
π-π Stacking assisted binding of aromatic amino
acids by copper(ii)-aromatic diimine complexes.
Effects of ring substituents on ternary complex
stability

言語: eng

出版者: 

公開日: 2017-10-04

キーワード (Ja): 

キーワード (En): 

作成者: 

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/2297/11561URL



  1

π-π Stacking assisted binding of aromatic amino acids by 
copper(II)–aromatic diimine complexes.  Effects of ring substituents 
on ternary complex stability 
 

Tatsuo Yajima,a Reiko Takamido,b Yuichi Shimazaki,c Akira Odani,d Yasuo Nakabayashia 

and Osamu Yamauchi*a 
 

a Unit of Chemistry, Faculty of Engineering, Kansai University, Suita, Osaka 564-8680, Japan.  

E-mail: osamuy@ipcku.kansai-u.ac.jp 
b Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, 

Japan 
c Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 812-8581, Japan 
d Research Center for Materials Science, Nagoya University, Nagoya 464-8602, Japan 

 

Received 

 

 

 

 

 

 

------------------------------------------------------------------------------------------------- 

This paper is dedicated to Professor Dr. Bernhard Lippert of University of Dortmund on the 

occasion of his 60th birthday, with the very best wishes for his health and future activities. 

------------------------------------------------------------------------------------------------- 



  2

Ternary Cu(II) complexes containing an aromatic diimine (DA = di(2-pyridylmethyl)amine (dpa), 

4,4’-disubstituted 2,2’-bipyridine (Y2bpy; Y = H (bpy), Me, Cl, N(Et)2, CONH2, or COOEt), or 

2,2’-bipyrimidine) and an aromatic amino acid (AA = p-substituted L-phenylalanine (Xphe; X = H 

(phe), NH2, NO2, F, Cl, or Br), L-tyrosine, L-tryptophan (trp), or L-alanine) were studied by X-ray 

diffraction, spectroscopic, and potentiometric measurements.  The structures of  

[Cu(dpa)(trp)]ClO4•2H2O and [Cu((CONH2)2bpy)(phe)]ClO4•H2O in the solid state were revealed 

to have intramolecular π-π interactions between the Cu(II)-coordinated aromatic ring moiety, 

Cu(DA) (Mπ), and the side chain aromatic ring of AA (Lπ).  The intensities of Mπ–Lπ 

interactions were evaluated by the stability constants of the ternary Cu(II) complexes determined 

by pH titrations at 25 °C and I = 0.1 M (KNO3), which revealed that the stability enhancement of 

the Cu(DA)(AA) systems due to the interactions is in the order (CONH2)2bpy < bpy < Me2bpy < 

(Et2N)2bpy with respect to DA.  The results indicate that the π-electron density of coordinated 

aromatic diimines influences the intensities of the stacking interactions in the Cu(DA)(AA) 

systems.  The Mπ–Lπ interactions are also influenced by the substituents, X, of Lπ and are in 

linear relationship with their Hammett σp values with the exception of X = Cl and Br.   

 

Keywords: Copper(II) complexes; π-π stacking; Stability constants; Substituted bipyridines; 

Aromatic amino acids 
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Introduction 

 

Noncovalent or weak interactions involving aromatic rings attract much attention for their 

importance in molecular recognition, stabilization of protein structures, and supramolecular 

architecture in chemistry and biology.1-4  Studies on benzene and porphyrin dimers showed that 

the edge-to-face and offset face-to-face interactions between the aromatic molecules are more 

effective than the face-to-face interactions,5,6 and a survey of protein structures revealed that the 

former type of interactions are most common for phenylalanine residues.3  Cozzi and Siegel 

reported that the intensities of face-to-face interactions are influenced by ring substituents; 

electron-withdrawing groups strengthen the interactions while electron-donating groups weaken 

them.7  On the other hand, cation-π interactions have been revealed for various systems including 

proteins, where the cationic groups of amino acid side chains such as guanidinium and ammonium 

groups were found to be located close to the aromatic rings of aromatic amino acid residues.8  

Both gas-phase experiments and theoretical calculations indicated that alkali metal ions bind 

strongly to aromatic rings in the gas phase.8,9 

Metalation of porphyrin is known to enhance the π-π interaction between two porphyrin 

molecules due to intramolecular polarization of the metal ion and the porphyrin.5,10  We have 

been studying aromatic ring stacking interactions in ternary Cu(II) and Pd(II) complexes, 

[M(DA)(AA)] (M = Cu(II) or Pd(II); DA = aromatic diimines such as 1,10-phenanthroline (phen); 

AA = aromatic amino acids such as L-tyrosine (tyr)); we found that metal-coordinated DA 

effectively stacks with the side chain aromatic ring of coordinated AA11 and that the ring 

substituent in the interacting ring of AA has influence on the stacking.11,12  While 2N1O-donor 

tripod-like ligands containing one pyridine and one phenol ring and a pendent indole ring were 

found to undergo only weak intramolecular indole-pyridine interactions in CH3CN, their Pd(II) 

complexes exhibited much stronger interactions as evidenced by the 1H NMR upfield shifts due to 

the ring current effect and the methylene proton signals showing a fixed side chain 

conformation.13  The adduct formation between planar Pt(II) complexes, Pt(DA)(L’) (L’ = 



  4

ethylenediamine or amino acids), and mononucleotides was revealed to be enthalpically driven 

mainly through stacking interactions by the relevant thermodynamic parameters14 and decrease 

the electron density of the Pt(II) center as seen from and the downfield shift of the 195Pt NMR 

signal.15  The adduct stability sequence due to DA, 3,4,7,8-tetramethyl-1,10-phenanthroline > 

1,10-phenanthroline ≈ 5-nitro-1,10-phenanthroline, reflected the effects of the DA substituents on 

stacking.  In this connection, Kohzuma et al. reported that the Cu center of the plastocyanin from 

a fern Dryopteris crassirhzoma has a phenylalanyl residue stacked with a coordinated histidine 

(His90) and, probably as a result of this, exhibits a higher redox potential than that of higher plant 

plastocyanins.16 

These observations suggested that factors, such as the substituents on DA and AA and 

the electron density difference between them, may affect the interactions involving aromatic rings.  

In order to obtain further information on the stabilization and reactivity of metal complexes due to 

aromatic rings, we now carried out synthetic, spectroscopic, X-ray crystallographic, and 

potentiometric studies on the ternary Cu(II) complexes containing DA with various substituents 

and aromatic amino acids AA.   

 

Experimental 

 
Materials 

 

Di(2-pyridyl)amine (dpa) and 2,2'-bipyrimidine (bpm) were purchased from Tokyo Kasei and  

Lancaster, respectively.  The reagents used for preparation of the derivatives of 2,2'-bipyridine 

(bpy) were purchased from Nacalai Tesque, Tokyo Kasei, and Kanto Chemicals.  L-Tryptophan 

(trp), tyr, L-phenylalanine (phe), and p-substituted derivatives of phe (Xphe: L-nitrophenylalanine, 

NO2phe; L-aminophenylalanine, NH2phe; DL-fluorophenylalanine, Fphe; DL-chlorophenylalanine, 

Clphe; DL-bromophenylalanine, Brphe) were obtained from Nacalai Tesque. 
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Preparation of ligands 
 

4,4'-Dimethyl-2,2'-bipyridine (Me2bpy), 4,4'-bis(diethylamino)-2,2'-bipyridine ((NEt2)2bpy), 

diethyl 2,2'-bipyridine-4,4'-dicarboxylate ((COOEt)2bpy), 4,4'-dichloro-2,2'-bipyridine (Cl2bpy), 

4,4'-dicarbamoyl-2,2'-bipyridine ((CONH2)2bpy) were prepared according to the literature.17 

 

Synthesis of Cu(II) complexes 

 

Cu(dpa)Cl2.18  CuCl2 (0.13 g, 1.0 mmol) in methanol (10 ml) and dpa (0.17 g, 1.0 mmol) in 

methanol (10 ml) were mixed, and the mixture was kept standing overnight.  Green crystals 

which separated were collected and dried.  Yield, 0.24 g (79 %).  Anal. Found: C, 39.45; H, 

2.99; N, 13.73.  Calc. for C10H9N3Cl2Cu: C, 39.29; H, 2.97; N, 13.74%.   

 

Cu(bpm)(NO3)2•H2O.19  bpm (0.16 g, 1.0 mmol) dissolved in methanol (10 ml) was added to 

Cu(NO3)2•3H2O (0.24 g, 1.0 mmol) in H2O (10 ml).  The resulting solution was concentrated 

under deduced pressure and kept overnight.  Light-blue crystals which separated from the 

solution were collected and dried in the air.  Yield, 0.30 g (87 %).  Anal. Found: C, 26.33; H, 

2.15; N, 23.06.  Calcd. for C8H8N6O7Cu: C, 26.42; H, 2.22; N, 23.11%. 

Cu(Me2bpy)(NO3)2, Cu((NEt2)2bpy)(NO3)2, Cu((COOEt)2bpy)(NO3)2•H2O, and 

Cu(Cl2bpy)(NO3)2 were prepared in a similar manner. 

 

Cu(Me2bpy)(NO3)2.  Blue crystals.  Yield, 0.29 g (78 %).  Anal. Found: C, 38.75; H, 2.84; N, 

14.90.  Calcd. for C12H12N4O6Cu: C, 38.77; H, 3.25; N, 15.07%.   

 

Cu((NEt2)2bpy)(NO3)2.  Greenish-blue crystals.  Yield, 0.35 g (72 %).  Anal. Found: C, 44.39; 

H, 5.52; N, 17.35. Calcd. for C18H26N6O6Cu: C, 44.49; H, 5.39; N, 17.29%.   
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Cu((COOEt)2bpy)(NO3)2•H2O.  Light-blue crystals.  Yield, 0.39 g (77 %).  Anal. Found: C, 

38.10; H, 3.47; N, 11.12. Calcd. for C16H18N4O11Cu: C, 37.99; H, 3.59; N, 11.08%.   

 

Cu(Cl2bpy)(NO3)2.  Blue crystals.  Yield, 0.33 g (80 %).  Anal. Found: C, 29.03; H, 2.05; N, 

13.48.  Calcd. for C10H8N4O6Cl2Cu: C, 28.97; H, 1.94; N, 13.51%.   

 

[Cu(dpa)(trp)]ClO4•2H2O (1).  Cu(ClO4)2･6H2O (0.37 g, 1 mmol) and dpa (0.17 g, 1.0 mmol) 

dissolved in methanol (20 ml) were mixed with trp (0.20 g, 1.0 mmol) dissolved in 1 M aq KOH 

(1 ml).  The resulting solution was concentrated under deduced pressure and kept standing for a 

few days.  Green crystals which separated were collected and dried.  Yield: 0.18 g (31 %).  

Anal. Found: C, 44.29; H, 3.96; N, 11.84.  Calcd. for C21H24N5O8ClCu: C, 43.99; H, 4.22; N, 

12.20%.   

 

[Cu((CONH2)2bpy)(phe)]ClO4•H2O (2).  This complex was prepared in a manner similar to the 

above as blue crystals.  Yield: 0.11g (19 %).  Anal. Found: C, 42.88; H, 3.50; N, 11.85.  Calcd. 

for C21H22N5O9ClCu: C, 42.94; H, 3.77; N, 11.92%.   

 

Spectral measurements 
 

Absorption spectra were measured at room temperature with a Shimadzu UV-3101PC recording 

spectrophotometer.  All the samples were prepared as 1 mM aqueous solutions by dissolving 

binary Cu(DA) complexes and AA, and pH values were adjusted to 6-8 by aq NaOH. 

 

X-ray structure determinations 
 

The X-ray experiment for complex 2 was carried out on a Rigaku AFC–5R four-circle automated 

diffractometer with graphite monochromated Cu Kα radiation (λ = 1.54178 Å) and a rotating 
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anode generator.  The crystal was mounted on a glass fiber.  The cell constants were obtained 

by least-squares refinement using 25 carefully centered reflections with appropriate intensities.  

The data were collected by the ω-2θ scan method.  Reflection intensities were monitored by 

three standard reflections at every 150 measurements, and the decays of the intensities for all the 

crystals were within 2 %.  Refraction data were corrected for both Lorentz and polarization 

effects, and empirical absorption corrections were applied by using the DIFABS program.20 

The experiments for complexes 1 was carried out on a Rigaku Mercury CCD system 

with graphite monochromated Mo Kα radiation (λ = 0.71070 Å).  The crystal was mounted on a 

glass fiber.  For determination of the cell constant and orientation matrix, 6 oscillation 

photographs were taken for each frame with the oscillation angle of 0.5 ˚ and the exposure time of 

10 sec.  Intensity data were collected by taking oscillation photographs, and  the refraction data 

were corrected for Lorentz and polarization effects. 

Crystal data and experimental details of the data collection for all the complexes 

analyzed are summarized in Table 1.  The structures were solved by the direct method and 

expanded by Fourier techniques using the DIRDIF-99 program.21  The non-hydrogen atoms were 

refined anisotropically by full-matrix least-squares calculations.  Atomic scattering factors and 

anomalous dispersion terms were taken from the literature.22  Hydrogen atoms for all the 

structures were located at the calculated positions with d(C–H) = 0.95 Å and were not refined.  

All the calculations were performed by using TEXSAN program package.23 

CCDC reference numbers 611926 and 611927.   

See http://www.rsc.org/suppdata/dt/xxxx for crystallographic data in CIF or other 

electronic format. 

 

pH titrations 

 

pH titrations were carried out at 25±0.05 ˚C and I = 0.1 M (KNO3) under a nitrogen atmosphere 

according to the procedure reported earlier.24  pH values were measured with a Fisher-Scientific 
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Accumet model 15 pH meter equipped with a Beckman 39321 glass electrode and a Beckman 

39419 double junction reference electrode.  The NIST standard buffers (4.008, 7.413, 9.180 at 25 

˚C) were used for calibration of the pH meter.  For determination of the acid dissociation 

constants of dpa, Me2bpy, and (NEt2)2bpy, their solutions (ca. 1.25 mM) containing an excessive 

amount of HNO3 were titrated with standard 0.1 M KOH.  Titrations of the binary Cu(II)–dpa, 

Cu(II)–Me2bpy, and Cu(II)–(NEt2)2bpy systems were carried out in a similar manner for solutions 

with the Cu(II):ligand ratios of 1:1 and 1:2 and the Cu(II) concentration of 0.2–1.5 mM.  Due to 

precipitation occurring in the 1:1 Cu(II)–(NEt2)2bpy system at high pH, only the data taken at low 

pH were used for calculations.  Titrations of the ternary systems with DA = dpa, Me2bpy, or 

(NEt2)2bpy were performed for solutions of 1:1:1 Cu(II)–DA–AA with the Cu(II) concentration of 

0.2–1.5 mM.  All the systems were titrated 3–8 times for reproducibility.  The stability 

constants βpqrs defined by eqn. (1) (charges are omitted for clarity) were calculated from the 

titration data by the least-squares treatment using SUPERQUAD:25 

pCu + qDA + rAA + sH                              Cup(DA)q(AA)rHs

βpqrs

 

βpqrs =
[Cup (DA)q (AA)r Hs ]

[Cu]p[DA]q [AA]r[H]s (1)
 

where DA, AA, and H refer to free DA, free AA, and proton, respectively.  Conversion of pH 

meter readings to hydrogen ion concentrations was made by the conversion factor f = 10-pH/[H+] = 

0.855, and pKw' = 13.96.26  For systems involving bpm, (COOEt)2bpy, and Cl2bpy, the stability 

constants, Kqrs, defined by eqn. 2 were calculated on the assumption that Cu(II)–DA does not 

dissociate in the pH range considered: 

pCu(DA) + rAA + sH                              {Cu(DA)}p(AA)rHs

Kprs

 
 K prs = 

[{ Cu(DA)} p (AA) r H s ] 
[Cu(DA)] p [AA] r [H] s 

( 2 )  
 
 
Results and discussion 
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Absorption spectra of ternary systems in the near UV region 

 

Absorption spectra of Cu–Me2bpy–AA in the region 280-400 nm are depicted in Fig. 1.  The 

spectra of Cu–DA–AA containing aromatic amino acids except NO2phe, which has a strong 

absorption caused by the electronic transition within the nitrophenyl ring at ~300 nm, exhibited an 

increase of absorption at >320 nm.  The spectral changes are seen from the difference between 

the spectra for the ternary systems and those calculated from the spectra for Cu–DA–ala (ala = 

L-alanine) and AA (Fig. 2).  The difference spectra for Cu–Cl2bpy–AA and Cu–Me2bpy–AA 

containing aromatic amino acids show an absorption decrease at ~300 nm and an increase at 

310-380 nm, which is especially evident for AA = trp, tyr, and NH2phe.  The absorption for the 

Cu–(NEt2)2bpy–AA systems decreased at 310-350 nm and increased at 360-400 nm, and the 

largest changes were observed for AA = NO2phe, suggesting that the electron density difference 

between the aromatic rings of DA and AA affects the spectral behavior and that these spectral 

changes are caused by intramolecular π-π interactions between them.12,27 

 

Structures of ternary complexes 
 

The molecular structures of [Cu(dpa)(trp)]ClO4•2H2O (1) and [Cu((CONH2)2bpy)(phe)]ClO4•H2O 

(2) in the solid state are shown in Figs. 3 and 4, respectively, and the bond lengths and angles 

around Cu(II) and interatomic distances between the Cu–DA moiety and the side chain aromatic 

ring of AA are summarized in Tables 2 and 3, respectively.  Each complex has a Cu(II) ion in a 

distorted square-planar or a square-pyramidal geometry formed by two aromatic nitrogens of DA 

and an aliphatic nitrogen and a carboxylate oxygen of AA.  Complex 1 (Fig. 3) has the indole 

ring of trp located close above the Cu–dpa coordination plane (Cu–C(15) = 3.06, C(5)–C(21) = 

3.29, and N(1)–C(21) = 3.40 Å) (Table 2), indicating that the indole ring interacts mainly with the 

Cu(II) ion and the pyridine ring trans to the amino group with the angle of 18.6˚.  A similar close 

contact was disclosed for 2 (Fig. 4) between the aromatic ring of AA and the Cu(DA) moiety with 
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the closest Cu(II)–C distance of 3.17 Å and the N–C and C–C distances of 3.24-3.43 Å as shown 

in Table 3.  All the C(II)–ligand bond lengths are comparable with our previous observations on 

analogous ternary Cu(bpy)(AA) complexes.12a,27,28  The structures show a strong distortion of the 

Cu(II) coordination plane, reflecting the aromatic-aromatic and probably Cu(II)–aromatic 

interactions.  Similar observations have been made for ternary Cu(II) complexes with stacking,11 

and all these observations suggest that there exist bonding interactions between them.  Whereas 

the coordinated bpy derivatives are nearly planar in 2 and 3, the pyridine rings of dpa are not 

coplanar with the Cu(II) coordination plane, and this may affect the stacking ability of dpa and 

thus the stability of complexes. 

 
Affinity of Cu(DA) for aromatic amino acids 

 

The stability constants, log βpqrs, for Cup(DA)q(AA)rHs and the log Kprs values for 

{Cu(DA)}p(AA)rHs determined at 25 ˚C and I = 0.1 M (KNO3) are summarized in Tables 4 and 5, 

respectively.  The affinity of the binary complex Cu(DA) for AA to form Cu(DA)(AA) may be 

evaluated by eqn. 329 from the successive stability constants, log KCu(DA)(AA)
AA , for the systems 

with DA = dpa, Me2bpy, and (NEt2)2bpy and AA (except tyrOH): 

Cu(DA) + AA                              Cu(DA)(AA)
AA
Cu(DA)(AA)K

 

log KCu(DA)(AA)
AA

 = log β1110 – log β1100 (3) 

For the systems with DA = bpm, Cl2bpy, and (COOEt)2bpy, it is evaluated by log K110 (eqn. 2).   

Eqns. 2 and 3 were corrected for the protonation constant for the tyr phenol OH group as follows: 

log KCu(DA)(AA)
AA  = log K111 – log K011 

 = log β1111 – log β1100 – log β0011 (3’) 

Table 6 shows that the log KCu(DA)(AA)
AA

 values decrease with DA in the order (COOEt)2bpy > 

Cl2bpy > Me2bpy > (NEt2)2bpy, which reflects the electron withdrawing effects of the substituents 

of bpy on the Cu(II) ion.  Most of the Cu(DA)(AA) systems are more stable than Cu(DA)(ala), 
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suggesting that aromatic residues of AA contribute to the stabilization of ternary complexes by 

intramolecular stacking. 

 

Stabilization due to ligand–ligand interactions 

 

Stability enhancement of Cu(DA)(AA) due to ligand-ligand interactions relative to the complexes 

without them, i.e., Cu(DA)(ala), Cu(en)(AA), and Cu(en)(ala), may be evaluated by the following 

hypothetical equilibrium: 

 Cu(DA)(ala) + Cu(en)(AA)                              Cu(DA)(AA) + Cu(en)(ala)
K

 (4) 

where the coordination structures and ligand fields are maintained nearly equal for all the complex 

species, and therefore the K value greater than 1 indicates that Cu(DA)(AA) is stabilized maily 

due to ligand-ligand interactions.  The log K values are calculated by eqn. 5: 

 log K = log β(Cu(DA)(AA)) + log β(Cu(en)(ala)) − (logβ(Cu(DA)(ala)) + log β(Cu(en)(AA)) )  (5) 

where log βCu(DA)(AA) (= log β1110 or β1111) is replaced by log β{Cu(DA)}(AA) (= log K110 or log K111) 

for DA = bpm, Cl2bpy, and (COOEt)2bpy.  The positive log K values in Table 7 indicate that the 

Cu(DA)(AA) complexes are stabilized by intramolecular stacking interactions.  The log K values 

of the ternary complexes involving DA with electron-donating groups are larger than those with 

electron-withdrawing groups, and therefore the stacking is more effective in such complexes.  As 

mentioned earlier, coordinated dpa is not coplanar with the coordination plane (Fig. 3), and this 

results in slightly lower stability of Cu(dpa)(AA) as compared with Cu(bpy)(AA).  This decrease 

in stability is probably caused by the bent structure (Fig. 3) and a smaller area of interaction for 

the separated aromatic rings of dpa as compared with planar bpy. 

The Cu(DA)(trp) and Cu((NEt2)2bpy)(NO2phe) systems having a large log K value 

showed a large spectral change in the near UV region, indicating that the interactions between 

Cu(DA) and the side chain aromatic ring have electronic effects.  In addition, large stabilization 

observed for the Cu(dpa)(trp) system corresponds well with the stacked solid state structures of 1 
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shown in Fig. 3. 

 

Effects of substituents on the aromatic-aromatic interactions 

 

The interactions between aromatic rings in aqueous solution are considered to involve such forces 

as 1) hydrophobic interactions, 2) van der Waals forces, 3) quadrupole interactions, 4) bonding 

interactions between π-electrons, and 5) electrostatic attraction and repulsion.5,30  Hunter and 

Sanders5 and Cozzi and Siegel7 reported that aromatic ring interactions are mainly governed by 

electrostatic or quadrupole interactions.  Our previous observations that the intramolecular 

aromatic ring stacking interactions in Pd(II)-peptide complexes31 and Pt(II) complex–nucleotide 

adducts11a,32 are enthalpy-driven support that the interactions are bonding interactions and are in 

line with the non-classical hydrophobic effect.4  The log K values for the Cu(bpy)(AA) systems 

were considerably larger than those for the Cu(bpm)(AA) systems (Table 7), and since the sizes of 

bpy and bpm are very similar, lower stability of the bpm-containing systems is not ascribed to the 

differences in hydrophobic interactions or van der Waals forces but to the low π-electron density 

of bpm as compared with bpy.  The log K values seem to be influenced by the electronic 

conditions of the aromatic rings as have been pointed out before.11  They are in a nearly linear 

relationship with the Hammett σp values33 of the substituents on the aromatic rings of AA for the 

systems with AA = NH2phe, tyr, phe, Fphe, and NO2phe (Fig. 5).  The systems except DA = 

(NEt2)2bpy have negative slopes, showing that the electron-rich aromatic ring of AA, Lπ, interacts 

with the Cu–DA moiety, Mπ, more strongly than the electron-deficient Lπ, so that the pyridine 

rings coordinated to metal ions can be regarded as comparable with the N-methylpyridinium ring 

in the systems by Hunter et al.34 and the perfluorobenzene ring in the systems by Cozzi and 

Siegel,7 in both of which the electrons are strongly withdrawn by the substituents.30  These 

relationships indicate that DA in Cu(DA)(AA) except (NEt2)2bpy with an electron-donating 

diethylamino group is π-deficient due to the Lewis acidity of Cu(II).   

Comparison of the log K values for various DA’s indicates that the electron-rich aromatic 
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ring of coordinated NH2phe and tyr interact with the Cu((NEt2)2bpy) moiety more strongly than 

with the Cu((COOEt)2bpy) moiety, contrary to the expectation from the organic systems.5,7,30  In 

the present and other ternary complexes,11 π-π interactions involve metal-coordinated aromatic 

ring and a side chain aromatic ring of different nature and may not be directly comparable with 

the mentioned systems.  The present results imply that intramolecular interactions in 

Cu(DA)(AA) involve interactions between Cu(II) and the aromatic ring of AA, so that the 

interactions may better be considered as Mπ–Lπ interactions. 

 
Halo-substituents in aromatic amino acids 

 

Figure 5 shows that the ternary systems containing the p-halo derivatives of phe, Xphe (X = F, Cl, 

or Br) exhibit anomalous log K values, which are much higher than expected from the σ values.  

Although the differences between the electron-withdrawing properties of F, Cl, and Br expressed 

in terms of the σ values are small (<0.2), the differences in the log K values of the relevant 

systems were found to be in the order Fphe << Clphe < Brphe.  A close look at Fig. 5 reveals that 

deviations of the plots from the straight lines are smallest with F and largest with Br, suggesting 

that the observed deviations are due to the van der Waals forces between DA and Br or Cl 

reflecting the atomic radii of the halogen atoms.  The log K values for Fphe are close to those 

expected from the linear relationship, which is because the F atom is the smallest. 

Among the aromatic amino acids investigated, those with a haloaryl side chain group are 

clearly exceptional in stabilization of Cu(DA)(AA), suggesting that their high affinity for Cu(DA) 

is probably due to the combined effects of aromatic-aromatic interactions and aromatic-halogen 

van der Waals interactions.  It is noteworthy in this connection that some aromatic halo 

compounds such as dioxins and polychlorinated biphenyls are known as endocrin-disrupting 

chemicals,35 and the present finding indicate that halogenated aromatic rings may have a strong 

tendency to stack with other aromatic rings and thus affect the hormonal activity.  
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Conclusions 

 

We prepared bpy derivatives with various substituents and the ternary Cu(II) complexes with these 

diimine ligands (DA) and aromatic amino acids (AA), Cu(DA)(AA).  The structures of 

[Cu(dpa)(trp)]ClO4•2H2O (1) and [Cu((CONH2)2bpy)(phe)]ClO4•H2O (2) in the solid state 

revealed that in these complexes there exist Mπ-Lπ interactions between the Cu(DA) moiety and 

the uncoordinated aromatic ring of AA.  The contribution of the interactions to the stability of 

ternary Cu(II) complexes was evaluated by the log K values calculated from the stability constants 

determined by pH titrations.  The stability enhancement was found to be in the order of DA bpy 

< Me2bpy < (NEt2)2bpy, which indicates that the intensity of the Mπ–Lπ interactions increases 

with the increase of the electron density of DA.  The log K values were found to be nearly 

linearly correlated with the σp values of the substituents of the uncoordinated aromatic rings, 

indicating that the electron density of both the coordinated and side chain aromatic rings affect the 

Mπ–Lπ interactions.  The tendencies of complex stabilization as summarized in Fig. 5 indicate 

that a more effective Mπ–Lπ interaction is achieved by a larger electron density difference 

between the interacting aromatic ring; thus, an electron-deficient side chain aromatic ring of AA 

prefers an electron-rich DA.  The results appear to be in contrast with the reported stability 

sequence for aromatic–aromatic interactions, π-deficient–π-deficient > π-deficient–π-rich > 

π-rich–π-rich.  An anomalously large stability enhancement was observed for AA with a haloaryl 

side chain probably due to the contribution of the polarizability and van der Waals interactions of 

the halogen atoms, which may indicate unique properties of the halogen atoms incorporated into 

aromatic rings.  Taken together, the present observations indicate the electronic nature of π-π 

interactions in metal-coordinated systems. 
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Table 1  Crystallographic data 
 

 1 2 

Formula C21H24N5O8CuCl C21H22N5O9CuCl 
Formula Weight 571.43 587.43 
Crystal Color, Habit deep blue, needle blue, prism 
Crystal Dimensions (mm) 0.35x0.15x0.10 0.05x0.02x0.01 
Crystal System orthorhombic monoclinic 
Lattice Parameters a (Å) 6.7769(10) 9.9415(8) 
 b (Å) 10.96900(10) 11.9758(7) 
 c (Å) 31.0900(3) 10.0268(8) 
 β (˚)  94.766(7) 
 V (Å3) 2311.1(3) 1189.6(2) 
Space Group P212121 P21 
Z value 4 2 
Dcalc (g/cm3) 1.642 1.640 
F(000) 1172 602 
Radiation Mo Kα (λ = 0.71070 Å) Cu Kα (λ = 1.54178 Å) 
µ (cm-1) 11.198 28.956 
2θmax (˚) 55.2 120.1 
Index ranges 0 ≤ h ≤ 8 0 ≤ h ≤ 11 
 0 ≤ k ≤ 14 0 ≤ k ≤ 13 
 0 ≤ l ≤ 40 -11 ≤ l ≤ 11 
Range of transmission factors 0.8941-0.8941 0.5661-0.9715 
Observed reflections 3037 1985 
Independent reflections 3018 1866 (Rint = 0.160) 
Reflections used 3011 1839 
No. Variables 327 354 
Goodness of fit 1.001 1.010 
p-factor 0.0103 0.0031 
Final R indices [I > 2σ(I)]a R1 = 0.0629 R1 = 0.0472 
R indices (all data)b R = 0.0642; Rw = 0.2048 R = 0.0494; Rw = 0.1256 
 
a R1 = Σ||Fo| - |Fc|| / Σ|Fo| for I > 2σ(I).  b R = Σ||Fo| - |Fc|| / Σ|Fo|, Rw = {Σω(Fo2 - Fc2)2 / 
Σω(Fo2)2}1/2; ω = [{pFo2 + σ(Fo2)}/4Fo2]-1. 
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Table 2  Selected bond lengths (Å), bond angles (˚) and interactomic distances (Å) of 1 
 

a) Selected bond lengths 
Cu–O(1) 1.958(3)  Cu–N(1) 1.967(4)
Cu–N(3) 1.968(4)  Cu–N(4) 1.995(4)

 

b) Selected bond angles 
O(1)–Cu–N(1) 95.0(1)  O(1)–Cu–N(3) 160.8(2)
O(1)–Cu–N(4) 82.5(1)  N(1)–Cu–N(3) 92.1(2) 
N(1)–Cu–N(4) 162.7(2)  N(3)–Cu–N(4) 95.7(1) 

 

c) Selected interactomic distances 
Cu•••C(15) 3.06  Cu•••C(16) 3.21 

N(1)•••C(21) 3.40  N(2)•••C(19) 3.39 
C(5)•••C(21) 3.29    
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Table 3  Selected bond lengths (Å), bond angles (˚) and interactomic distances (Å) of 2 
 

a) Selected bond lengths 
Cu–O(3) 1.923(4)  Cu–N(1) 2.008(6)
Cu–N(2) 1.994(6)  Cu–N(5) 1.990(6)

 

b) Selected bond angles 
O(3)–Cu–N(1) 173.9(2)  O(3)–Cu–N(2) 93.4(2) 
O(3)–Cu–N(5) 83.7(2)  N(1)–Cu–N(2) 82.3(2) 
N(1)–Cu–N(5) 101.7(2)  N(2)–Cu–N(5) 161.4(2) 

 
c) Selected interactomic distances 

Cu•••C(16) 3.17  Cu•••C(17) 3.23 
N(1)•••C(19) 3.43  C(1)•••C(20) 3.24 
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Table 4  Stability constants (log βpqrs) for Cup(DA)q(AA)r(H)s at 25 ˚C and I = 0.1 M (KNO3)a 
 

   DA  
AA pqrs dpa Me2bpy (NEt2)2bpy 

 0101 7.069(1) 5.344(1) 8.619(6) 
 0102 8.49(4)  14.020(7) 
 1100 7.505(9) 8.33(3) 11.413(2) 
 1200 12.683(9) 14.53(3) 20.890(4) 
 110-1 0.187(4) 1.33(8)  
 110-2 -10.40(1) -8.27(1)  

ala 1110 15.414(3) 16.025(6) 19.040(8) 
phe 1110 15.755(4) 16.579(1) 19.761(3) 
trp 1110 16.605(2) 17.490(1) 20.916(8) 
tyr 1111 25.987(3) 27.014(3) 30.139(5) 

 1110 15.816(6) 17.172(5) 20.421(6) 
NO2phe 1110  16.354(1) 19.883(3) 
NH2phe 1110  16.930(1) 19.957(2) 
Brphe 1110  16.806(3) 20.186(1) 
Clphe 1110  16.732(4) 20.058(4) 
Fphe 1110  16.406(4) 19.672(3) 

 
a Values in parentheses denote estimated standard deviations. 
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Table 5  Successive stability constants (log Κprs) for [Cu(DA)]q(AA)r(H)s at 25 ˚C and I = 0.1 M 

(KNO3)a 
 

   DA  
AA prs bpm (COOEt)2bpy Cl2bpy 

 10-1 -6.878(9) -6.875(6) -7.157(9) 
 10-2 -15.46(1) -15.40(2) -16.39(2) 

ala 110 8.048(7) 7.962(2) 7.902(2) 
phe 110 8.213(3) 8.476(2) 8.295(1) 
trp 110 9.200(10) 9.585(1) 9.402(2) 
tyr 111 18.389(8) 18.777(4) 18.729(3) 

 110 8.74(2)  8.418(9) 
NO2phe 110 7.258(2) 7.696(5) 7.577(4) 
NH2phe 110 8.424(3) 8.646(3) 8.543(2) 
Brphe 110 8.017(3) 8.412(3) 8.323(2) 
Clphe 110 7.855(1) 8.375(2) 8.235(3) 
Fphe 110 7.707(1) 8.047(3) 7.939(2) 

 

a Values in parentheses denote estimated standard deviations.
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Table 6  The log KCu(DA)(AA)
AA

 values of Cu–DA–AA systems 
 

   DA    

AA dpa bpm Me2bpy (NEt2)2bpy COOEt2bpy Cl2bpy 

ala 7.91 8.05 7.70 7.63 7.96 7.90 

phe 8.25 8.21 8.25 8.35 8.48 8.30 

trp 9.10 9.20 9.16 9.50 9.59 9.40 

tyrOH 8.34 8.25 8.54 8.58 8.64 8.59 

tyrO- 8.31 8.74 8.84 9.01  8.42 

NO2phe  7.26 8.02 8.47 7.70 7.58 

NH2phe  8.42 8.60 8.54 8.65 8.54 

Brphe  8.02 8.48 8.77 8.41 8.32 

Clphe  7.86 8.40 8.65 8.38 8.24 

Fphe  7.71 8.08 8.26 8.05 7.94 
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Table 7  The log K values of Cu–DA–AA systemsa 
 

    DA     

AA dpa bpm Me2bpy (NEt2)2bpy COOEt2bpy Cl2bpy bpyb phenb 

phe 0.54 0.37 0.76 0.92 0.72 0.60 0.60 0.64 

trp 1.06 1.02 1.34 1.75 1.49 1.37   

tyrOH 0.75 0.42 1.17 1.28 0.99 1.00 0.90 1.05 

tyrO- -0.11 0.19 0.63 1.36  0.00   

NO2phe  -0.01 1.11 1.62 0.51 0.45 0.68 0.65 

NH2phe  0.64 1.17 1.18 0.94 0.84 0.70 0.92 

Brphe  0.73 1.54 1.90 1.21 1.12 1.07 1.13 

Clphe  0.45 1.35 1.66 1.06 0.98 0.82 0.90 

Fphe  0.24 0.96 1.21 0.66 0.61 0.53 0.63 
 

a Calculated according to eqn. 5.  b Data taken from ref. 12. 
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Legends for Figures 

 

Fig. 1  Absorption spectra of Cu–Me2bpy–AA systems in water.  AA = ala, black broken line; 

phe, black solid line; trp, black thick line; tyr, blue sold line; NO2phe, red solid line. 

 

Fig. 2  Difference absorption spectra of Cu–DA–AA systems in water: a) Cl2bpy; b) Me2bpy; c) 

(NEt2)2bpy.  AA = phe, black solid line; trp, black thick line; tyr, blue sold line; NH2phe, blue 

broken line; NO2phe, red solid line; Fphe, green solid line; Clphe, brown solid line; Brphe, brown 

broken line. 

 

Fig. 3  ORTEP view of [Cu(dpa)(trp)]ClO4•2H2O (1).  Thermal ellipsoids are drawn at the 50% 

probability level, and the hydrogen atoms, counter ion and water molecules are omitted for clarity. 

 

Fig. 4  ORTEP view of [Cu((CONH2)2bpy)(phe)]ClO4•H2O (2).  Thermal ellipsoids are drawn at 

the 50% probability level, and the hydrogen atoms, counter ion and water molecule are omitted for 

clarity. 

 

Fig. 5  Relationships between log K values  and σp values of substituents on AA.  
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Fig. 1 T. Yajima et al. 
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Fig. 2  T. Yajima et al. 
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