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Abstract 

 

Purpose: The purpose of this study was to histologically and immunohistochemically 

evaluate bone regeneration using three different implant materials in rabbit mandibles 

and also to compare the bone regenerative capability of these materials in an animal 

model.  

Study design: Adult male Japanese white rabbits (n=48, 12-16 weeks, 2.5-3.0 kg) were 

divided into four groups, consisting of twelve animals each.  The implant materials were 

β-tricalcium phosphate (β-TCP), autologous bone derived from the radius, and 

recombinant human bone morphogenetic protein-2 (rhBMP-2) with polylactic 

acid/polyglycolic acid copolymer and gelatin sponge (PGS) complex. After incising 

along the inferior border of mandible, the materials were implanted as onlay grafts and 

covered by titanium mesh with screws. No material was implanted into the control group. 

The rabbits were sacrificed at 2, 4, 8, 12 and 24 weeks postoperatively, and 

formalin-fixed specimens containing titanium mesh were embedded in acrylic resin. The 

specimens were stained with hematoxylin and eosin. For immunohistochemical analysis, 

the specimens were treated with BMP-2 (bone morphogenetic protein-2) and FGF-2 

(fibroblast growth factor-2) antibodies. Finally, these were evaluated microscopically. 
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Results: The autologous bone induced substantially more new bone formation compared 

to β-TCP at 4 weeks postoperatively. However, rhBMP-2/PGS induced new bone 

formation at 8 weeks postoperatively. No growth of bony tissue was observed in the 

control group at any period. In the autologous bone and rhBMP-2/PGS groups, both 

BMP-2 and FGF-2 appeared specifically at the operated sites at early stages, but 

expression of BMP-2 and FGF-2 was observed later in the β-TCP group than in other 

experimental groups. 

Conclusion: This study suggested that autologous bone as well as rhBMP-2/PGS 

implants induced expression of both BMP-2 and FGF-2 specifically at the operated sites 

even at early stages. 
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Introduction  

 

Restoration of bone is often required after dental and oral surgical procedures. 

Treatment of cysts, tumors, and fractures of the jaw can result in bone defects. Such 

defects must be repaired with bone grafts or bone substitutes to ensure good structural 

and functional outcomes1. In the recent years, bone grafts and bone substitutes 

underneath barrier membranes have been increasingly utilized to optimize the treatment 

outcome of bone reconstructive therapy for defects in the alveolar process. 

Conventionally, fresh autologous bone grafts are used to repair oral and maxillofacial 

bone defects. However, the need for a second surgery at the donor site and the limited 

availability of bone has led to the development of various alternative materials to 

autologous bone grafts such as β-TCP and BMPs. 

β-tricalcium phosphate (β-TCP) is a calcium phosphate type material that 

promotes osteogenesis and is also replaced by bony tissue through a process of 

dissolution and absorption, finally achieving a normal bone structure2,3 However, there 

are no reports about the use of β-TCP as an onlay bone graft material in mandibles. 

Bone morphogenetic proteins (BMPs) are active bone-inducing factors that act 

on immature mesenchymal cells, including osteoblasts, resulting in osteogenesis. To 
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date, several types of BMPs have been isolated by molecular cloning and recombinant 

BMP molecules have been synthesized4. Recombinant human BMP-2 (rhBMP-2) is a 

molecule that has strong bone-inducing capability in vivo5. However, to optimize 

delivery at the bone repair site, rhBMP-2 requires a suitable carrier. Recently, a 

synthetic polymer, polylactic acid/polyglycolic acid copolymer and gelatin sponge 

(PGS), that acts as an effective carrier for rhBMP-2 has been developed6. 

Basic fibroblast growth factor (FGF-2) is a component of the bone matrix that 

plays a role in regulating bone remodeling7. Recent reports have shown that the addition 

of exogenous FGF-2 to a fracture site or bone defect during the early healing stage 

accelerates fracture repair and bone formation8. However, no experimental studies have 

been performed to investigate the expression of FGF-2 during bone regeneration. 

Moreover, the association between the expression of rh-BMP-2 and FGF-2 in 

mandibular regeneration has not been previously examined. 

 The purpose of this study was to histologically and immunohistochemically 

evaluate bone regeneration using β-TCP, autologous bone and rhBMP-2 with PGS 

implant materials in rabbit mandibles and also to compare the bone regenerative 

capability of these materials in an animal model. 

 

 5 



 

Materials and Methods 

 

The experimental protocol was approved by the Institutional Committee for 

Animal Care, Kanazawa University. 

 

Experimental animals 

Forty-eight male Japanese white rabbits (12-16 weeks, 2.5-3.0 kg) were 

divided into three experimental and one control group, consisting of twelve animals 

each.  

 

Surgical procedure 

 The entire procedure was performed under sterile conditions. First, the animals 

were anesthetized with sodium pentobarbital (25 mg/kg) by injection into the lateral ear 

vein. After the hair in the submandibular region was shaved, 1.8 ml of 2% lidocaine 

containing 1:80,000 epinephrine was administered to the surgical site. A 25 mm 

horizontal skin incision was made over the submandibular region to expose the margin of 

the left mandibular body. The skin, muscles and periosteum were incised along the 
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inferior border of the mandible and subperiosteal space to accommodate the implant on 

the buccal aspect of the ramus (Fig. 1). 

 

Implant materials 

 The implant materials were β-TCP, autologous bone and rhBMP-2 with PGS 

(rhBMP-2/PGS).  These materials were implanted as onlay grafts, covered by titanium 

mesh (3×3×10 mm cube), and secured with titanium screws. The grafts were secured to 

the lateral aspect of the mandible with a single titanium screw that was 7mm in length and 

1.5 mm in diameter. β-TCP (Olympus Optical, Tokyo, Japan) was porous in the form of a 

3×3×10 mm cube, with an average weight of 0.07 g. Autologous bone was derived from 

the radius bone. For this, the right radius was exposed via a skin incision and reflexion of 

a facial periosteal flap. A bone segment (length 2.5 cm) was oseotomized from the radius 

using a diamond drill under copious saline irrigation. The bone graft was preserved in a 

moist gauge while preparing the recipient site. The rhBMP-2 and PGS were provided by 

Yamanouchi Pharmaceutical Co, Ltd, Japan. The rhBMP-2 was suspended in a buffer 

(pH 4.5) consisting of 5 mM L-glutamic acid, 2.5% glycine, 0.5% sucrose, and 0.01% 

Tween 80 (Difco Laboratories, Detroit, MI, USA). It was kept at a temperature of –80ºC 

until needed, when it was thawed at room temperature. The PGS was cut into 5×5×10 
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mm3 blocks. In the rhBMP-2/PGS implants, 5 μg rh-BMP-2 was combined with 250 mm3 

of PGS. This mixture was lyophilized before it was implanted into the animals along the 

inferior border of mandible.  No material was implanted in the control group. In control 

group, titanium mesh was used in same size as experimental group, but no material was 

implanted. 

 

Specimen collection 

 The rabbits were sacrificed at 2, 4, 8, 12 and 24 weeks postoperatively and the 

specimens containing the titanium mesh were collected for hematoxylin and eosin 

staining and also for immunohistochemical analysis. 

 

Histological examination 

After fixation with 10% phosphate-buffered formalin, the specimens with the 

titanium mesh were dehydrated in ethanol and technovit 7200VCL (Kultzer and Co., 

GmbH, Wehreim, Germany) and then embedded in acrylic resin. The embedded blocks 

were trimmed by cutter and ground by abrasive paper. Thereafter, the sections were 

further ground to a final thickness of about 10 μm. Finally, the specimens were stained 

with hematoxylin and eosin and examined under microscope. 
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Immunohistochemical staining 

The prepared sections were deacrylated in 2-methoxyethyl acetate, inhibited by 

endogenous peroxidase with 0.3% hydrogen peroxide and blocked in 10% normal 

serum prior to staining. For immunostaining, commercially available monoclonal 

anti-BMP-2 antibodies (Yamanouchi Seiyaku Inc., Tokyo, Japan) and anti-FGF-2 

antibodies (Takeda Chemical Industries, Osaka, Japan) were used. Sections were 

incubated overnight with these primary antibodies at 4ºC in a humidified chamber. A 

biotinylated goat anti-mouse IgG antibody (Wako Junyaku Inc., Osaka, Japan) was used 

as the secondary antibody. The Vectastain-Elite ABC kit detection system, DAB 

revelation kit and DAB enhancing solution (Wako Junyaku Inc., Osaka, Japan) were 

used to complete the immunostaining. Finally, a light Meyer’s hematoxylin counter 

stain was applied. The sections were then dehydrated in alcohol and mounted for light 

microscopy to count the number of positively stained active cells in the regeneration site. 

The observation area was located between the superior point and the most inferior point 

of titanium mesh curve and in coronal section (Fig.2). The number of stained cells per 

voluntary 1000 cells in this area was counted by hand using high magnification 

photomicrograph (×100). 
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Statistical Analysis  

Data of all the implanted materials were statistically analyzed with Stat View 4.5 

(ABACUS Concepts, Inc., Berkeley, CA, USA). Differences between groups were 

analyzed by non-paired comparison using Scheffe’s F test. Time-dependent changes 

were examined by analysis of variance (ANOVA). Differences were considered 

significant at P< 0.05. 

 

Results 

Healing progressed uneventfully in all animals and no postoperative 

complications were noted during the 24-week observation period. After resting for 3-6 

days postoperatively, the animals could move and leap without any notable pain or 

limitation. 

 

HISTOLOGICAL EVALUATION 

In the β-TCP group, chondrocytes appeared 2 weeks after the operation. From 

4 weeks, active osteoblasts appeared with the remaining β-TCP (Fig. 3) and by 8 weeks, 

woven bone was formed. From 12 weeks, mature bone formation was observed and by 
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24 weeks, mature lamellar bone was clearly stained with eosin. 

In the autologous bone group at 2 weeks, the operated surface was covered 

with fibrous tissue. From 4 weeks, more osteoblast cells became active (Fig. 4). After 8 

weeks, bone resorption and new bone formation were observed at the recipient site in 

the contact area to the graft. After 12 weeks, bone remodeling activity and new bone 

was noted at the graft. After 24 weeks, the resorption had continued. 

In the RhBMP-2/PGS group at 2 weeks, the operated area was partially 

covered with fibrous tissue. At 4 weeks, the operated area was not restored completely 

and residual PGS was still visible (Fig. 5). However, osteoblasts and fibroblasts were 

observed under the implant. After 8 weeks, trabeculae of new bone extended towards 

the internal surface of the operated area, which was still thin and primitive. At 12 weeks, 

the lamellar structure had developed well in the newly formed bone and the trabecular 

bone was thicker than it was at 8 weeks. Remodeling and consolidation of the new bone 

were also observed within the operated area. At 24 weeks, mature bone was clearly 

observed. 

There was little new bone formation at 24 weeks in the control group. 

IMMUNOHISTOCHEMICAL ANALYSIS 
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β-TCP bone grafting treated with BMP-2 antibody 

At 2 weeks, a few positive stained cells were observed. After 4 weeks, there 

were positive stained cells and a few bone forming cells (Fig. 6A). After 8 weeks, there 

was slight new bone formation. At 12 and 24 weeks, bone formation was more clearly 

observed, but the number of positive stained cells decreased gradually with time (Fig. 

6B). 

 

β-TCP bone grafting treated with FGF-2 antibody  

The results were nearly the same as those after treatment with BMP-2 antibody 

(Figs. 6C, D). 

 

Autologous bone grafting treated with BMP- 2 antibody 

At 2 weeks, positive stained cells were observed. After 4 weeks, there were 

more positive stained cells accompanied by new bone formation with preservation of 

the graft bone (Fig. 7A). New bone formation was observed over time, which increased 

at 8, 12 and 24 weeks. On the contrary, the positive stained cells decreased with time 

(Fig. 7B). 
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Autologous bone grafting treated with FGF-2 antibody  

Results were the same as in case of staining with BMP-2. We could see both 

positive stained cells and new bone formation at 4 weeks (Fig. 7C). But the number of 

positive stained cells decreased gradually at 8 weeks and reached a minimum at 24 

weeks (Fig. 7D) 

  

rhBMP-2/PGS bone grafting treated with BMP-2 antibody  

At 2 weeks, positive stained cells were observed. At 4 weeks, there were many 

positive stained cells (Fig. 8A). New bone formation also increased gradually and 

reached a peak at 24 weeks (Fig. 8B), but the number of positive stained cells markedly 

decreased and reached the minimal level by this time. 

 

rhBMP-2/PGS bone grafting treated with FGF-2 antibody  

The results were nearly the same as those after treatment with BMP-2 antibody 

(Figs. 8C, D). 

 

Control group treated with BMP-2 and FGF-2 antibodies 

In both cases, fewer positive stained cells were observed compared to the 
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experimental groups. However, we observed fibrous tissue in the earlier period, whereas 

little new bone formation was observed later. (Figs. 9A, B, C, D). 

Statistical measurements 

All resuls of the statistical measurements are presented in Table 1 and Fig 

10,11. 

For BMP-2 antibody, the time-course changes showed statistically significant 

differences by repeated measure ANOVA (between subjects; F=28.222, df=12, 

P<0.0001; within subjects; F=120.132, df=4, P<0.0001). 

In the immunohistochemical examination after treatment with BMP-2 antibody, 

when autologous group was compared with control and β-TCP groups, the cell numbers 

significantly increased after 2, 4 and 8 weeks (P<0.05). However, when autologous 

group was compared with only rhBMP-2/PGS group, cell numbers were found 

significantly high only at 4 weeks (P<0.05) (no positive cells were found at 2 and 8 

weeks). Similarly, when rhBMP-2/PGS was compared with control and β-TCP, the cell 

numbers were significantly higher at 2, 4 and 8 weeks (P<0.05). But there was no 

significant difference between control and β-TCP in cell number for 2, 4 and 8 weeks. 

However, in all groups, no positive cells were detected at 12 and 24 weeks (Fig. 10 and 

Table 1). 
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For FGF-2 antibody, the time-course changes showed statistically significant 

differences by repeated measure ANOVA (between subjects; F=7.965, df=12, P<0.0001; 

within subjects; F=36.997, df=4, P<0.0001). 

In the immunohistochemical examination after treatment with FGF-2 antibody, 

when rh BMP2/ PGS group was compared with the autologous, control and β-TCP 

groups, the cell numbers significantly increased at 2, 4 and 8 weeks (P<0.05). Similarly, 

when the control group was compared with the autologous and β-TCP groups, cell 

numbers were found significantly increased only at 4 weeks (P<0.05). However, 

comparison between the autologous and β-TCP groups indicated that no positive cells 

were detected at any of the periods. In all groups, no significant difference was detected 

at 12 and 24 weeks (Fig. 11 and Table 1). 

Thus, in the cell number stained by both BMP-2 and FGF-2 antibodies, similar 

results were found at 12 and 24 weeks. 

 

Discussion 

 

The ability of bone grafts to increase osteogenesis is important in maxillofacial 

surgery, because an increase in healing rate can decrease the time of intermaxillary 
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fixation. However, only a few graft materials actually increase osteogenesis. This can be 

done in two ways: (1) by providing viable cells that are either osteoblasts or can 

differentiate into osteoblasts, and (2) by inducing host tissue to increase the number of 

osteoblasts. These two effects have been termed osteogenetive and osteoinductive9,10 

respectively..  

 In the present study, we evaluated bone regeneration using three different 

implant materials and also compared the bone regenerative capability of these materials 

in an animal model histologically and immunohistochemically. In this study, a titanium 

mesh of same size was used in all groups in order to create same space for bone 

regeneration under different implant materials. The rigid titanium mesh could maintain 

the space for bone regeneration under the same dynamic situation. Although, it was a 

limitation of the model that the cortical border of the mandible was perforated by the 

mesh retention screws, but it was necessary to fix the experimental materials. However, 

our observation area was difference from perforation site, so that this study could be 

evaluated objectively.  This study showed that new bone was formed following the 

implantation of all types of implant materials. 

 Although we used titanium mesh in our study, calcium phosphate type β-TCP 

has been used as artificial bone. β-TCP promotes osteogenesis and is replaced by 
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autologous bone in the course of dissolution and absorption 3,11,12,13, finally achieving a 

normal bone structure. However, Saito et al.14 reported that the periosteum had 

osteoinduction capacity while β-TCP had osteoconduction capacity and that better 

osteogenesis occurred with vascularized periosteum. They also suggested that bone 

marrow fluid was involved in the promotion of osteoblastic activity, but not in 

calcification. It has been suggested that newly formed bone infiltrates and binds with the 

indented part of the dissolved β-TCP; thereby a mechanical bond exists between β-TCP 

and bone12. Since no chemical bond is present, the β-TCP gradually dissolves, even when 

osteogenesis progresses around the β-TCP. However, in our study, regeneration rate was 

slow and β-TCP remained after the implantation of β-TCP. It has been reported that 

β-TCP is replaced by bone when it is implanted in bone marrow2,3,.14. It does not remain 

as a foreign body and is absorbed. At present, calcium phosphate type hydroxyapatite 

(HA), which is considered to promote osteogenesis, is generally used as artificial bone. 

However, HA has a disadvantage: it shows almost no absorption and remains in the body 

for a long time as a foreign substance15. Therefore, we focused our attention on β-TCP, 

which is a calcium phosphate type material, and used it in the present study. 

Autologous onlay bone grafts have been used in the craniofacial skeleton to 

repair bony deficiencies in those afflicted with congenital anomalies or in those who 
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have sustained traumatic injuries. This type of graft is considered the most compatible 

of the materials available. An experimental rabbit model, in which the radius bone is 

transplanted onto the mandibular lower border, has been successfully tested for the 

study of endosseous implants placed into onlay grafts16. This model also provides the 

conditions for the study of graft-host bone integration under critical revascularization 

conditions, since the radius is almost devoid of cancellous bone. Difficulties may arise 

in the prediction of maintenance of graft volume over time when bone grafts are used 

for facial contour reconstruction. Therefore, we hypothesize that graft fixation will 

decrease movement and lead to decreased resorption. John et al.17 reported that when 

onlay bone grafts are stabilized, improved results with respect to graft resorption can be 

expected. The method of autologous bone graft was different from previous reports, so 

that it was difficult to compare with previous report. Kahnberg et al.16stated that after 6 

weeks osteoclastic and osteoblastic activity was primarily observed in the graft-recipient 

contact area. In our study, new bone formation with titanium mesh and screw was 

observed after 4 weeks. New bone formation using mesh fixation might occur earlier 

than others.  

 In vivo, among subperiosteal implantation sites, BMP induces new bone 

formation in heterotrophic, intermuscular and orthotropic sites18,19. In vitro, BMP 
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induces cartilage formation in neonatal muscle tissue20,21,22. It is thought that BMP 

induces differentiation of prevascular mesenchymal connective tissue cells into bone 

and cartilage. Various preparations of BMP have been reported to initiate new bone 

formation when implanted in animals, but there have been few reports of BMP implants 

in alveolar defects of mandible to induce osteogenesis at intraskeletal sites23,24. The use 

of BMP at the submandibular region has not been reported so far.  

BMPs may initiate all of the molecular mechanisms required for bone 

induction, including the orderly migration, proliferation and differentiation of 

osteoprogenitors and undifferentiated mesenchymal cells into functional osteoblasts. 

New bone formation by bone inductive protein depends on the quantity of the BMPs 

and the delivery system or carrier. BMP activity is greatest when it is placed with a 

suitable carrier. Several carriers with suitable characteristics have been developed25,26,27. 

An ideal carrier is not only bioresorbable and non-immunogenic, but also provides a 

three dimensional structure as a scaffold for new bone formation. It has been reported 

previously that the polylactic acid/polyglycolic acid (PLGA) gelatin sponge (PGS) 

copolymer is an effective carrier for BMPs28,29. So PGS has been successfully used for 

bone repair with rhBMP-2 in bone defect models of periodontal tissues, mandible and 

ulna in experimental animals30,31,32.. PGS can play an important role perhaps by acting 
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as a space retainer and shock absorber during the formation of new bone. Hence, we 

used PGS as a carrier for rhBMP-2. Mao et al. 33 reported that at 12 weeks the 

composite using rhBMP with chitin, coral or xenogenetic cancellous bone was replaced 

completely by new bone. In our study, the new bone formation with rhBMP/PGS was 

observed after 8 weeks earlier than previous reports. This might be due to difference in 

carrier material and titanium mesh to maintain the regeneration space. 

When the results of this study are adapted to human, we have to consider some 

factors to affect the bone formation. Firstly, there was difference in turn over period 

between rabbit and human. We did not know whether the follow up period of this study 

was valid or not. However, on the basis of previous rabbit study, it seemd to be 

significanly long. There are numerous parameters that can influnce the outcome of 

onlay bone grafts. For example, rigid fixation, degree of graft contact with the recipient 

surface, properties of the recipient bed and size of bone graft, prevention of bacterial 

infection are all very relevant. Above these parameters are depend on success or failure 

examined both of human and animal study for bone regeneration. Because of the above 

phenomena, the patterns of bone formation in the three groups in our study were 

different. Our study was the duration follow-up at six months. During these periods 

bone regeneration was observed better. This study would helpful for clinician. 
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. Our immunohistochemical studies demonstrated that BMP-2 was strongly 

expressed in the connective tissue of the gap, after implantation on the rabbit mandible. 

Bone marrow was also strongly stained at the edge of the osteogenesis site. FGF-2 

expression followed a similar pattern to that of BMP-2 specifically at the edge of the 

osteogenesis site. 

   In the control group, the tissues that formed were a variable mixture of fibrous 

tissue formed by mesenchymal cells derived from the open marrow space, but little bone 

formation was observed, 

. 

 Our study statistical analysis revealed BMP-2 with PGS  and autologous group 

expression levels were higher than in the other groups  2, 4 an 8 weeks after BMP2 and 

FGF 2 antibody  treated. But it decreased both 12  and 24 weeks.However, β-TCP and 

control group  expression level were not well changed  at all period after treated with 

BMP-2 and FGF-2 treated. Hence, we conclude that autologous bone as well as 

rhBMP-2/PGS implants induced expression of both BMP-2 and FGF-2 specifically at the 

operated sites in early stages. 
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Legends: 

FIGURE 1. Intra-operative finding: (A) Mandible exposed at the submandibular region, 

(B) Fixation of titanium mesh with different materials. 

 

FIGURE 2. Area of immunohistochemical observation (indicated by triangle) located 

between the superior point and the most inferior point of titanium mesh curve. 
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FIGURE 3. β-TCP group histopathological findings at 4 weeks. New bone was formed 

around the remaining β-TCP (hematoxylin-eosin, original magnification×40). B: 

β-TCP, M: mandible, NB: new bone, T: titanium mesh. 

 

FIGURE 4. Autologous bone group histopathological findings at 4 weeks. New bone 

was formed (hematoxylin-eosin, original magnification×40). NB: new bone, T: 

titanium mesh. 

 

FIGURE 5. rhBMP-2/PGS group. Histopathological findings at 4 weeks. There was 

new bone formation around the remaining PGS (hematoxylin-eosin, original 

magnification ×40). PGS: polylactic acid/polyglycolic acid copolymer and gelatin 

sponge. 

 

FIGURE 6. Photomicrographs of β-TCP group. Stained with BMP-2 antibody at 4 

weeks (A), and at 24 weeks (B). Stained with FGF-2 antibody at 4 weeks (C), and at 24 

weeks (D). (Immunohistochemical staining, original magnification ×200). B: β-TCP, 

I: implant, NB: new bone, P: positive cell area. 
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FIGURE 7. Photomicrographs of autologous bone group. Stained with BMP-2 antibody 

at 4 weeks (A), and at 24 weeks (B). Stained with FGF-2 anybody at 4 weeks (C), and 

at 24 weeks (D). (Immunohistochemical staining, original magnification ×200). GB: 

graft bone, NB: new bone, P: positive cell area.  

 

FIGURE 8. Photomicrographs of rhBMP-2/PGS group. Stained with BMP-2 antibody 

at 4 weeks (A), and at 24 weeks (B). Stained with FGF-2 antibody at 4 weeks (C), and 

at 24 weeks (D). (Immunohistochemical staining, original magnification ×200). NB: 

new bone, P: positive cell area. 

 

FIGURE 9. Photomicrographs of control group. Stained with BMP-2 antibody at 2 

weeks (A), and at 12 weeks (B). Stained with FGF-2 antibody at 2 weeks (C), and at 12 

weeks (D). (Immunohistochemical staining, original magnification ×200). F: fibrous 

tissue, P: positive cell area. 

 

FIGURE 10. The ratio of BMP-2 positive cells. The time course changes in all groups 

showed significant differences with ANOVA.  
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FIGURE 11. The ratio of FGF-2 positive cells. The time course changes in all groups 

showed significant differences with ANOVA.  

 

Table 1. The results of statistical analysis with Scheffe’s F test.  

S indicates significant difference at P<0.05, and NS indicates no significant difference. 
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BMP2 antibody Weeks 2 4 8 12 24

Autologous bone vs rhBMP/PGS NS S NS NS NS
Autologous bone vs Control S S S NS NS
Autologous bone vs β-TCP S S S NS NS

rhBMP/PGS vs Control S S S NS NS
rhBMP/PGS vs β-TCP S S S NS NS

Control vs β-TCP NS NS NS NS NS

FGF2 antibody Weeks 2 4 8 12 24

Autologous bone vs rhBMP/PGS S S S NS NS
Autologous bone vs Control NS S NS NS NS
Autologous bone vs β-TCP NS NS NS NS NS

rhBMP/PGS vs Control S S S NS NS
rhBMP/PGS vs β-TCP S S S NS NS

Control vs β-TCP NS S NS NS NS

Table 1


