved. The C-terminal half of orexin B is very similar 

to that of orexin A, whereas the N-terminal half is more variable.  

 

1-2 Transcriptional regulation of orexin 

Prepro-orexin mRNA is highly specifically expressed by a population of neurons which 

are located in and around the LHA1,20. The expression of orexin has been shown to be 

upregulated by fasting1, suggesting that the transcriptional regulatory sytem of orexin 

gene should include the mechanisms that restrict the expression of orexin mRNA in a 

selective population of neurons in the LHA, and that increase its expression during 

fasting. However, very limited information has been available to elucidate these 

mechanisms so far.  

The 3.2-kb 5'-flanking region of the human prepro-orexin gene is sufficient for 

the specific expression in orexin neurons20,21, and thus has been used as a promoter to 

drive specific expression in orexin neurons. We found two phylogenetically conserved 
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regions located 287-bp (orexin regulatory element (OE) 1) and 2.5-kb (OE2) upstream 

of the transcription initiation site in the human prepro-orexin gene. In transgenic mice, 

both OE1 and OE2 are necessary for expressing the human prepro-orexin gene in the 

LHA and for repressing its expression in the medial regions of the hypothalamus. The 

57-bp core region of OE1 is critical for the spatial gene regulatory function of 

prepro-orexin gene in vivo, which contains crucial cis-acting elements regulating 

prepro-orexin gene expression specifically in the LHA20.  

Recently, the forkhead box transcription factor Foxa2, a downstream target of 

insulin signaling, was shown to regulate the expression of orexin22. During fasting, 

Foxa2 binds to orexin promoter to stimulate the expression. In fed and in 

hyperinsulinemic obese mice, insulin signaling leads to nuclear exclusion of Foxa2 and 

reduces expression of orexin. Constitutive activation of Foxa2 in the brain results in 

increased neuronal orexin as well as MCH expressions and increased food consumption, 

energy expenditure and insulin sensitivity. Conditional activation of Foxa2 through the 

T156A mutation also resulted in improved glucose homeostasis, decreased body fat and 

increased lean body mass. These results suggest that Foxa2 acts as a metabolic sensor in 

orexin and MCH neurons to integrate metabolic signals, adaptive behavior and 

physiological responses. 
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1-3.Orexin Receptors 

The actions of orexins are mediated by two G-protein coupled receptors (GPCRs), 

orexin 1 and orexin 2 receptors (OX1R and OX2R, also known as Hcrtr1 and Hcrtr2).  

OX1R has one-order-of-magnitude greater affinity for orexin A over orexin B.  In 

contrast, OX2R binds both ligands with similar affinities1.  OX1R couples to Gq/11 

class of G-protein. Activation of this pathway results in activation of phospholipase C to 

trigger the phosphatidylinositol cascade and influx of extracellular Na+ and Ca2+ 

concentrations, presumably through activation of transient receptor potential (TRP) 

channels leading to depolarization of neurons.  OX2R is shown to couples to both 

Gq/11 or Gi-classes of G-proteins in a neuronal cell line23, although the physiological 

relevance of Gi-mediated pathway downstream of OX2R has not been identified.  

OX1R and OX2R exhibit a partially similar but partially distinct and basically 

complementary distribution, suggesting that these receptors have different physiological 

roles through different neuronal pathways 24.   

 

1-4.Orexin-producing Neurons 
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Orexin neurons, which have been assumed to number around 3,000 in rat brains, or 

70,000 in human brains18,25, are localized exclusively in the hypothalamus, including 

the lateral hypothalamic area (LHA), perifornical area, and posterior hypothalamus (PH) 

18,25,26. Several factors were shown to be colocalized in orexin neurons, including 

dynorphine, neuronal activity regulated rentraxin (NARP), delta-like 1 homolog 

(DLK-1), and neurotensin27. Orexin neurons also express vesicular glutamate 

transporter 2 (vGluT2), suggesting these neurons are also glutamatergic. Glutamatergic 

neurotransmission by orexin neurons was electrophysiologically demonstrated in 

tuberomammillary nucleus (TMN) histaminergic neurons using optogenetic 

stimulation28, although the physiological relevance of the capability of orexin neurons 

to elicit fast glutamatergic neurotransmission on target neurons has remained unknown.  

A number of factors that influence firing rates or membrane potential of orexin 

neurons have been identified (Table 1). Several humoral factors that are implicated in 

energy homeostasis were found to affect the activity of orexin neurons. Cholecystokinin 

(CCK-8S) and a mixture of amino acids were shown to activate orexin neurons29-32, 

whereas glucose, a BRS3 agonist and leptin inhibit them. These observations suggest 

that orexin neurons might be sensing peripheral metabolic states. 
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1-5.Physiological roles of orexins 

Orexins have been recognized as multi-tasking peptides implicated in a variety of 

physiological functions, including the regulations of sleep/wakefulness states, feeding 

behavior, energy homeostasis, reward system, stress response, cognitive functions, 

emotional memory, endocrine function, thermogenesis and the autonomic nervous 

system. Among these, the most significant physiological role of orexins is thought to be 

that in the regulation of sleep/wakefulness states. This role was highlighted by the 

findings that orexin deficiency causes sleep disorder narcolepsy in humans and 

animals2-5,12. Please refer to other reviews on these functions33-35, since this review 

would focus on the role of orexins in the energy homeostasis. 

 

2. Roles of orexin in the regulation of feeding behavior 

This section discusses the role of orexins in the regulation of feeding behavior, which is 

a main focus of this review. 

2-1 Orexin and Feeding Behavior 

The role in the regulation of feeding behavior was the first described physiological 

function of orexins1. We first reported the orexigneic effect of intracerebroventricular 

administration of orexin A and orexin B in rats. This effect was validated by several 
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subsequent studies in several species33. Furthermore, antibody for orexin or an 

antagonist of OX1R was shown to decrease food intake when administered centrally36,37. 

Consistently, orexin deficient mice show significantly decreased food intake19,38. 

One of the proposed functions of the orexin system in the regulation of energy 

homeostasis is to integrate metabolic state in the wakefulness to support feeding 

behavior11,34,35. Our group showed that mice lacking orexin neurons do not show an 

increase in wakefulness or locomotor activity in response to starvation11. This suggests 

that orexin plays an important role in evoking appropriate behavior in response to 

negative energy balance. 

The first paper describing the identification of orexin had already reported that 

prepro-orexin mRNA was upregulated when animals were fasted, suggesting that orexin 

neurons sense animal’s fasting status1. Subsequently, several reports suggested that 

orexin neurons are inhibited by glucose, triglycerides, and amino acids11,32,39-41. 

Furthermore, orexin neurons are inhibited by leptin, while excited by ghrelin11. These 

observations suggest that orexin neurons are sensing these factors to monitor animals’ 

nutritional states, and integrating this information, and evoking necessary level of 

arousal.  

Orexin neurons might also directly affect neuronal circuits within the 
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hypothalamus that are implicated in the regulation of feeding behavior. Orexins were 

shown to inhibit the VMH glucoreceptor neurons, while excite the arcuate nucleus 

(ARC) NPY neurons and the LHA MCH neurons42-44. Furthermore, local application of 

orexin in the PVH, DMH, and LHA was shown to increase food intake45,46. A recent 

study showed that the area postrema and NTS are involved in the orexin mediated 

feeding47. Application of orexin A into the nucleus of accumbens shell was reported to 

increase feeding48. These studies suggest that orexin evokes feeding behavior through 

multiple pathways. 

 Orexin might also play an important role in the hedonic aspect of feeding. 

Orexin was shown to evoke motivation to feeding, especially for palatable food49-51. 

Consistently, OX1R is shown to be involved in the reward regulation by orexin52-54. 

Furthermore, the mu-opioid receptor agonist, DAMGO 

(D-Ala(2)-N-MePhe(4)-Gly-ol(5)-enkephalin) -induced feeding in the NAc shell was 

shown to be dependent on an activation of OX1R55. These observations suggest that 

orexins are involved in the regulation of feeding through multiple pathways. 

 

2-2. Roles of orexin in the regulation of body weight homeostasis 

While orexins play a role in regulating feeding behavior, they are also involved in the 
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regulation of energy expenditure, which affects body weight homeostasis. 

Narcolepsy patients were shown to have increased incidence of obesity despite 

being hypophagic, which is consistent with animal studies that showed orexin 

deficiency results in obesity in mice56. Obesity with BMI value over 30 is twice more 

common in narcolepsy patients than in general population56. Furthermore, narcoleptic 

patients were shown to be more obese than patients with idiopathic hypersomnia, 

suggesting that sleepiness and reduced activity in narcoleptic patients are not sole cause 

for the obesity56. 

Orexins have unique characteristics in feeding and energy expenditure: They 

increase feeding and energy expense simultaneously in response to various inner and 

outer environmental cues. Acute administration of orexin promotes feeding, although 

orexin deficiency in humans and mice is rather associated with obesity6,19,38,57. 

Conversely, transgenic mice with orexin overexpression show resistance to high-fat 

diet-induced obesity and insulin insensitivity58. Genetic study indicated that 

OX2R-mediated signaling predominantly mediates this effect58. Likewise, chronic 

central administration of an OX2R-agonist peptide inhibits diet-induced obesity58. 

Furthermore, orexin overexpression enhances the anorectic-catabolic effects of central 

leptin administration, while obese leptin-deficient mice are completely resistant to the 
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metabolic effects of orexin overexpression or OX2R agonist administration58. These 

observations suggest that enhanced orexin-OX2R signaling confers resistance to 

diet-induced features of the obesity and metabolic syndrome. 

 Orexins also increase insulin sensitivity through OX1R in VMH neurons, and 

enhance feeding-associated glucose utilization in skeletal muscle by increasing the 

activity of the sympathetic nervous system59. These observations suggest that orexins 

are monitoring animals’ nutritional states and appropriately control arousal and 

peripheral metabolism through the regulation of the autonomic nervous system. Orexins 

were also shown to be involved in the diet-induced thermogenic function, which is 

important to resist weight gain when animals are exposed to increased caloric load60.  

 Together, these observations suggest that in a broad sense, orexin neurons are 

involved in sensing the body’s external and internal environments, and regulate feeding 

behavior, vigilance states, and metabolic functions accordingly, which is beneficial for 

survival. 

Conclusion 

Orexins were initially shown to be involved in the regulations of feeding behavior. 

Subsequently, their roles in the regulation of sleep/wakefulness states was highlighted 

by the discovery that orexin-deficiency causes narcoleptic phenotypes in animals and 

humans. Sleep and wakefulness are regulated to occur at appropriate times that are in 
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accordance with animals’ internal and external environments. Avoiding danger and 

finding food, which are life-essential activities that are regulated by emotion, reward 

and energy balance, require vigilance and wakefulness. Orexin neurons receive 

abundant input from the limbic system14,15, which might be important for increasing 

arousal in the emotionally-relevant situations (Fig. 1). Orexin neurons are also 

regulated by peripheral metabolic cues, including ghrelin, leptin and glucose, indicating 

that orexin neurons might provide a link between energy homeostasis and vigilance 

states. Together, these observations suggest that orexin neurons are involved in sensing 

the body’s external and internal environments and regulate states of sleep and 

wakefulness accordingly, which is beneficial for survival. 
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Fig. 1 
Input and output of orexin neurons. Orexin neurons receive input from the limbic 
system, including the amygdala and bed nucleus of stria terminalis. These neurons also 
receive inhibitory projections from the preoptic area, a region which is thought to play 
an important role in sleep regulation. Orexin neurons are also sensing peripheral 
metabolic signals to monitor animal’s energy balance. Orexin neurons send excitatory 
projections to the arousal center in the brain stem. 
 
BF, basal forebrain; Acb, Nucleus accumbens; BST, bed nucleus of the stria terminalis; 
Amyg, amygdala; POA, preoptic area; Arc, arcuate nucleus; VTA, ventral tegmental 
area; DR, dorsal raphe; LDT, laterodorsal tegmental nucleus; LC, locus coeruleus; 
Raphe, raphe nuclei; TMN, tuberomammillary nucleus 
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