Diels-Alder reaction of eight-membered cyclic siloxydienes

Matsuo Jun-ichi, Sasaki Shun, Hoshikawa Takaya, Ishibashi Hiroyuki

<table>
<thead>
<tr>
<th>著者</th>
<th>森脇淳一、佐々木俊、穂積隆也、石橋寛行</th>
</tr>
</thead>
<tbody>
<tr>
<td>巻</td>
<td>64</td>
</tr>
<tr>
<td>号</td>
<td>49</td>
</tr>
<tr>
<td>発行年</td>
<td>08-12-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2297/12436</td>
</tr>
</tbody>
</table>

Diels-Alder reaction of eight-membered cyclic siloxydienes

Jun-ichi Matsuo,* Shun Sasaki, Takaya Hoshikawa, and Hiroyuki Ishibashi
Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
The Diels-Alder reaction is one of the most powerful methods for constructing a cyclohexene ring in organic synthesis. Although various types of dienes have been developed for the Diels-Alder reaction, eight-membered cyclic dienes have rarely been employed since they are very poor enophiles. For example, it is very difficult to obtain the Diels-Alder adduct between cycloocta-1,3-diene and maleic anhydride. It has also been reported that even tetracyanoethylene (TCNE), which is a much more reactive dienophile than maleic anhydride, reacted with cycloocta-1,3-diene too slowly to determine the reaction rate. We considered that eight-membered siloxydienes would be a more reactive enophile in Diels-Alder reactions than cycloocta-1,3-diene (Figure 1). In order to verify this hypothesis, we prepared eight-membered cyclic siloxydienes, and investigated their reactivities in Diels-Alder reactions with various dienophiles. We report here the results obtained in the preparation and Diels-Alder reactions of 1.

Figure 1. Eight-membered cyclic siloxydiene 1.
Intramolecular 8-endo-dig cyclization of 4 by Schreiber’s procedure (the use of a stoichiometric amount of n-butyllithium in the presence of HMPA) gave 5 in 22–56% yields depending on the reaction scale. That is, the cyclization of 0.16 mmol of 4 gave 5 in 56% yield, whereas the same cyclization of 2.01 mmol of 4 gave 5 in 22% yield. We found that the use of a catalytic amount (0.2 equiv) of n-butyllithium in the presence of HMPA constantly gave the desired eight-membered enone 5 in 52–56% yields along with 3 in 10–22% yields. The suitable concentration of 4 for this cyclization was found to be 0.04 M, and a concentration lower than 0.04 M resulted in increased formation of 3. These results suggest that this cyclization proceeds by the mechanism shown in Scheme 2. Alkoxide 9 generated by the reaction of 4 and a catalytic amount of n-butyllithium is cyclized to 10, and 10 is protonated with unreacted 4 to give the desired product 5 and the intermediate 9. The formation of 10 competes with the formation of 11 having a six-membered ring, and 11 equilibrates with 3 and lithium acetylide. Under the condition of a low concentration of 4 (lower than 0.04 M), it was difficult for intermolecular attack of lithium acetylide to 3 to take place, and 3 was obtained in increased yields.

Direct desulfurization of 5 to 7 by using zinc and ammonium chloride did not proceed. Therefore, the phenylthio group of 5 was removed to afford desulfurized enone 7 by oxidation of 5 with mCPBA, followed by treatment of the resultant sulfoxide 6 with zinc and ammonium chloride. tert-Butyldimethylsilyl (TBS) enol ether 8 was prepared from 7 in 92% yield by using KHMDS and TBSCI at –10 °C.

Similar to the synthesis of 8, eight-membered siloxydiene 16 was prepared from δ-valerolactone (Scheme 3). Bis-α-phenylsulfenylation of δ-valerolactone gave 12 in 81% yield by using 2.1 equivalents of LDA and S-phenyl benzenethiosulfonate. Compound 13, which was obtained by nucleophilic addition of lithium trimethylsilylacetylide followed by desilylation with aqueous ammonium chloride, was cyclized under the above-mentioned conditions of employing 0.2 equivalent of n-butyllithium in the presence of HMPA. The cyclization of 13 proceeded more efficiently than that of 4 and the desired product 14 was obtained in 82% yield. Direct desulfurization of 14 proceeded with zinc and ammonium chloride to give 15 in 55% yield, and eight-membered siloxydiene 16 was obtained by silylation with KHMDS and TBSCI.
2.2. Diels-Alder reaction of eight-membered siloxydiene 8 and 16

The Diels-Alder reaction of 8 with tetracyanoethylene (TCNE)\(^9\) at room temperature gave the corresponding Diels-Alder adduct 17 quantitatively (Scheme 4). The structure of 17 was confirmed by HMBC correlations. It has been reported that \([4 + 2]\) and \([2 + 2]\) cycloaddition competed in the reaction of TCNE and some substituted 1,3-butadienes.\(^9\) However, only \([4 + 2]\) cycloaddition proceeded efficiently in the reaction of 8 and TCNE.

Eight-membered siloxydiene 16 also reacted with TCNE smoothly to afford the corresponding Diels-Alder adduct 18 in 88% yield (Scheme 5).

4-Phenyl-1,2,4-triazoline-3,5-dione (PTAD) 19, which is known to be a better dienophile than TCNE,\(^9\) reacted with 8 in toluene at 0 °C within 10 min. It was found that a major product was formed along with some by-products, and it was difficult to purify the major product without its isomerization on silica gel or neutral alumina. Therefore, the isomerization was led to completion by treating the crude product with silica gel in dichloromethane at room temperature to afford compound 22 in 30% yield (Scheme 6).\(^1\) The structure of 22 was determined by HMBC correlations and NOE experiments. It was thought that the initial major product was Diels-Alder adduct 20, and isomerization to 22 took place via intermediate 21, which was formed by silica gel-catalyzed ring-opening of 20.

Eight-membered siloxydiene 8 did not react with maleic anhydride, \(N\)-phenylmaleimide, \(p\)-quinone, dimethyl acetylenedicarboxylate, and phenyl vinyl sulfone in refluxing toluene. It is considered that highly electrophilic dienophiles such as TCNE and PTAD\(^1\) react with eight-membered siloxydienes by an asynchronous mechanism.\(^1\) On the other hand, less electrophilic dienophiles such as maleic anhydride does not react with eight-membered siloxydienes because the diene moiety of eight-membered 1,3-dienes does not have planarity which is required for a synchronous \([4 + 2]\) cycloaddition mechanism which works for less reactive dienophiles.
3. Conclusion

We established a method for the preparation of eight-membered silyloxydienes 8 and 16 from \(\delta \)-valerolactone, and we found that they were more reactive than cycloocta-1,3-diene for the Diels-Alder reaction with TCNE. It was also found that PTAD reacted with 1,3-diene for the Diels-Alder reaction with TCNE. It was also found that PTAD reacted with 1,3-diene for the Diels-Alder reaction with TCNE. It was also found that PTAD reacted with 1,3-diene for the Diels-Alder reaction with TCNE. It was also found that PTAD reacted with 1,3-diene for the Diels-Alder reaction with TCNE. It was also found that PTAD reacted with 1,3-diene for the Diels-Alder reaction with TCNE.

4. Experimental

4.1. General

All melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. Infrared (IR) spectra were recorded on a Shimadzu FTIR-8100. \(^1\)H NMR spectra were recorded on a JEOL JNM GSX500 (500 MHz) spectrometer; chemical shifts (\(\delta \)) are reported in parts per million relative to tetramethylsilane. Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; sext, sextet; m, multiplet. \(^13\)C NMR spectra were recorded on a JEOL JNM GSX500 (500 MHz) spectrometer with the solvent resonance as the internal standard CDCl\(_3\). High resolution mass spectra (HRMS) were recorded on a JEOL JMS-SX-102A mass spectrometer (EI). Elemental analyses were carried out on a Yanagimoto micro elemental analyzer CHNS. Analytical TLC was performed on Merck precoated TLC plates (silica gel 60 GF254, 0.25 mm). Silica gel column chromatography was carried out on silica gel 60N (Kanto Kagaku Co., Ltd., spherical, neutral, 63–210 \(\mu \)m).

4.2. 2-Methyl-2-phenylsulfanylpentano-5-lactone (3)

To a stirred solution of diisopropylamine (5.93 mL, 42.3 mmol) in dry THF (10 mL) was added n-butyllithium (1.66 M in hexane, 3.22 g, 13.0 mmol) as a pale yellow oil: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 1.39 (s, 3H), 1.49–1.57 (m, 1H), 1.69 (brs, 1H), 1.74–1.84 (m, 2H), 1.96–2.03 (m, 1H), 3.31 (s, 1H), 3.61–3.66 (m, 2H), 7.30–7.32 (m, 2H), 7.36–7.39 (m, 1H), 7.42–7.43 (m, 2H). \(^13\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 19.8, 27.8, 32.3, 60.2, 62.6, 79.8, 79.9, 129.0, 129.6, 129.8, 136.9, 138.0, 184.0; IR (CHCl\(_3\), \(\nu \) cm\(^{-1}\)) 1720, 1269, 1119; Anal. Calcd for C\(_{13}\)H\(_{16}\)O\(_2\)S: N (%) 6.35. Found: C, 64.55, H, 6.31.

4.3. 7-Hydroxy-4-methyl-4-phenylsulfonylhept-1-yn-3-one (4)

(gram-scale preparation of 4) To a stirred solution of trimethylsilylacetylene (3.37 mL, 24.4 mmol) in dry THF (70 mL) was added n-butyllithium (1.66 M in hexane, 14.7 mL, 24.4 mmol) at \(-78^\circ\)C, and the reaction mixture was stirred for 20 min. A solution of 3 (4.51 g, 20.3 mmol) in dry THF (5 mL) was added to the reaction mixture at \(-78^\circ\)C, and the reaction mixture was stirred at room temperature for 20 min, and extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/ethyl acetate = 3 : 1) to afford the corresponding trimethylsilylthioketone (4.76 g, 14.9 mmol, 73%) and 4 (0.79 g, 3.18 mmol, 16%).

To a stirred solution of thus-obtained trimethylsilylthioketone (4.74 g, 14.8 mmol) and methanol (5.98 mL, 148 mmol) in THF (80 mL) was added at \(-20^\circ\)C a solution of TBAF (1 M in THF, 5.91 mL, 5.91 mmol). The reaction mixture was stirred at \(-20^\circ\)C for 15 min and 0 \(^\circ \)C for 15 min. The reaction was quenched by adding a solution of saturated aqueous ammonium chloride solution, and the resulting mixture was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/ethyl acetate = 2 : 1 then 1 : 1) to afford 4 (3.24 g, 13.0 mmol) as a pale yellow oil: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 1.19–1.29 (m, 3H), 1.49–1.57 (m, 1H), 1.69 (brs, 1H), 1.74–1.84 (m, 2H), 1.96–2.03 (m, 1H), 3.31 (s, 1H), 6.13–6.30 (m, 2H), 7.35–7.37 (m, 2H), 7.38–7.39 (m, 1H), 7.42–7.43 (m, 2H). \(^13\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 19.8, 27.8, 32.3, 60.2, 62.6, 79.8, 79.9, 129.0, 129.6, 129.8, 136.9, 138.0, 184.0; HRMS (EI) calcd for C\(_{13}\)H\(_{16}\)O\(_2\); C, 64.83; H, 6.35. Found: C, 64.55, H, 6.31.

(Small scale preparation of 4) To a stirred solution of trimethylsilylacetylene (0.09 mL, 0.65 mmol) in dry THF (2 mL) was added n-butyllithium (1.63 M in hexane, 0.39 mL, 0.64 mmol) at \(-78^\circ\)C, and the reaction mixture was stirred for 20 min. A solution of 3 (119 mg, 0.535 mmol) in dry THF (1 mL) was added to the reaction mixture at \(-78^\circ\)C, and the reaction mixture was stirred at \(-78^\circ\)C for 20 min. A saturated aqueous ammonium chloride solution was added to the reaction mixture, and the same workup
The combined organic extracts were washed with brine, solution, and the mixture was extracted with ethyl acetate. The reaction was quenched with saturated aqueous ammonium chloride solution, and the mixture was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/ethyl acetate = 10:1) to afford 3 (350 mg, 1.57 mmol, 22%) as a pale yellow oil and 5 (996 mg, 4.01 mmol, 56%) as colorless leaflets.

4.5. 8-Methyl-4-oxacyclooct-2-ene-1-one (7)

To a stirred solution of n-butyllithium (1.55 M in hexane, 0.93 mL, 1.44 mmol) in dry THF (150 mL) and HMPA (12.5 mL, 71.8 mmol) was added at –78 °C a solution of 4 (1.79 g, 7.20 mmol) in dry THF (50 mL), and the reaction mixture was stirred at room temperature for 2 h. Then, a solution of freshly distilled 3-valerolactone (1.48 g, 14.8 mmol) in dry THF (7.4 mL) was added at –78 °C a solution of KHMDS (0.5 M in toluene, 2.65 mL, 1.33 mmol) and the mixture was stirred at –78 °C for 15 min. The reaction was quenched with saturated aqueous ammonium chloride solution, and the resulting mixture was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/ethyl acetate = 55:1) to afford 8 (201 mg, 1.33 mmol, 78%) as a pale yellow oil: 1H NMR (500 MHz, CDCl3) δ 1.33 (s, 3H), 1.84–1.96 (m, 2H), 2.07–2.15 (m, 1H), 2.35 (dt, J = 3.9, 13.9 Hz, 1H), 3.64 (dt, J = 2.4, 12.9 Hz, 1H), 4.13 (ddd, J = 1.2, 4.9, 12.7 Hz, 1H), 5.06 (d, J = 8.1 Hz, 1H), 6.61 (d, J = 8.1 Hz, 1H), 7.32–7.43 (m, 5H); 13C NMR (125 MHz, CDCl3) δ 20.3, 26.5, 31.5, 60.3, 67.5, 100.9, 128.7, 129.8, 130.2, 137.4, 151.2, 199.2; IR (CHCl3, cm−1) 1657, 1624; HRMS (EI) calcd for C13H12O2S: 248.0871; found: 248.0872.

4.4. 8-Methyl-5-phenylsulfanyl-4-oxacyclooct-2-en-1-one (5)

To a stirred solution of n-butyllithium (1.55 M in hexane, 0.93 mL, 1.44 mmol) in dry THF (150 mL) and HMPA (12.5 mL, 71.8 mmol) was added at –78 °C a solution of 4 (1.79 g, 7.20 mmol) in dry THF (50 mL), and the reaction mixture was stirred at room temperature for 2 h. The reaction was quenched with saturated aqueous ammonium chloride solution, and the mixture was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/ethyl acetate = 10:1) to afford 3 (350 mg, 1.57 mmol, 22%) as a pale yellow oil and 5 (996 mg, 4.01 mmol, 56%) as colorless leaflets: mp 126.5–127.0 °C (hexane–ethyl acetate); 1H NMR (500 MHz, CDCl3) δ 1.33 (s, 3H), 1.84–1.96 (m, 2H), 2.07–2.15 (m, 1H), 2.35 (dt, J = 3.9, 13.9 Hz, 1H), 3.64 (dt, J = 2.4, 12.9 Hz, 1H), 4.13 (ddd, J = 1.2, 4.9, 12.7 Hz, 1H), 5.06 (d, J = 8.1 Hz, 1H), 6.61 (d, J = 8.1 Hz, 1H), 7.32–7.43 (m, 5H); 13C NMR (125 MHz, CDCl3) δ 20.3, 26.5, 31.5, 60.3, 67.5, 100.9, 128.7, 129.8, 130.2, 137.4, 151.2, 199.2; IR (CHCl3, cm−1) 1657, 1624; HRMS (EI) calcd for C13H12O2S: 248.0871; found: 248.0872.

4.6. 2-(tert-Butyldimethylsiloxy)-1-methyl-5-oxacycloocta-1,3-diene (8)

To a stirred solution of 7 (155 mg, 1.11 mmol) and TBSCI (201 mg, 1.33 mmol) in dry THF (5 mL) was added at –10 °C a solution of KHMsDS (0.5 M in toluene, 2.65 mL, 1.33 mmol) and the mixture was stirred at –10 °C for 15 min. The reaction was quenched with saturated aqueous ammonium chloride solution, and the resulting mixture was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/ethyl acetate = 55:1) to afford 8 (201 mg, 1.33 mmol, 78%) as a pale yellow oil: 1H NMR (500 MHz, CDCl3) δ 1.06 (s, 3H), 0.96 (s, 9H), 1.57 (s, 2H), 2.30 (brs, 2H), 4.20 (brs, 2H), 4.41 (dd, J = 1.2, 8.5 Hz, 1H), 6.08 (d, J = 7.9 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ –3.6, 16.2, 18.2, 22.4, 25.9, 29.3, 66.0, 100.7, 112.2, 142.5, 145.3; IR (CHCl3, cm−1) 1630, 1119; HRMS (EI) calcd for C13H12O2Si: 254.1702; found: 254.1706.

4.7. Bis(2-phenylsulfanyl)pentano-5-lactone (12)

To a stirred solution of diisopropylamine (4.35 mL, 31.0 mmol) in dry THF (74 mL) was added at –78 °C a solution of n-butyllithium (1.59 M in hexane, 19.5 mL, 31.0 mmol) and the reaction mixture was stirred at the same temperature for 15 min. Then, a solution of freshly distilled δ-valerolactone (1.48 g, 14.8 mmol) in dry THF (5 mL) was added at –78 °C and the mixture was stirred at –78 °C for 30 min. A solution of 5-phenyl benzeneithiosulfonate (7.77 g, 31.0 mmol) in dry THF (8 mL) was added at –78 °C and the reaction mixture was stirred at –20 °C for 50 min. The reaction was quenched with saturated aqueous ammonium chloride solution, and the resulting mixture was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/ethyl acetate = 5:1) to afford 12 (4.17 g, 13.2 mmol, 89%) as colorless crystals: mp 126.5–127.0 °C (hexane–ethyl acetate); 1H NMR (500 MHz, CDCl3) δ 1.97 (sext, J = 6.1 Hz, 2H), 2.16 (t, J = 6.4 Hz, 2H), 4.36 (t, J = 6.1 Hz, 2H), 7.36–7.44 (m, 6H), 7.66–7.67 (m, 4H); 13C NMR (125 MHz, CDCl3) δ 20.9, 33.6, 64.5, 69.7, 128.9, 129.9, 130.4, 136.6, 167.0; IR (CHCl3, cm−1) 1278; Anal. Calcd for C19H16O2S2: C, 64.53; H, 5.10; N, 0.00. Found: C, 64.48, H, 5.10, N, 0.00.

4.8. 7-Hydroxy-bis(4-phenylsulfanyl)hept-1-yn-3-one (13)
To a stirred solution of trimethylsilylecylene (1.34 mL, 9.69 mmol) in dry THF (55 mL) was added n-butyllithium (1.66 M in hexane, 6.09 mL, 10.1 mmol) was added at –78 °C, and the mixture was stirred for 15 min. A solution of 12 (2.66 g, 8.42 mmol) in dry THF (5 mL) was then added at –78 °C, and the mixture was stirred at –78 °C for 15 min. Saturated aqueous ammonium chloride solution was then added at –78 °C, and the mixture was stirred at room temperature for 20 min. The resulting mixture was extracted with ethyl acetate, and combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/ethyl acetate = 2:1) to afford purified by column chromatography on silica gel (hexane/ethyl acetate = 2:1) to afford

\[
\delta (\text{hexane/ethyl acetate} = 2:1) \text{ to afford 13 (2.61g, 7.62 mmol) as a white solid: mp 137.0–137.5 °C; IR (CHCl}_3 50.0, 63.0, 74.2, 94.4, 110.3, 110.6, 111.9, 113.1, 159.9; \text{IR (CHCl}_3 3299, 2099, 1669; HRMS (EI) calcd for C}_{19}H_{16}O_2S: 342.07483, found: 342.07371.}
\]

4.9. Bis(8-phenylsulfonyl)-4-oxacyclooct-2-en-1-one (14)

To a stirred solution of n-butyllithium (1.66 M in hexane, 0.99 mL, 1.64 mmol) in dry THF (200 mL) and HMPA (14.3 mL, 82.2 mmol) was added a solution of 13 (2.816 g, 8.22 mmol) in dry THF (6 mL) at –78 °C, and the mixture was stirred at room temperature for 1 h. The reaction was quenched with saturated aqueous ammonium chloride solution, and the mixture was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/ethyl acetate = 10:1) to afford 14 (2.31 g, 6.75 mmol, 92%) as a pale yellow oil: \(\text{mp 159.5–160.0 °C; C NMR (125 MHz, CDCl}_3 \delta 26.2, 28.6, 67.9, 78.3, 99.7, 128.8, 129.4, 131.2, 135.6, 151.8, 193.8; IR (CHCl}_3 3299, 2099, 1669; HRMS (EI) calcd for C}_{19}H_{16}O_2S: 342.07483, found: 342.07371.}

4.10. 4-Oxacyclooct-2-en-1-one (15)

To a stirred solution of 14 (2.10 g, 6.13 mmol) in THF (35 mL) was added activated zinc (9.2 g, 141 mmol) and saturated aqueous ammonium chloride solution (35 mL) at room temperature, and the resulting suspension was stirred at room temperature for 15 min. After filtration through a Celite pad, the filtrate was extracted with diethyl ether. The combined organic extracts were washed with saturated aqueous sodium hydrogen carbonate and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/ether = 5:1 then 1:1) to afford 15 (342 mg, 2.71 mmol, 44%) and a mixture containing a partially reduced compound (868 mg). The mixture containing a partially reduced compound was treated with zinc and ammonium chloride by the same procedure to give 16 (86 mg, 0.68 mmol, 11%) as a pale yellow oil: \(\text{H NMR (500 MHz, CDCl}_3 \delta 1.88–1.99 (m, 4H), 2.53–2.55 (m, 2H), 4.09 (t, J = 5.6 Hz, 2H), 4.92 (d, J = 8.1 Hz, 1H), 6.74 (d, J = 8.1 Hz); }^{13}\text{C NMR (125 MHz, CDCl}_3 \delta 19.0, 30.6, 42.0, 69.3, 104.3, 155.0, 204.0; IR (CHCl}_3, \text{cm}^{-1} 1641, 1617, 1302; \text{HRMS (EI) cld for C}_{20}H_{16}O_2: 328.18250, found: 328.18272.}

4.11. 2-(tert-Butyldimethylsiloxy)-5-oxacycloocta-1,3-diene (16)

To a stirred solution of 15 (59.3 mg, 0.47 mmol) and TBSCl (77.9 mg, 0.517 mmol) in dry THF (2.5 mL) was added a solution of KHMDS (0.5 M in toluene, 1.13 mL, 0.565 mmol) at –10 °C, and the reaction mixture was stirred at the same temperature for 15 min. The reaction was quenched with saturated aqueous ammonium chloride solution, and the mixture was extracted with ether. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (hexane/ether = 50:1) to afford 16 (104 mg, 0.433 mmol, 92%) as a pale yellow oil: \(\text{H NMR (500 MHz, CDCl}_3 \delta 0.16 (s, 6H), 0.94 (s, 9H), 1.52–1.58 (m, 2H), 2.29–2.34 (m, 2H), 4.33 (t, J = 5.4 Hz, 2H), 4.36 (d, J = 8.3 Hz, 1H), 4.70 (t, J = 8.3 Hz, 1H), 6.14 (d, J = 8.3 Hz, 1H); }^{13}\text{C NMR (125 MHz, CDCl}_3 \delta –4.3, 18.1, 22.2, 24.0, 25.7, 66.5, 100.0, 104.9, 146.9, 150.2; IR (CHCl}_3, \text{cm}^{-1} 1635, 1163, 1117; \text{HRMS (EI) cld for C}_{13}H_{16}O_2Si: 240.15456, found: 240.15388.}

4.12. 7-tert-Butyldimethylsiloxy-9,9,10,10-tetracyano-6-methyl-2-oxabicyclo[4.2.2]dec-7-ene (17)

A solution of TCNE (13.8 mg, 0.108 mmol) in toluene (1 mL) was added a solution of 16 (7.6 mg, 34.2 μmol) at room temperature, and the resulting yellow solution was stirred at room temperature for 30 min. After evaporation of the solvent, the crude product was purified by column chromatography on silica gel (hexane/ethyl acetate = 30:1 then 5:1) to afford 17 (26.5 mg, 69.3 μmol, quant) as a white solid: mp 137.0–137.5 °C; \(\text{H NMR (500 MHz, CDCl}_3 \delta 0.30 (s, 3H), 0.33 (s, 3H), 0.99 (s, 9H), 1.65 (s, 3H), 1.70–1.78 (m, 1H), 1.93–2.13 (m, 3H), 3.65–3.69 (m, 1H), 3.94 (dd, J = 6.1, 12.8 Hz, 1H), 4.96 (d, J = 7.3 Hz, 1H), 5.20 (d, J = 7.9 Hz, 1H); }^{13}\text{C NMR (125 MHz, CDCl}_3 \delta –4.8, –4.8, 18.2, 25.4, 26.9, 27.3, 31.9, 36.1, 46.9, 47.2, 50.0, 63.0, 74.2, 94.4, 110.3, 110.6, 111.9, 113.1, 159.9; IR (CHCl}_3, \text{cm}^{-1} 2253, 1649; \text{HRMS (EI) cld for C}_{20}H_{16}O_2N_2Si (m/z) 382.18250, found: 382.18272.}

4.13. 7-tert-Butyldimethylsiloxy-9,9,10,10-tetracyano-2-oxabicyclo[4.2.2]dec-7-ene (18)
To the stirred solution of 16 (20.8 mg, 86.5 μmol) in toluene (2 mL) was added tetracyanoethylene (16.7 mg, 0.13 mmol) at room temperature, and the mixture was stirred at room temperature for 15 min. After the solvent was evaporated, the crude product was purified by column chromatography on silica gel (hexane/ethyl acetate = 5 : 1) to afford 18 (28.2 mg, 76.5 μmol, 88%) as a white solid: mp 107.5–108.0 °C; 1H NMR (500 MHz, CDCl3) δ 0.30 (s, 3H), 1.32 (s, 3H), 0.97 (s, 9H), 1.81–1.89 (m, 1H), 1.98–2.03 (m, 2H), 2.31–2.36 (m, 1H), 3.29 (dd, J = 2.4, 5.9 Hz, 1H); 3.67–3.72 (m, 1H), 3.92 (dt, J = 2.03, 8.0 Hz, 2H), 2.31–2.36 (m, 1H), 3.29 (dd, J = 3.9, 13.4 Hz, 1H), 5.03 (d, J = 7.8 Hz, 1H), 5.21 (d, J = 7.6 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ −4.7, −4.7, 17.9, 25.9, 28.1, 60.8, 62.8, 94.0, 107.7, 117.8, 125.8, 128.3, 129.1, 130.9, 145.6, 149.8; IR (CHCl3, cm−1) 2253, 1661, 1256; HRMS (EI) calcd for C33H30N2O5Si (m/z) 687.18685, found 687.18570.

References

11. It was difficult to determine the yield of 20 because of its lability.

