タイトル

発表者

Hayashi Naoyuki, Kobayashi Masahiko, Shimizu Hiroko, Yamamoto Ken-ichi, Murakami Seishi, Nishimoto Takeharu

ジャーナルあるいは出版物のタイトル

Biochemical and Biophysical Research Communications

巻

363

号

3

ページ

788-794

年

2007-11-23

URL

http://hdl.handle.net/2297/7371
doi: 10.1016/j.bbrc.2007.09.054
Mutations in Ran system affected telomere silencing in *Saccharomyces cerevisiae*.

Naoyuki Hayashi\(^1,2\)*, Masahiko Kobayashi\(^1\), Hiroko Shimizu\(^1\),

Ken-ichi Yamamoto\(^1\), Seishi Murakami\(^2\) and Takeharu Nishimoto\(^3\)

\(^1\): Department of Molecular Pathology, 2: Department of Molecular Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan and

3: Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan

*: Corresponding author

e-mail: naoyuki@kenroku.kanazawa-u.ac.jp
Abstract

The Ran GTPase system regulates the direction and timing of several cellular events, such as nuclear-cytosolic transport, centrosome formation, and nuclear envelope assembly in telophase. To gain insight into the Ran system’s involvement in chromatin formation, we investigated gene silencing at the telomere in several mutants of the budding yeast *Saccharomyces cerevisiae*, which had defects in genes involved in the Ran system. A mutation of the RanGAP gene, *rna1-1*, caused reduced silencing at the telomere, and partial disruption of the nuclear Ran binding factor, *yrb2-Δ2*, increased this silencing. The reduced telomere silencing in *rna1-1* cells was suppressed by a high dosage of the *SIR3* gene or the *SIT4* gene. Furthermore, hyperphosphorylated Sir3 protein accumulated in the *rna1-1* mutant. These results suggest that RanGAP is required for the heterochromatin structure at the telomere in budding yeast.

Keywords: Gsp1, heterochromatin, Ran, Rna1, telomere silencing, Sir3, Sit4, Snf2, budding yeast, Yrb2
Introduction

Heterochromatin is cytologically detected in nuclei as a condensed part of the genome. It is present in telomeric and centromeric areas, and interacts with the nuclear matrix to maintain the chromosomal stability. Repetitive sequences are often found in heterochromatic regions, and transcription within these regions is strongly repressed. In *Saccharomyces cerevisiae*, the telomere, subtelomere, rDNA region on Chromosome XII, and the silent mating loci on Chromosome III have heterochromatic features [1, 2]. These regions in chromatin are highly condensed, replicate in the late S phase, and bind to nuclear periphery [3, 4]. The silent information regulator proteins, Sir2/3/4, are essential for establishing silencing in these regions [2].

The Sir3 protein interacts with histone H3 that is methylated at lysine 4, Rap1, and the Ku complex, and none of these interactions is dispensable for telomere silencing [5, 6, 7]. Sir3 could be the limiting factor for silencing at the telomere, because a high dosage of the *SIR3* gene extends the transcriptional silencing region farther from the ends of the chromosome [8]. Furthermore, Sir3’s silencing function at the telomere is regulated by its phosphorylation by MAP kinase and protein phosphatase 2A (PP2A),
under control of the target of rapamycin (TOR) system in response to cellular stress [9, 10].

The Ras-like nuclear small G protein, Ran plays a key role in nuclear-cytosolic transport, mitotic spindle formation, and nuclear envelope assembly in the late M phase [11]. Ran predominantly localizes to the nucleus. Some nuclear Ran is binds to chromatin, which it does by different mechanisms, either dependent on or independent of RCC1, which catalyzes guanine nucleotide exchange on Ran [12]. The chromatin-bound Ran induces chromosomal decondensation, nuclear envelope assembly, and formation of the nuclear pore [13]. During interphase, the GTPase-activating protein for Ran, RanGAP, mainly localizes to the cytosol, but in mitosis, it functions at the kinetochore and mitotic spindles, in higher eukaryotes [14]. The RanGAP protein sequence contains a nuclear localization signal (NLS) and 2 nuclear export signals (NES), and its localization is dependent on Crm1/exportin [15]. In *Schizosaccharomyces pombe*, the *cla4* and *snf2SR* genes, which encode histone H3 methyltransferase, which is involved in heterochromatin formation and chromatin remodeling factor homologue, respectively, were isolated as multicopy suppressors for rna1 temperature-sensitive (Ts)
mutants [16]. The Rna1 protein in *Sch. pombe* interacts directly with histone H3 in vitro, and this interaction stimulates the methylation of histone H3 on K9 by Cla4 in vitro [17]. In *S. cerevisiae*, the overproduction of Prp20, an RCC1 homologue, weakens telomere silencing, and Gsp1, a Ran homologue, bind to Sir4, in which the N-terminus is deleted [18]. Together, these findings indicate that the Ran system might be involved in the regulation of heterochromatin structure.

To investigate the possible role of the Ran system in chromatin regulation at the telomere, we examined telomere silencing in several *S. cerevisiae* mutants with defects in Ran system genes. A silencing deficiency and hyperphosphorylation of Sir3 were found in an *rna1-1* mutant, and the silencing deficiency was suppressed by high dosages of the *SIR3* gene or the *SIT4* gene, which encodes silencing information regulator, or PP2A. Furthermore, the disruption of *SNF2*, which encodes a chromatin remodeling factors, enhanced the telomere-silencing deficiency of *rna1-1*. On the other hand, *gsp1* and *yrb2-Δ2* mutants showed increased gene silencing at the telomere compared with wild-type cells. These results suggest that the Ran system controls the formation of heterochromatin at the telomere in *S. cerevisiae*.
Materials and methods

Strains and media

The S. cerevisiae strains used are listed in Table 1. Escherichia coli strain DH5α was used for plasmid construction. The culture media, transformation techniques, and genetic manipulations for yeast cells were as described previously [19]. The URA3 marker that was designed to be inserted at the ADH4 locus in the vicinity of the telomere of the left arm of chromosome VII and the SIR3-Flag fusion gene were genetically introduced from previously constructed strains [10]. The gene disruption of SNF2, snf2::kanMX4, was genetically derived from yeast strain BY4742 (EUROSCARF).

Plasmid construction

The RNA1 DNA was amplified from genomic DNA prepared from the S. cerevisiae wild-type strain W303-1A [20] using the primers, 5’-AACATGAGCTCCTTAGGTGC-3’ and 5’-ACCCTTATTATCGGGAGCTC-3’. The resulting 2.4-kb PCR product was digested with SacI (Takara Bio Inc., Japan), and cloned into YEplac181 [21] to produce plasmid YEpLRNA1. The DNA fragment isolated from YEpLRNA1 by digestion with EcoRI and SalI (Takara Bio Inc., Japan),
containing RNA1, was cloned into pRS316 [22] to yield plasmid pRSRNA1. The DNA fragment isolated from YCpSIT4 (kindly provided by Drs. Sakumoto and Harashima) by digestion with BamHI (Takara Bio Inc., Japan), containing SIT4, was cloned into YEplac181 and YEplac112 [21] to produce plasmids YEpLSIT4 and YEpTSIT4, respectively. The DNA fragment isolated from p195YRB2 [23] by digestion with BamHI and HindIII (Takara Bio Inc., Japan), containing YRB2, was cloned into YEplac112 to produce plasmid YEpTYRB2. The DNA fragment isolated from pTKS-yrb2-Δ2 [34] by digestion with SalI and EcoRI (Takara Bio Inc., Japan), containing the promoter and N-terminus of YRB2 in yrb2-Δ2, was cloned into YEplac112 to yield plasmid YEpy2D2.

To examine dosage effect of the SNF2 gene to expression of URA3 at the telomere in the rna1-1 cells, we disrupted the URA3 gene on pSY286 [24] by homologous recombination of the mutated PCR product, which was synthesized with the primers 5’-GATAAATCTGTCGAAAGCTACATATAAGG-3’ and 5’-CAAAAGGCCCTAGGTTCCTTTGTTAC-3’ introducing lack of translational initiation codon and frame shift to URA3. Wild-type strain NBW5 [25] harboring
pSY286, which contained 2μ, URA3, SNF2-myc, and Saccharomyces kluveri HIS3, was transformed with the PCR product described above, and selected on histidine drop-out and 5FOA plate. The plasmid DNA, which was harvested from the survived transformants, was confirmed His⁺ Ura⁻ phenotype in the re-transformants, and named pSY286u.

Analysis of Sir3 phosphorylation

Yeast cells bearing a SIR3-Flag fusion gene [10] were grown to late logarithmic phase in 5 ml of YPDA liquid medium, and approximately 10⁷ cells were harvested. Cell extracts were prepared as described previously [26], and subjected to immunoblot analysis using the anti-Flag monoclonal antibody M2 (Sigma, USA). The proteins were visualized with the enhanced chemiluminescence (ECL) kit, according to the manufacturer’s instructions (Amersham Pharmacia Biotech, UK).

Chromatin immunoprecipitation (ChIP) assay

Chromatin immunoprecipitation was performed as described previously [10].
The precipitated DNA was extracted with phenol-chloroform, and concentrated by
ethanol precipitation. Prior to the fixation, aliquots equal to half the sample volume
were removed and treated as described above as the “input” control samples. Eighteen
cycles of PCR were performed in 50-μl volumes using EX-Taq (Takara Bio Inc., Japan)
with primers for the Y’ subtelomere and control gene locus, without reaching a plateau
phase, as described previously [10]. The PCR products were separated in a 1% agarose
gel and stained with ethidium bromide.
Results and discussion

Telomere silencing ability in mutants of the Ran-RCC1 genes

Ran localizes to chromatin by different mechanisms, either dependent on or independent of RCC1, but little is known about the purpose Ran’s chromatin localization. To examine Ran’s possible functions in heterochromatin formation, we investigated gene silencing at the telomere in *S. cerevisiae* mutants in Ran, RCC1, and RanGAP. As a marker gene, *URA3-TEL, URA3* attached to telomere sequence as described in Materials and methods [27], was genetically introduced into each mutant. The expression level of *URA3* was estimated by the efficiency of cell growth on a uracil drop-out plate or with 1 mg/ml 5FOA. Slower growth on the uracil drop-out plate represents greater silencing of *URA3* gene expression at the telomere, and slower growth on the 5FOA plate represents a silencing deficiency, because *URA3*-expressing cells are sensitive to 5FOA. Only the *rnl1-1* mutant, harboring a Ts mutation in the RanGAP gene, showed a silencing deficiency, and greater silencing was observed in the *gsp1-1268* mutant compared with wild-type (Fig. 1A). The observation that a Ts mutation of the RanGAP gene caused a silencing deficiency are consistent with the recent finding that the overproduction of
Prp20 (RanGEF) weakens telomere silencing [18], although we did not observe any alterations in telomere silencing in the prp20-1 cells under our assay conditions.

The Sir complex plays a crucial role in gene silencing in S. cerevisiae [6, 8]. Telomere silencing requires the Sir complex to bind with Rap1, the Ku complex, and K4-methylated histone H3 [5, 26], and the amount of Sir3 protein on the telomere influences the level of silencing [8]. In growth condition of this experiment, nuclear localization of Gal4-GFP fusion protein was not altered in the rna1-1 cells (data not shown). We therefore used a ChIP assay to investigate the amount of Sir3 protein on the subtelomeric region in rna1-1 cells. To compare strains on an identical genetic background, the empty vector or pRSRNA1 was introduced into the N619-7A strain (rna1-1 SIR3-Flag::LEU2). We found that the amount of Sir3 protein on the Y' subtelomere was lower in rna1-1 cells transformed with empty vector than in those transformed with pRSRNA1 (Fig. 1B). This ChIP assay result suggest that the heterochromatin structure at the subtelomere is altered in rna1-1 cells.

**Multi-copy suppression of the silencing defect in rna1-1 cells**
Hyperphosphorylation of Sir3, which is a rate-limiting factor for telomere silencing, was recently observed in sit4 cells, which lack one of the PP2As. Moreover, the sit4 cells also exhibit a silencing deficiency and a slightly shortened telomere [10]. Therefore, we examined whether high-dosages of the SIR3 or SIT4 gene would affect the silencing in rna1-1 cells. Transformants of strain N585-5A (rna1-1 adh4::URA3-TEL), harboring empty vector, SIR3, or SIT4 on a multicopy plasmid, were examined for their ability to grow on 5FOA or below the restrictive temperature. Either SIR3 or SIT4 on a multicopy plasmid partially suppressed the silencing deficiency at the telomere of rna1-1 cells, but neither rescued the temperature sensitivity of the rna1-1 mutation (Fig. 2A). This pleiotropy suggests that the cause of the temperature-sensitivity was distinct from that causing the silencing deficiency at the telomere in rna1-1 cells. Highly phosphorylated Sir3 is released from the telomere and reduces telomere silencing [9], and also sit4 cells, which lack one of the PP2As, accumulate highly phosphorylated Sir3 protein and have a silencing deficiency [10]. We therefore examined the phosphorylation of Sir3 protein by immunoblot analysis. In rna1-1 cells, most of the Flag-tagged Sir3 migrated more slowly through the gel (Fig. 2B, lane 2).
Recently, our colleagues found that the *rna1* mutation in *Sch. pombe* is suppressed by overexpression of the *SNF2* homologue, which encodes a chromatin-remodeling factor [16], and RanGAP1 in *Sch. pombe* interacts with globular domain of histon H3 [17]. On the other hand, Snf2 in *S. cerevisiae* loses chromatin association in *hht2-11* mutant, which has point mutaion in globular domain in histone H3 [28], and it is required for gene silencing [29]. To investigate whether Rna1 is involved in the silencing machinery of Snf2, we examined dosage effect of the *SNF2* gene to the *rna1-1* mutant. High dosage of *SNF2* did not suppress Ts phenotype in the *rna1-1* mutant unlike in *Sch. pombe*, but rescued silencing deficiency (Fig. 3A). On the other hands, we constructed a double mutant of *rna1-1* and *snf2* and examined its silencing ability at the telomere (Fig. 3B). In our strain’s background, the silencing deficiency in the *snf2* disruptant was not significant, but it showed a tendency toward slower growth on the 5FOA plate. However, a drastic growth defect on the 5FOA plate was observed in *rna1-1 snf2* double mutant compared with the *rna1-1* mutant. Thus, the *SNF2* gene encoding a chromatin remodeling factor took a crucial role for silencing at the telomere in *rna1-1* cells.
In Ts rna1 mutants of Sch. pombe, a silencing deficiency is observed at the centromere but not at the telomere, in contrast to S. cerevisiae [16]. Since there are great differences in the structural features of the centromere, subtelomere, and telomere between S. cerevisiae and Sch. pombe, the regulatory aspects of heterochromatin formation are likely to be different. However, similar phenomena regarding chromosomal segregation are observed in these two yeasts. In S. cerevisiae, rna1-l cells show more frequent aneuploidy [30], while mitotic chromosomal segregation is deficient in rna1 mutants in Sch. pombe [16].

The nuclear factor YRB2, in the Ran-RCC1 system, controls telomere silencing

Yrb2, which possesses a Ran-binding domain at its C-terminus, is located inside the nucleus, and its localization is dependent on its N-terminus [31]. In vitro experiments showed that Yrb2 enhances the RanGAP activity of the RNA1 gene product [23]. Therefore, we examined silencing in YRB2 mutants (Fig. 4A). Although a complete null mutation of YRB2, yrb2-Δ1, did not affect S. cerevisiae growth on any medium, yrb2-Δ2, which lacked only the Ran-binding domain at the C-terminus, showed
slower growth on the uracil drop-out plate. This result suggests that the N-terminal portion of Yrb2 might have a regulatory function in telomere silencing. To investigate this possibility further, we introduced a plasmid harboring the yrb2-Δ2 gene into wild-type cells (Fig. 4B). Interestingly, the cells transformed by the yrb2-Δ2 plasmid showed significantly slower growth on the uracil drop-out plate. In addition, introduction of a plasmid harboring the entire YRB2 gene did not restore the slowed growth of the yrb2-Δ2 cells. These observations indicated that the phenotype of increased silencing at the telomere in yrb2-Δ2 was dominant. The dominant phenotype of the N-terminus of Yrb2 in silencing regulation suggests that the N-terminus acts to open the heterochromatin structure, and the C-terminus has a suppressive role in that function.
Acknowledgement

We thank Drs. Sakumoto and Harashima (Osaka University, Japan) for the plasmids harboring \textit{SIR3} and \textit{SIT4}, Dr. Hinnebusch (NIH, USA) for the plasmid harboring \textit{SNF2}, and Drs. Seino and Nishijima (National Institute of Genetics, Japan) for technical advice and helpful discussions.
References


<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBW5</td>
<td><strong>MATα trp1 leu2 his3 ade2 ura3 can1</strong></td>
<td>[25]</td>
</tr>
<tr>
<td>N309-1C</td>
<td><strong>MATα trp1 leu2 his3 ade2 ura3 lys2 can1 adh4::URA3-TEL DIA5·1</strong></td>
<td>[10]</td>
</tr>
<tr>
<td>N585-5A</td>
<td><strong>MATα rna1·1 trp1 leu2 his3 ade2 ura3 can1 adh4::URA3-TEL DIA5·1</strong></td>
<td>This study</td>
</tr>
<tr>
<td>N586-6B</td>
<td><strong>MATα prp20·1 trp1 leu2 his3 ade2 ura3 can1 adh4::URA3-TEL DIA5·1</strong></td>
<td>This study</td>
</tr>
<tr>
<td>N587-2A</td>
<td><strong>MATα gsp1·::HIS3·::gsp1·1268::LEU2 trp1 leu2 his3 ade2 ura3 can1 adh4::URA3-TEL DIA5·1</strong></td>
<td>This study</td>
</tr>
<tr>
<td>N588-4A</td>
<td><strong>MATα gsp1·::HIS3·::gsp1·1757::LEU2 trp1 leu2 his3 ade2 ura3 can1 adh4::URA3-TEL DIA5·1</strong></td>
<td>This study</td>
</tr>
<tr>
<td>N589-1D</td>
<td><strong>MATα gsp1·::HIS3·::GSP1·::LEU2 trp1 leu2 his3 ade2 ura3 can1 adh4::URA3-TEL DIA5·1</strong></td>
<td>This study</td>
</tr>
<tr>
<td>N619-7A</td>
<td><strong>MATα rna1·1 SIR3·5FLAG::LEU2 tp1 leu2 his3 ade2 ura3 can1</strong></td>
<td>This study</td>
</tr>
<tr>
<td>N619-7B</td>
<td><strong>MATα SIR3·5FLAG::LEU2 tp1 leu2 his3 ade2 ura3 can1</strong></td>
<td>This study</td>
</tr>
<tr>
<td>N688-1B</td>
<td><strong>MATα yrb2·Δ2·::LEU2 tp1 leu2 his3 ade2 ura3 can1 adh4::URA3-TEL DIA5·1</strong></td>
<td>This study</td>
</tr>
<tr>
<td>N689-5A</td>
<td><strong>MATα yrb2·Δ1·::LEU2 tp1 leu2 his3 ade2 ura3 can1 adh4::URA3-TEL DIA5·1</strong></td>
<td>This study</td>
</tr>
<tr>
<td>BY4742</td>
<td><strong>MATα snf2·::kanMX4 lysΔ0 leu2Δ0 his3Δ1 ura3Δ0</strong></td>
<td>EUROSCARF</td>
</tr>
<tr>
<td>N752-7B</td>
<td><strong>MATα snf2·::kanMX4 rna1·1 trp1 leu2 his3 lys2 ura3 can1 adh4::URA3-TEL</strong></td>
<td>This study</td>
</tr>
<tr>
<td>N752-7C</td>
<td><strong>MATα snf2·::kanMX4 trp1 leu2 his3 lys2 ura3 can1 adh4::URA3-TEL</strong></td>
<td>This study</td>
</tr>
<tr>
<td>N755-15C</td>
<td><strong>MATα rna1·1 trp1 leu2 his3 ade2 ura3 can1 adh4::URA3-TEL</strong></td>
<td>This study</td>
</tr>
</tbody>
</table>

* **DIA5·1** refers to the directed integration of **ADE2** adjacent to the telomere of the right arm of chromosomeV [27].
Figure legends

Fig. 1. Silencing ability of Ran-RCC1 mutants. (A) Expression of URA3 at the telomere was altered in some of Ran-RCC1 mutants. The wild-type (N589-1D), rna1-1 (N585-5A), prp20-1 (N586-6B), gsp1-1268 (N587-2A), and gsp1-1757 (N588-4A) strains, which all harbored the URA3 marker at the end of chromosome VII, were cultured in YPDA liquid medium and spotted on uracil drop-out, complete synthetic, and 5FOA plates. The culture of each strain was diluted to an OD$_{660}$ nm of 1.0. The four patches in each row represent 10-fold serial dilutions. The cells were incubated for 3 days at 27°C. (B) The binding of Sir3 to the Y’ subtelomere was reduced in rna1-1 cells. Transformants derived from the rna1-1 (N619-7A) strain harboring empty vector (pRS316) or pRSRNA1 were compared in a ChIP assay with Flag-tagged Sir3. The co-precipitated DNA was analyzed as described previously [10]. The PCR products of the Y’ subtelomere and YGL213c/SKI8 were 0.9 kbp and 0.4 kbp in length, respectively.

Fig. 2. Multicopy suppression of the silencing deficiency in rna1-1 cells. (A) The silencing deficiency in rna1-1 cells was suppressed by the introduction of SIT4 or SIR3
on a multicopy plasmid, but the temperature sensitivity was not. The rna1-1 (N585-5A) strain was transformed with vector (YEplac181), RNAI (YEpLRNA1), SIR3 (pKAN63; [32]), or SIT4 (YEpLSIT4) plasmid. Each transformant was cultured in leucine drop-out liquid medium, and spotted on leucine drop-out plates with and without 5FOA, as described in Fig. 1. The control and 5FOA plates were incubated at 27°C for 3 days, and temperature sensitivity was examined at 35 °C. (B) Modification of Sir3 protein in Ran-RCC1 mutants. The slower migrating bands of Flag-tagged Sir3 immunoblotted with an anti-Flag M2 monoclonal antibody represent phosphorylated Sir3. Extracts derived from the wild-type (N619-7B, lane 1), rna1-1 (N619-7C, lane2) were separated by 6% SDS PAGE, and visualized as described in Materials and methods.

Fig. 3. Interactions between RNAI and SNF2 in telomere silencing. (A) High dosage of the SNF2 gene suppressed silencing deficiency, but not Ts growth in rna1-1. The rna1-1 (N755-15C) strain harboring vector (pRS313), or SNF2 (pSY286u) plasmid, and wild-type (N309-1C) strain harboring vector plasmid were cultured in histidine drop-out liquid medium, and spotted on histidine drop-out plates with and without 5FOA, as
described in Fig. 1. The control and 5FOA plates were incubated at 27°C for 3 days, and temperature sensitivity was examined at 35°C. (B) The silencing deficiency of rna1-1 was enhanced by the lack of the SNF2 gene. The wild-type (N309-1C), rna1-1 (N585-5A), rna1-1 snf2::kanMX4 (N752-7B), and snf2::kanMX4 (N752-7C) strains, which all harbored the URA3 marker at the end of the left arm of chromosome VII, were cultured in YPDA liquid medium and spotted on complete synthetic and 5FOA plates, as described in Fig. 1. The spotted plates were incubated at 27°C for 3 days.

Fig. 4. Increased silencing at the telomere in a yrb2 mutant, which lacked the Ran-binding domain but retained the N-terminal portion of Yrb2. (A) The wild-type (N309-1C), yrb2-Δ1 (N689-5A) and yrb2-Δ2 (N688-1B) strains were cultured and spotted on uracil drop-out, complete synthetic, and 5FOA plates, as described in Fig. 1. The spotted plates were incubated at 27°C for 3 days. Bottom panel represents the structural features of the YRB2 locus in each mutant, which were described in detail previously [23]. LEU2 DNA was inserted into the deleted region in yrb2. (B) The increased silencing phenotype of the yrb2-Δ2 mutation was dominant. The wild-type
(N309-1C) and yrb2-Δ2 (N688-1B) strains were transformed with vector (YEplac112) or yrb2-Δ2 (YEpy2D2) plasmid, and vector (YEplac112) or YRB2 (YEpTYRB2) plasmids, respectively. Each transformant was cultured in tryptophan drop-out liquid medium, and spotted on tryptophan and uracil drop-out and tryptophan drop-out plates, as described in Fig. 1. The spotted plates were incubated at 27°C for 3 days.
Fig. 1A
Fig. 1B
Fig. 2A
Fig. 3A
Fig. 3B

**adh4::URA3-TEL**

Wild-type

\*ma1-1\*

\*ma1-1 ult2\*

\*ult2\*

+ura -5FOA

5FOA
A

**adh4::URA3-TEL**

Wild type

-ura -5FOA  +ura -5FOA  +ura +5FOA

Fig. 4A
Fig. 48
Fig. 1A

*adh4::URA3-TEL*

- Wild-type
- *rna1-1*
- *prp20-1*
- *gsp1-1268*
- *gsp1-1757*

- *-ura -5FOA*
- *+ura -5FOA*
- *+ura +5FOA*
**Host:** *rna1-1*

**Plasmid:**

<table>
<thead>
<tr>
<th></th>
<th>ChIP</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vector</td>
<td>vector</td>
</tr>
<tr>
<td></td>
<td>Y’ subtelomere</td>
<td>SKI8/YGL213c</td>
</tr>
</tbody>
</table>

**Fig. 1B**
Fig. 2A
Fig. 2B

Sir3-P ▶
Sir3 ▶

WT  rma1-1
Fig. 3A
B

**Fig. 3B**

- **Wild-type**
- **rna1-1**
- **rna1-1 snf2**
- **snf2**

**adhl::URA3-TEL**

**+ura -5FOA**

**5FOA**
**Fig. 4A**

*adhl::URA3-TEL*

<table>
<thead>
<tr>
<th></th>
<th>-ura -5FOA</th>
<th>+ura -5FOA</th>
<th>+ ure +5FOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td><img src="image1" alt="Plate" /></td>
<td><img src="image2" alt="Plate" /></td>
<td><img src="image3" alt="Plate" /></td>
</tr>
<tr>
<td>yrb2-[]1</td>
<td><img src="image4" alt="Plate" /></td>
<td><img src="image5" alt="Plate" /></td>
<td><img src="image6" alt="Plate" /></td>
</tr>
<tr>
<td>yrb2-[]2</td>
<td><img src="image7" alt="Plate" /></td>
<td><img src="image8" alt="Plate" /></td>
<td><img src="image9" alt="Plate" /></td>
</tr>
</tbody>
</table>

**YRB2**

- yrb2-[]1
- yrb2-[]2

*LEU2* gene was inserted into the deleted region in *YRB2*.
Wild-type

- yrb2-Δ2
  - vector
  - YRB2

-ura - trp

+ura - trp

*Fig. 4B*