Hemodynamic analysis of bladder tumors using T_1-dynamic contrast-enhanced fast spin-echo MRI
ABSTRACT

Objectives: To evaluate the hemodynamics of bladder tumors, we developed a method to calculate change in R_1 value (ΔR_1) from T_1-dynamic contrast-enhanced fast spin-echo magnetic resonance imaging (T_1DCE-FSE-MRI).

Materials and Methods: On a 1.5-T MR system, T_1DCE-FSE-MRI was performed. This study was applied to 12 patients with urinary bladder tumor, i.e. urothelial carcinoma. We compared ΔR_1- and ΔSI-time between a peak in the ΔR_1- and ΔSI-time curve occurred during the first pass within 60 s. Next, we assessed the slope of increase for 180 s after CA injection (Slope$_{0-180}$).

Results: The mean slope of the first pass was significantly higher for bladder tumors on both the ΔR_1- and the ΔSI- time curve compared with normal bladder walls. Moreover, a significant difference was apparent between bladder tumors and normal bladder walls on the mean Slope$_{0-180}$ in the ΔR_1-time curve. However, no significant difference in the mean Slope$_{0-180}$ was observed on the ΔSI-time curve between bladder tumors and normal bladder walls.

Conclusion: T_1DCE-FSE-MRI offers three advantages: quantitative analysis; high-quality (i.e., artifact-free) images; and high temporal resolution even for SE
images. Use of ΔR_1 analysis with T_1DCE-FSE-MRI allows more detailed information on the hemodynamics of bladder tumors to be obtained and assists in differentiation between bladder tumors and the normal bladder wall.

Key Words: dynamic contrast-enhanced MRI (DCE-MRI); bladder tumors; hemodynamics; relaxation rate; fast spin-echo
INTRODUCTION

Cystoscopy has initially been used for the diagnosis of bladder tumors, and biopsy has generally been performed for the localized diagnosis and characterization of tumors. Treatment and prognosis are primarily determined by the invasion depth of tumors and the extent of metastases (i.e., staging) \(^1\). Magnetic resonance imaging (MRI) is used for staging of bladder tumors, with invasion depth the key characteristic used to define disease stage \(^2,3\). To assess the staging of bladder tumors, \(T_2\)-weighted imaging \(^2\), diffusion-weighted (DW) imaging \(^4\), and dynamic contrast-enhanced MRI (DCE-MRI) have been used \(^4\)-\(^8\). In particular, DCE-MRI enables successful separation of bladder tumors from muscle in the early phase. Narumi et al \(^6\) demonstrated that oblique DCE-MRI with the spin-echo (SE) method showed high staging accuracy, particularly in differentiating between superficial tumors and tumors with superficial muscle invasion. Barentsz et al \(^7\) also reported that evaluation of chemotherapy in advanced bladder tumors could be performed using DCE-MRI, it helped detect 13 of 14 responders and eight of eight nonresponders after two chemotherapy cycles.

In DCE-MRI techniques in oncology, acquisition of serial \(T_1\)-weighted images is
widely used, and hemodynamics of the tumor are assessed using the signal intensity (SI) or change in SI (ΔSI). However, the relationship between the SI and the concentration of contrast agent (CA) is not linear\(^9\). To assess the exact hemodynamics of the tumor characterization by means of pharmacokinetics analysis, inversed \(T_1\) (\(R_1\)) values that are linearly proportional to the concentration of CA must be calculated\(^{10}\).

We therefore developed a method to calculate change in \(R_1\) value (\(ΔR_1\)) from the dynamic contrast-enhanced fast spin-echo (FSE) sequence, and used this method to evaluate the hemodynamics of bladder tumors. We describe the basis of this method and its clinical usefulness below.

MATERIALS AND METHODS

Imaging Procedure and Imaging Analysis

On a 1.5-T MRI system (Intera Achieva 1.5-T; Philips Medical Systems, Best, The Netherlands), patients were placed in a supine position with a 5-element phased-array coil (as a receiver) wrapped around the pelvis. To achieve moderate bladder distension, all patients drank 200 mL of water 30 min before MRI.
To calculate the T_1 value of pre-contrast tissue (T_{10}), FSE with spectral presaturation with inversion recovery (SPIR) sequences were performed with two repetition times (TR: $2TR_1=TR_2$, i.e., $TR_1=600$ ms and $TR_2=1200$ ms). The other imaging parameters were 6 ms echo time, 9 echo train length, 192 x 256 matrix, 300 mm field of view, 15 slices, 4 mm slice thickness, and 0.4 mm intersection gap. In addition, pre-saturation slabs parallel to the slices were applied to suppress inflow effects. Data acquisition was combined using a parallel imaging technique and a phase oversampling technique to suppress aliasing artifacts.

Then, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA BMA; Omniscan, Daiichi-Sankyo, Tokyo, Japan) at a dose of 0.1 mmol/kg of body weight was administered intravenously using an MR-compatible power injector (Sonic Shot 50, Nemoto, Tokyo, Japan) at a rate of 2.0 mL/s, followed by bolus injection of 15 mL saline flash. Concurrently, a series of 150 images at 10 time points using FSE with SPIR, that is, identical to the pre-contrast sequence 600 ms TR, was acquired with a temporal resolution of 20 s. The other imaging parameters were set identically at pre-contrast.

We measured SIs (pre-contrast SI: I_{pre}, I_{pre}; post-contrast SI: I_{post}) by drawing
regions of interest (ROI) on the tumor and normal bladder wall in each patient.

We then set the ROI size for a minimum of 10 pixels. T_{10} and post-contrast T_1 ($T_{1\text{post}}$) were calculated using the follow equations 11.

\[
T_{10} = -\frac{TR_1}{\ln\left(\frac{I_{2\text{pre}} - I_{1\text{pre}}}{I_{1\text{pre}}}\right)} \quad [1]
\]

\[
T_{1\text{post}} = -\frac{TR_{\text{post}}}{\ln\left[\frac{-I_{\text{post}}}{I_{\text{pre}}} \cdot \left\{1 - \exp\left(-\frac{TR_{\text{post}}}{T_{10}}\right)\right\}+1\right]} \quad [2]
\]

where TR_{post} is post-contrast TR. Moreover, we calculated ΔR_1 using the following equation:

\[
\Delta R_1 = \frac{1}{T_{1\text{post}}} - \frac{1}{T_{10}} \quad [3]
\]

Then, we compared ΔR_1- and ΔSI-time between a peak in the ΔR_1- and ΔSI-time curve occurred during the first pass within 60 s. Next, we assessed the slope of increase for 180 s after CA injection (Slope$_{0\text{-}180}$).

Study Subjects

We examined 12 patients (nine men, three women; mean age ± standard deviation, 74.5 ± 7 years; range, 61-87 years) with bladder tumors. Table 1 shows patient characteristics. Pathological diagnosis was urothelial carcinoma (i.e., transitional cell carcinoma) in all patients. Histopathological confirmation was obtained in all subjects by transurethral resection and cystectomy. Comparisons between ΔR_1 and
ASI were made using the nonparametric Wilcoxon signed rank test. Statistical analysis was performed using Prism 5 version 5.0b statistical software (GraphPad Software, San Diego, CA). $P < 0.05$ was considered statistically significant. This study was approved by the internal review board of our Hospital. Informed consent was obtained from all patients.

RESULTS

Imaging acquisitions were successfully performed for all patients. Consequently, ΔR_1 were calculated for all case. MR images of two clinical cases are shown in Fig. 1 and Fig. 2.

The mean slope of the first pass was significantly higher for bladder tumors on the ΔR_1-time curve compared with normal bladder walls ($P = 0.0156$; bladder tumor, $0.090 \pm 0.04 \text{ s}^{-2}$; normal bladder wall, $0.015 \pm 0.01 \text{ s}^{-2}$) (Fig. 3a). The mean slope of the first pass was also significantly higher for bladder tumors on the ΔSI-time curve than for normal bladder walls ($P = 0.0223$) (Fig. 3b).

Moreover, a significant difference was apparent between bladder tumors and normal bladder walls on the mean Slope_{0-180} in the ΔR_1-time curve ($P = 0.0313$;
bladder tumor, $0.017 \pm 0.008 \text{s}^{-2}$; normal bladder wall, $0.007 \pm 0.004 \text{s}^{-2}$) (Fig. 4a).

However, no significant difference in the mean Slope$_{0-180}$ was observed on the
ΔSI-time curve between bladder tumors and normal bladder walls ($P = 0.0625$) (Fig. 4b).

DISCUSSION

We developed a method to calculate ΔR_1 from the dynamic contrast-enhanced
FSE sequence, and used this method to evaluate the hemodynamics of bladder
tumors. Figure 5 shows an overview of findings of this study. Changes in ΔR_1-
and ΔSI-time curve of the bladder tumors demonstrated two patterns: one group (n = 7) showed a peak during the first pass, and the other group (n = 5) showed a
rapid increase for 180 s. The significant difference between bladder tumor and
normal bladder wall groups when assessing the mean gradient of the ΔR_1-time
curve exceeded that of the ΔSI-time curve assessment, indicating the utility of ΔR_1
analysis. Relationships between ΔR_1 and CA concentration are linear, which
enables the acquisition of detailed and quantitative hemodynamic information on
bladder tumors.
Some reports have been published showing the high accuracy of staging of bladder tumors with DCE-MRI using SE or FSE methods. Other studies have demonstrated the ability to track responses to chemotherapy with DCE-MRI with the gradient-echo (GRE) method. However, in these techniques, imaging of a slice or a few slices was acquired from within the target of bladder tumor; thus, these methods did not include the whole bladder. Bladder tumors, in general, have a high risk of multiple and/or recurrence. We could obtain satisfactory slices, that is, all bladder images within a thin slice, by using this optimized technique and a temporal resolution of 20 s. Besides, we could obtain high-quality images as conventional clinical SE images in using this method. Therefore, this method may be more useful for assisting in the diagnosis of bladder tumors and for assessing response to therapy, such as chemo-radiotherapy or arterial injection of chemotherapy.

In general, the pulse sequence for DCE-MRI is performed using a GRE sequence, that is, spoiled GRE. Moreover, several methods for T_1 quantification have been described. Particularly, the two-flip-angle spoiled GRE method for the calculation of T_1 is the possibility of obtaining high spatial resolution and large
volume coverage in a relatively short acquisition time. However, it has been reported that various effects may render the method vulnerable to systematic errors and instabilities (e.g., radio frequency [RF] spoiling, the spatial variability of the FA, and a systematic noise bias in the case of low SNR)15. In the pelvic MR imaging, the GRE causes much greater susceptibility artifacts due to the effects of inhomogeneity of the magnetic field (e.g., pericystic bowel gas). The FSE sequence used in this study, which was refocused with a 180\textdegree pulse, leads to absence of influence of inhomogeneity of the magnetic field and thus greatly reduces the susceptibility effect 16,17. Therefore, the main advantage of this method is T_1 quantification with stable spin-echo signal data instead of unstable free induction decay signal data used in GRE.

On the other hand, as a limitation of this method, a high-velocity signal loss effect has been seen using the SE method 18. For this effect, blood signals in the artery or rapid flow structure might not be fully acquired. Therefore, when the artery input function for pharmacokinetic analysis is measured using this method, we must select the best slice section or slice orientation without a high-velocity signal loss effect.
Additionally, we could obtain T_{10} values with this method. Mean values of T_{10} of the bladder tumors and normal bladder walls were 1.295 ± 0.209 s and 0.923 ± 0.242 s ($P = 0.0049$), respectively (Fig. 6). Thus, T_{10} may provide additional information for diagnosis. However, T_{10} values do not provide enough data to make a diagnosis, as is seen with ΔR_1 analysis with hemodynamic evaluation.

CONCLUSIONS

T_1DCE-FSE-MRI offers three advantages: quantitative analysis; high-quality (i.e., artifact-free) images; and high temporal resolution even for SE images. Use of ΔR_1 analysis with T_1DCE-FSE-MRI allows more detailed information on the hemodynamics of bladder tumors to be obtained and assists in differentiation between bladder tumors and the normal bladder wall.

REFERENCES

[9] Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with

Figure Legends
Fig. 1. A 61-year-old male with urothelial carcinoma (Patient No. 3). Transverse FSE T2- (a) and T1- (b) weighted images. c, d: Transverse FSE with SPIR images were performed with two repetition times (TR: 2TR₁=TR₂, i.e., TR₁=600 ms image [c] and TR₂=1200 ms image [d]) to calculate the T_1 value of pre-contrast tissue. e: Transverse dynamic contrast-enhanced FSE with SPIR images of this case. A series at 10 time points using FSE, that is, identical to the pre-contrast sequence 600 ms TR, was acquired with a temporal resolution of 20 s. Images were acquired after intravenous bolus Gd-DTPA injection, from left to right and top to bottom. f: Time-ΔR_1 curve of this case in ROI analysis.

Fig. 2. A 80-year-old male with urothelial carcinoma (Patient No. 11). Transverse FSE T2- (a) and T1- (b) weighted images. c, d: Transverse FSE with SPIR images were performed with two repetition times (TR: 2TR₁=TR₂, i.e., TR₁=600 ms image [c] and TR₂=1200 ms image [d]) to calculate the T_1 value of pre-contrast tissue. e: Transverse dynamic contrast-enhanced FSE with SPIR images of this case. A series at 10 time points using FSE, that is, identical to the pre-contrast sequence 600 ms TR, was acquired with a temporal resolution of 20 s.
Images were acquired after intravenous bolus Gd-DTPA injection, from left to right and top to bottom. **f**: Time-ΔR₁ curve of this case in ROI analysis.

Fig. 3. Boxplots showing relationship between bladder tumors and normal bladder wall in the first pass slope. (a) ΔR₁ analysis. (b) ΔSI analysis. The horizontal line is the median, the ends of the box are the upper and lower quartiles, and the vertical lines are the full range of values in the data, respectively.

Fig. 4. Boxplots showing the relationship between bladder tumors and normal bladder wall in the Slope₀⁻¹₈₀. (a) ΔR₁ analysis. (b) ΔSI analysis. The horizontal line is the median, the ends of the box are the upper and lower quartiles, and the vertical lines are the full range of values in the data, respectively. NS: not significant.

Fig. 5. Overview of this study.

Fig. 6. Boxplots showing relationship between bladder tumors and normal bladder
wall in the T_{10}-derived FSE method. The horizontal line is the median, the ends of the box are the upper and lower quartiles, and the vertical lines are the full range of values in the data, respectively.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
T₁DCE-FSE

- \(\Delta R₁ \)-time curve
- \(\Delta SI \)-time curve

No (n=5)

- 0-180 slope (See Fig. 3)

Tumor vs Normal

\(\Delta R₁ \) analysis: \(P = 0.0313 \)

\(\Delta SI \) analysis: NS

Yes (n=7)

- \(\Delta R₁ \) curve
- \(\Delta SI \) curve

\(\rightarrow \) Tumor in all cases

\(\times \) Tumor: Urinary bladder tumor

Normal: Normal bladder wall

Fig. 5
Fig. 6

![Box plot](image)

P = 0.0049
Table 1 Characteristics of patients

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Sex</th>
<th>Age</th>
<th>WHO Grade</th>
<th>Histopathologic Stage</th>
<th>Means of Histopathologic Staging</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>67</td>
<td>G2 > G1</td>
<td>pT1</td>
<td>TUR-Bt</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>72</td>
<td>G2</td>
<td>≥ pT2a</td>
<td>TUR-Bt</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>61</td>
<td>G3</td>
<td>pT2b</td>
<td>TUR-Bt</td>
</tr>
<tr>
<td>4</td>
<td>Male</td>
<td>70</td>
<td>G2</td>
<td>pT2b</td>
<td>TUR-Bt</td>
</tr>
<tr>
<td>5</td>
<td>Male</td>
<td>72</td>
<td>G2</td>
<td>pT1</td>
<td>TUR-Bt</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>72</td>
<td>G2</td>
<td>pT2b</td>
<td>TUR-Bt</td>
</tr>
<tr>
<td>7</td>
<td>Female</td>
<td>75</td>
<td>G3</td>
<td>pT2a</td>
<td>TUR-Bt</td>
</tr>
<tr>
<td>8</td>
<td>Male</td>
<td>80</td>
<td>G2</td>
<td>pTis</td>
<td>TUR-Bt</td>
</tr>
<tr>
<td>9</td>
<td>Male</td>
<td>85</td>
<td>G2</td>
<td>pT1a</td>
<td>TUR-Bt</td>
</tr>
<tr>
<td>10</td>
<td>Female</td>
<td>87</td>
<td>G2</td>
<td>≥ pT2b</td>
<td>TUR-Bt</td>
</tr>
<tr>
<td>11</td>
<td>Male</td>
<td>80</td>
<td>G3</td>
<td>pT3</td>
<td>Total Cystectomy</td>
</tr>
<tr>
<td>12</td>
<td>Male</td>
<td>73</td>
<td>G2 > G3</td>
<td>pT1</td>
<td>TUR-Bt</td>
</tr>
</tbody>
</table>

WHO, World Health Organization; TUR-Bt, transurethral resection of the bladder tumor