<table>
<thead>
<tr>
<th>姓名</th>
<th>西田竜一, 重井由美, 石田房美, 诸方向美, 井出宜弘</th>
</tr>
</thead>
<tbody>
<tr>
<td>出版物</td>
<td>《日刊医学》</td>
</tr>
<tr>
<td>卷</td>
<td>158</td>
</tr>
<tr>
<td>号</td>
<td>2</td>
</tr>
<tr>
<td>頁</td>
<td>342</td>
</tr>
<tr>
<td>年</td>
<td>2011-02-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2297/25262</td>
</tr>
</tbody>
</table>

doi: 10.1016/j.jpeds.2010.07.057
Manuscript category: Insights

Delayed Wound Healing in Leukocyte Adhesion Deficiency Type 1

Taizo Wada, MD, PhD, Yumi Tone, MD, Fumie Shibata, MD, Tomoko Toma, MD, PhD, Akihiro Yachie, MD, PhD

Institutional affiliation:
Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.

Correspondence to: Taizo Wada, MD, PhD
Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
13-1 Takaramachi, Kanazawa 920-8641, Japan
Phone: +81-76-265-2313
Fax: +81-76-262-1866
E-mail: Taizo@staff.kanazawa-u.ac.jp

Reprint request author: Taizo Wada, MD, PhD

Key words: LAD-1; delayed wound healing; CD18; granulocytes; monocytes

Source of funding: This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan; and a grant from the Ministry of Health, Labour, and Welfare of Japan, Tokyo.

Conflict of interest statement: No conflict of interest to declare.
Leukocyte adhesion deficiency type 1 (LAD-1) is an autosomal recessive immunodeficiency caused by mutations in the β2 integrin, CD18, and characterized by recurrent bacterial infections, impaired pus formation, and delayed wound healing.¹ Recent studies of CD18 knockout mice have demonstrated that defective migration of neutrophils into wound sites causes a severe reduction of transforming growth factor-β1 secretion by monocytes, resulting in impaired myofibroblast differentiation and delayed wound healing.² However, little is known about cellular events of wound healing in human LAD-1. Here, we described 3-month-old boy affected with LAD-1 who showed the complete lack of CD18 and its associated molecules CD11b and CD11c on his granulocytes and monocytes. His immunological and sequencing data have been reported elsewhere.³ He showed delayed wound healing after surgical excision of an infected urachal cyst from the age of 2 months (Figure A). Similar to the findings of CD18 knockout mice, his wound specimens obtained from the surgical debridement revealed the absence of neutrophils and the presence of monocyte/macrophage infiltrates (Figure B, C). The infiltrating cells also included low numbers of plasma cells as well as lymphocytes, most of which were CD20⁺ B cells by immunohistochemical staining (Figure D). Although our patient showed somatic revertant mosaicism within the CD8⁺ T-cell subset,³ CD18⁺ cells were not detectable in the wound. These findings suggest that β2 integrin-independent mechanisms may play a role in transmigration of monocytes and B cells through vascular endothelium. In addition, like CD18 knockout mice, the local injection of recombinant transforming growth factor-β1 could be a potential therapy for delayed wound healing. Improved understanding of physiology of cutaneous wound healing in LAD-1 may lead to better therapeutic approach
for LAD-1 patients with delayed wound healing.

List of abbreviations: Leukocyte adhesion deficiency type 1, LAD-1.
References

Figure Legend

Figure. Delayed wound healing that was located just below the umbilicus (A). Wound specimens were stained with May-Giemsa (B) or anti-CD68 antibody (C). The percentage of cells in wound specimens is shown (D).