Stereoselective synthesis of trans-3α-aryloctahydroindoles using cyclization of N-vinylic 3α-(methylthio)acetamides

<table>
<thead>
<tr>
<th>著者</th>
<th>岩田美穂, 村上敏一, 内山正彦, 石橋秀行</th>
</tr>
</thead>
<tbody>
<tr>
<td>種類または 分野</td>
<td>Heterocycles</td>
</tr>
<tr>
<td>volume</td>
<td>69</td>
</tr>
<tr>
<td>number</td>
<td>1</td>
</tr>
<tr>
<td>page range</td>
<td>69-72</td>
</tr>
<tr>
<td>year</td>
<td>2006-12-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2297/3864</td>
</tr>
</tbody>
</table>
STEREOSELECTIVE SYNTHESIS OF TRANS-3a-ARYLOCTAHYDROINDOLES USING CYCLIZATION OF N-VINYLIC α-(METHYLTHIO)-ACETAMIDES†

Miho Saito, Jun-ichi Matsuo, Masahiko Uchiyama, and Hiroyuki Ishibashi*

Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan. E-mail: isibasi@p.kanazawa-u.ac.jp

Abstract – Treatment of N-(2-arylcyclohex-1-enyl)-α-(methylthio)acetamide with NCS underwent cyclization to give 3a-arylhexahydroindol-2-one, which was stereoselectively converted into trans-3a-aryloctahydroindole.

Lewis acid promoted inter- and intramolecular carbon-carbon bond forming reactions of α-chlorosulfides with alkenic bonds have emerged as valuable tool in organic synthesis.1 We previously reported that N-vinyl α-chloro-α-(methylthio)acetamide (1) underwent cyclization at 100 °C in the absence of Lewis acid to give product (3) in 30% yield (Scheme 1).2 This cyclization can be explained in terms of a high nucleophilic nature of the C=C bond of enamide and a high electrophilic nature of α-chlorosulfide, giving the acyliminium ion intermediate (2).

Scheme 1

† This paper is dedicated to Prof. Dr. Satoshi Omura (The Kitasato Institute) with respect and admiration on the occasion of his 70th birthday.
We have now found that treatment of N-(2-arylcyclohex-1-enyl)-α-(methylthio)acetamide (6) with NCS at room temperature gives no α-chlorosulfide (8) but affords cyclization product, 3a-aryhexahydroindol-2-one (10) in good yield (Scheme 2). Subsequent reductions of 10 gives no expected mesembrane (16) but affords stereoselectively trans-mesembrane (15). Herein, we report the preliminary result of the works in this area.

Condensation of 2-(3,4-dimethoxyphenyl)cyclohexanone and (R)-1-(1-naphyl)ethylamine followed by acylation of the resulting imine (4) with (methylthio)acetyl chloride (5) at room temperature in the presence of N,N-dimethylaniline and 4-dimethaminopyridine (DMAP) gave α-(methylthio)acetamide (6) having a chiral auxiliary on the nitrogen atom in 45% yield. When compound (6) was treated with N-chlorosuccinimide (NCS) in CCl_4 at room temperature, cyclization occurred smoothly within 30 min to give two diastereoisomeric products (10) in a ratio of 74:26 and in 59% yield: no α-chlorosulfide (8) was obtained. Easy access of 10 from 6 without the formation of α-chlorosulfide can be explained by an attack of an electron rich olefinic bond of enamide (7) on its thionium ion, which is an intermediate for the formation of α-chlorosulfide (8) from 6 and NCS, followed by deprotonation of the resulting iminium ion (9). An alternative mechanism for the formation of 10 may involve an intramolecular S_N2 type nucleophilic substituion of α-chlorosulfide (8).
Desulfurization of compound (10) with Raney Ni gave a 73:27 diastereoisomeric mixture of compound (11) in 94% yield. This result indicated that the chiral induction by a 1-(1-naphtyl)ethyl group on the nitrogen atom was estimated to be 74:26 on the basis of the diastereoisomeric ratio of compound (10).

The catalytic hydrogenation of 11 in the presence of PtO₂ in acetic acid gave two stereoisomers (12a) and (12b) bearing 1-(5,6,7,8-tetrahydro-1-naphtyl)ethyl group on the nitrogen atom in 69 and 13% yields, respectively, together with compound (13) (8%) (Scheme 3). Stereochemistry of the ring junctures of 12a and 12b were found to be trans by transforming 12a into trans-mesembrane (15) (vide infra) (the relative trans-stereochemistry of the ring junctures of 12a and 12b are depicted in Scheme 3).

Reduction of the major stereoisomer (12a) with LiAlH₄ followed by hydrogenolysis of the resulting amine in the presence of Pd(OH)₂/C gave compound (14) in 60% yield from 12a. N-Methylation of amine (14) with HCHO/NaBH₃(CN) gave trans-mesembrane (15) in 88% yield (Scheme 4).

Unfortunately, mesembrane (16) was not obtained by a sequence of reductions of compound (11).
Hydrogenation of 11 to trans-fused compounds (12) was in sharp contrast to that of enamide (17) which gave exclusively cis-fused compound (18) (Scheme 5).5 We assumed that the size of substituents on the nitrogen atom might play an important role in controlling stereochemistry of the products.

Elucidation of the absolute configuration of trans-mesembrane (15) and mechanistic problems for the stereochemistry of the hydrogenation of enamides of the type (11) are currently underway.

REFERENCES AND NOTES