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We study time evolution of parallel straight steps with repulsive interaction between steps.
If step kinetics is asymmetric in the upper and the lower terraces (Schwoebel effect), a vicinal
face becomes unstable when undersaturation exceeds a critical value, and an array of large
bunches described by the Benney equation appears. In the one-sided model (the extreme limit
of the asymmetry) a pairing instability occurs. In this case the instability always ends up with
formation of step pairs, and with large undersaturation hierarchical bound states of step pairs
are formed. On the contrary many-body bound states appear in the general asymmetric model.
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§1. Introduction

Asymmetry of the surface diffusion field in the front
and in the back of a step can cause a bunching instabil-
ity. In the case of Si(111), which is experimentally the
best studied system,™®) one of the candidates to produce
this asymmetry is the drift of adsorbed atoms (adatoms)
caused by the electric current which is used for heating
the specimen.* 19 In sublimation the flux of atoms from
the step onto the upper terrace is different from that
onto the lower terrace because of the drift. This asym-
metry makes an equidistant step train unstable, and a
bunching occurs. If the distance between steps is larger
than the surface diffusion length, the drift in the step-
up direction makes the step train unstable. In the op-
posite case the drift in the step-down direction makes
the step train unstable. Near the critical point the in-
stability occurs at long wavelengths. We can take the
continuum limit and derive a nonlinear evolution equa-
tion for the step density.® %) The result is a form of
the Benney equation.'’"%) The Benny equation inter-
polates the Kuramoto-Sivashinsky (KS) equation,'®-17)
which exhibits spatiotemporal chaos, and the Korteweg-
de Vries (KdV) equation. The solution of the Benney
equation with a large dispersion term produces an array
of soliton-like pulses, which corresponds to the appear-
ance of a train of large step bunches.

The drift of adatoms is a characteristic effect for Si,
whereas bunching is a general phenomenon. Asymmetry
in the step kinetics (Schwoebel effect!® %)), which exists
in many systems, also produces an asymmetry in the sur-
face diffusion field. When atoms are detached from a step
only to the lower terrace (i.e. the one-sided model), a
paring instability occurs in sublimation with undersatu-
ration exceeding a critical strength,?%) and a equidistant
step train becomes unstable to pair formation.2!) The
critical undersaturation for the instability is determined
by competition between the surface diffusion and the re-
pulsive interaction of steps. The one-sided model is the

extreme limit of the asymmetric step kinetics, and the
above features of the instability are expected to change
with general asymmetry.?>23) When atoms can detach
from the step onto both terraces with different kinetic
coefficients, the fluctuation of step distances at a long
wavelength first becomes unstable instead of pairing. In
such circumstances we can derive a similar continuum
equation for the step density as'in the bunching by drift
of adatoms.

In this paper we study the change of step behavior
with the change of asymmetry in step kinetics. We use
the standard step flow model of Burton, Cabrera and
Frank?%) with the asymmetric step kinetics and the step
interaction taken into account. The model is described
in §2. When the Schwoebel effect is sufficiently strong
and the step kinetics for both side terraces is fast, the
instability of a vicinal face occurs at long wavelengths,
which is summarized in §3. In the one-sided model, that
is the limit of strong Schwoebel effect, the appearance of
instability changes: a pairing instability occurs at first.
In §4 we study the instability numerically, and show an
appearance of hierarchical bound states of step pairs. In
85 we investigate the effect of general asymmetry, which
causes many-body bound states. A condition for the
formation of a three-body bound state is derived and
the velocity of the bound steps is found.

§2. Model

We use the standard vapor growth model of Burton,
Cabrera and Frank®¥ to obtain the velocity of a step.
Atoms impinge from an ambient gas phase to the crystal
surface at the frequency f per unit area. Atoms on the
surface (we call adatoms) diffuse with the diffusion coef-
ficient Ds and evaporate to the ambient phase at the rate
1/7. The adatom density obeys the diffusion equation

dc

1
9 D% —Yetf 2.1
7 D;VZc 7’c—i-f (2.1)

We assume that all steps are parallel and straight. The
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linear analysis?® 2%) shows that steps have a tendency to
be straight in the bunching instability. Also the study of
a simplified two-dimensional model?”) suggests that the
essential physics of bunching can be extracted in a one-
dimensional model. We take the y-axis in the step-down
direction, and the position of the nth step as y = y,.
In sublimation the steps recede by desorbing atoms onto
the upper and the lower terraces, while they advance by
absorbing adatoms in growth. The flux of adatoms from
both terraces to the step is proportional to the difference
of adatom density at the step and that of local equilib-
rium c,:

dc

+ D —
say

=K [c(yn £0) —cn],
Ynt0

(2.2)

where K (K_) represents the kinetic coefficient of the
lower (upper) side terrace.?®) The local equilibrium
adatom density at the nth step is different from that
at an isolated step c? o by an amount proportional to
the spatial derivative of the step interaction energy (,.
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When the adatom density is low (2¢2; < 1), cp is ex-
pressed as20:29)

Cp = CO ngg —acn
" € kBT Byn’
where (2 is the atomic area, kg is the Boltzmann constant
and T is temperature. If steps are interacting with a

power-law potential, the interaction energy of the nth
step can be written as

G=A Z lyn - yml—uy

m#n

(2.3)

(2.4)

where the strength of step interaction A is positive for
repulsion. In the case of elastic repulsion®®) v = 2, which
is used for the numerical study in this paper.

We solve the diffusion equation (2.1) with the bound-
ary conditions (2.2) in the static approximation: de¢/dt =
0. By using the width of both lower and upper terraces
It = lyn — Yn+1/|, the velocity of the nth step is given
by20-

d
Unp = .QD - Q-Ds '_c'
dy Yn+0 dy Yn—0
02 [cosh(lns/Ts) + A sinh(lp4/2s)](Coo — €n) — (Coo — Cnt1)
T xg (A +Ao)cosh(lnpa/zs) + (1 + A A=) sinh(lng /)
N Ds [cosh(ln_/zs) + Ay sinh(ln,— /2s)](coo — n) = (Coo = Cn—1) (2.5)
s (Ap + M) cosh(ly—/zs) + (L + ApA) sinh(lp—/as) "
where zs (= v/ D7) is the surface diffusion length, co (= (coshln— + Ay sinhin_)fn — faoy
f7) the adatom density far from the step, and \p(= = —
D/zs K1) the dimensionless resistances of step kinetics. (A + A=) coshin_ + (1 +AA-) sinh b
The static approximation is valid when the step velocity (2.6)

vy, is small as | DsV2¢| > |v, Ve|, which is satisfied when
Nlceo — Ceql K 1 (0r 2]coo — Cegll/zs < 1 when | <
). With a Green’s function approach it is shown®V)
that the result of a time dependent analysis does not
give any qualitative difference from that of the static
approximation.

In general the step kinetics with both terraces are not
the same. The asymmetry of the kinetics, which means
K, # K_, is called the Schwoebel effect'®1%) or dif-
fusion barrier,>? and plays an important roll in mor-
phological instability of steps.???8) Since in many cases
adatoms on the lower terrace are incorporated into the
step more easily than those on the upper terrace, we as-
sume for definiteness A\_ > Ay (K- < K ) from now on.
With this asymmetry the instability occurs in sublima-
tion when the undersaturation exceeds a critical value. If
the asymmetry of the step kinetics is the opposite sense,
the instability occurs in growth.

In the following analysis we use dimensionless vari-
ables. By using zs as the length scale and ts(=
Te3kpT/2A0%c): we also assume v = 2) as the time
scale, that is § = y/ z, and t = t/z,, the dimensionless
velocity ¥, is expressed as

B fn—i—l
(>\+ + )\_) COSh in-’r + (]. -+ )\+)\_) sinh Zn—l—

_— (coshlng + A_sinhiny)fn

n =

where Ipt+ (= |in — Jn+1|) are the dimensionless terrace
widths and f,, (= 2(Coo — ¢n)7/ts) is the dimensionless
supersaturation, which is given by

:f+ Z(gn_gm)_

m#n

2.7)

f (= 2(Coo — eq)t /7) represents the strength of super-
saturation (when f > 0) or undersaturation (f < 0).
The second term of eq. (2.7) is the effect of the repulsive
interaction, which produces the difference of the super-
saturation (undersaturation) of each step from that of
an isolated step.

§83. Instability of a Vicinal Face

In this section we summarize the study of instabil-
ity of a vicinal face with a small step distance !
(I < z5).2"2%) Consider an infinite array of equidistant
steps and shift the nth step from the unperturbed po-
sition by 69, = 073 e@it+inkD)  where k(= kz,) is the
dimensionless wave number. The growth rate of the per-
turbation @j can be calculated from eq. (2.5). For sim-
plicity we assume in this section a step interacts only
with its nearest neighbors. When we take account of
the lowest order terms in ! with respect to the surface
diffusion length, @3 is given by
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A 4¢"(1) -
=1 — 1-— kl
g = N T —(1 — cos kl)f VT ——~>—(1 — cos ki)
—20¢"(1)(1 — cos ki) (i\:—_ité_) (1—cos ki)
+ if sin kI, (3.1)

where @(f) is the scaled potential, which is given by

#(1) = 1=2/2 for the elastic repulsion. Since we assume

that A_ > Ay, the equidistant step train becomes unsta-
ble when the undersaturation exceeds the critical value
= )\ +A =

+ l ¢/I ( l),

fc = )\_ — )\+ (32)

which is obtained from the coefficient of k2 term by ex-
panding eq. (3.1). Since the coefficient of k* term is
positive, the instability starts at k=0.

Near the critical point the wavelength of the unstable
modes are much longer than the step distance. We can
take the continuum limit of the discrete step model and
derive an evolution equation for the step density p (=
[=1) from the continuity equation 95/t + 0(p0)/0y =
0.23) For the sinusoidal perturbation §p = §pgel*9+@it)
to the step density, the linear dispersion relation is ob-
tained as

Ay f g L f
Ap+ A 315

d¢ | 1A — >\+ f 72
+ = k
(dpo 2' /\ + A+ PO
1 1alg,
A~ + At podio

Wy, = —

(3.3)

where § (p) is the scaled interaction energy, which is re-
lated to the pair potential as 8C/8p = I3(82¢/dI?).3435)
Note that the average dimensionless step density is large:
po > 1. The first term of eq. (3.3) does not appear if one
expands eq. (3. 1)22 because 1t~comes from the higher or-
der expansion of eq. (2.6) in (= l/zs). The instability
occurs if

)\ + At 72 a¢
. PVRAFT
The results, eq. (3.3) and eq. (3.4) agree with those of
the discrete model, egs. (3.1) and (3.2).

To study nonlinear effects near the critical point, we
introduce the small expansion parameter e ( = 1— f./f),
which represents the distance from the critical point of
instability. As is easily seen from eq. (3.3), the wave
number of the most unstable mode is proportional to
V€ and its growth rate is proportional to €2. In order
to eliminate the explicit e-dependence we introduce new
variables,36)

f<fe=- (3.4)

AsA- if) ., (3.5)

Y=vVQAs+A)poe | §— =
+ )0( )\++)\_p%

T=0++ A_)p'oez—dét”. (3.6)

dpo

When the growing fluctuation of the step density be-
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comes 6p ~ O(e¥/?), a nonlinear term of the form
0p(86p/0Y ), which emerges from the higher order expan-
sion of eq. (2.6) in [, becomes comparable to the linear
terms. Adding this term to the linear evolution equation,
and by rescaling the fluctuation of step density as

4)\+)\ 6

=0p,
WY ow +A+)p8

we obtain the equation for the scaled fluctuation of the

(3.7)

step density?3)
ON 8N O0*N O°N ON
or Toavs Tt T Py =0 (38)
where 0 is given by
a4 as (Ot
i= 33y (3.9)

Equation (3.8) is called the Benney equation.!’) The
Benney equation interpolates the Kuramoto-Sivashinsky
(KS) equation'®'") (§ = 0), whose solution produces
spatiotemporal chaos, and the Korteweg-de Vries (KdV)
equation (§ — oo and appropriate rescaling).

The solution of the Benney equation has been inves-
tigated numerically with a periodic boundary condition
by Kawahara and coworkers.!?>"14) When § is sufficiently
large (6 > 1.2), equidistant soliton-like pulses with the
same amplitude appear. With small §(< 0.35) the inter-
pulse distance fluctuates. When 6 becomes even smaller
(6 < 0.15), the solution of the Benney equation shows
the chaotic behavior as the KS equation. Near the criti-
cal point of the instability e is small, and the coeflicient
of the dispersion term 92N/JY? is large. Therefore the
step density is expected to show an array of equidistant
pulses with the same amplitude, which corresponds to
a train of large step bunches as found in the discrete
model.

Numerical integration of the Benney equation, in ad-
dition to the formation of stable pulses, shows the fol-
lowing features. The steady pattern changes with the
change of the initial condition. For large initial fluctu-
ation whose wavelength is equal to the system size the
interpulse distance of the steady pattern becomes larger
(Fig. 1(b)) than that for the small random initial fluc-
tuation (Fig. 1(a)). Also the direction of the motion of
steady pulses changes: the steady pulses move to the
left for the random initial fluctuation (Fig. 1(a)), and
to the right for the large long wavelength fluctuation
(Fig. 1(b)). But in the original frame, § and #, the pulses
move to the left due to the large first derivative term (the
shift in eq. (3.5)). A similar change of periodicity and
velocity are obtained in the numerical integration of the
discrete model. For the bunches grown from the random
initial fluctuation, the velocity is determined by theﬂl%
term of eq. (3.3) near the critical point, and by the &>
term away from the critical point??) because of the in-
crease of the wave number of the most unstable mode
with increasing undersaturation.

The coefficient of the third derivative ¢ in eq. (3.8)
is positive in the present situation, but can be negative
if bunching is due to an external field.®'®) The change
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Fig. 1. Evolution of the Benney equation with A_ =1, Ay =10,
po = 8 and € = 0.218: (a) with random initial fluctuation, (b)
with large long wavelength fluctuation.

of sign is equivalent to the replacement N and X by
—N and —X. Therefore when ¢ is negative, an array of
low step density bands moves to the direction opposite
to that with the positive dispersion term in the moving
frame.3")

§4. Bound Sates in the One-Sided Model

Step bunches are formed by continuous “collision” and
recombination of steps so that the members of bunch are
changing.22:38) In the following we study the formation
of bound states which can sustain themselves without
recombination with other steps.

4.1 Pairing of steps

For simplicity and to emphasize the Schwoebel effect,
we first assume that only atoms on the lower terrace can
solidify at the step and its kinetics is fast: K; — oo,
K_ =0 (or \- — 00, Ay =0). In this one-sided model
atoms do not move across the step, and the velocity of

Kinematical Bound States of Steps
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n-th step is simply given by

dy = 1

% = tanh (fn41 — Tn) |f+ Z G| (4.1)
The first factor is an effective mobility, which is deter-
mined by the width of the lower terrace.

If one focuses on the change of a step distance, the
effect of diffusion field is equivalent to an effective repul-
sion in growth and an attraction in sublimation. Sup-
pose that there are two steps, Step 1 and Step 2, with a
distance comparable or smaller than the diffusion length
(zs > y2 — y1 > 0). In growth, Step 2 advances faster
than Step 1 since it has a larger lower terrace than Step 1,
and these steps separate. In sublimation, Step 2 recedes
faster than Step 1 and catches up with Step 1. This
effective attraction competes with the elastic repulsion,
and the steps can form a bound state if ¢ is so small
(i.e. large undersaturation) that f is sufficiently large
negative. The critical value of f to form a bound pair is
calculated to be fc = —8¢3 / 27~.20) At the critical point
the distance of the step pair is lc = 3/2, and decreases as
f decreases (undersaturation increases). The decrease of
the pair size results in the nonlinear velocity of the pair,
'ﬁpair ~ __2"]0'2/3‘20)

This effective attraction through the diffusion field in
sublimation also brings about a pairing instability of an
equidistant step train (a vicinal face), which is stabilized
by the step repulsion under equilibrium or weak under-
saturation. The critical value of f for the instability is
fo = —7r4/161~3, where [ is the initial step distance.?V)
This pairing instability is the continuation of the insta-
bility of step density given by eq. (3.1). As is easily seen
form eq. (3.1), the most unstable mode is kI = =, that is,
a pairing instability occurs first in the one-sided model.
With symmetric step kinetics similar pairing instability
occurs for noninteracting steps,3®) but the system is sta-
bilized by introducing any long range repulsive interac-
tion.

4.2  Hierarchy of bound states

As shown in §5.2 a bound state consisting of three
steps is not stable in the one-sided model, and bachelor
steps and bound pairs are basic units. Since the velocity
of a bound pair is small, a bachelor step collides with
the pair. During the collision the bachelor step.combines
with one member of the pair and the other old member
of the pair is expelled.2?) The bound steps are, in their
turn, not independent but interact each other with the
diffusion field as well as the elastic strain. If the distance
between neighboring pairs is sufficiently smaller than the
surface diffusion length zg, step pairs again can form a
bound state. The process of the bound state formation of
step pairs (Fig. 2) looks similar to that of the formation
of a step pair except that it proceeds much more slowly.
If the undersaturation is large enough (or equivalently
the repulsion A is small enough or z, is large enough),
even three pairs can form a stable bound state with very
large negative f.

The bound state consisting of three pairs seems to be
the largest in the simulation (yet we have no real proof),
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0.2

ARt

0 y _ﬁpairz 6.0

Fig. 2. An example of bound state of pairs with f =—10% in the
reference frame moving with an isolated pair. This process is
represented as 2 +1 — 1 + 2.

and all types of collisions observed are summarized as
follows. The collision of a bachelor step with a pair may
be expressed as

1+1—>2, 241 —=1+2. (4.2)

The left hand side of the arrow represents the initial
state and the right hand side the final state. With a
similar notation (see Fig. 2) the collision of step pairs is
summarized as follows.

14+1— 2,

2413, 2+2—1+3, (4.3)

3+1—-1+3,34+2—-2+3,3+3—-1+2+3.

Each bold number indicates the number of pairs in a
bound state, that is 14+ 1 — 1 and 2+ 2 — 2. For
example, the last relation in eq. (4.3) implies the fol-
lowing. Two triplet pairs collide since the one on the
right is slightly faster. After the collision the one on the
left is decomposed into a singlet pair and a doublet pair.
These three bound pairs (1, 2 and 3) finally become in-
dependent. Collision of a bachelor step with any bound
pairs, after recombinations, ends up with an emission of
a bachelor step towards the left leaving the bound pairs
unchanged:

n+l—=1+n. (4.4)

An example for evolution of a many step system is
shown in Fig. 3. Sixty four steps are placed in a cell with
a periodic boundary condition with a large undersatura-
tion f = —83x10%. The position of steps is plotted in the
frame of reference moving with an isolated pair (an or-
bit of an isolated pair is represented by a pair of vertical
lines in the graph), and therefore the actual step position
is shifted far to the left in the whole process. Initially,
steps are placed with an equal distance with a small ran-
dom fluctuation. After a very short time, step pairs are
formed, and unpaired steps move fast and repeated col-
lisions (recombinations) occur. The paired steps move

Masahide SATO and Makio UWAHA
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1 x8

)

1

16 x 87*

Fig. 3. Evolution of 64 steps in the moving frame. f=-8%x10%
(a) 0<t<8%and (b) 16 x 874 << 17 x84

slowly and they start to form three body bound states
(Fig. 3(a)). A final steady state combination, which con-
sists of eight triplet pairs, four pairs and eight singles in
the present case, is reached after a long time (Fig. 3(b)).

§5. A Few-Body Bound States in the General
Asymmetric Model

The one-sided model is the extreme case that empha-
sizes the asymmetry of step kinetics. In general some
features we have seen are expected to change with the
strength of the asymmetry. In this section we study the
effect of general asymmetry in the step kinetics on bunch-
ing instability.

5.1 Pairing instability

First we investigate the occurrence of pairing insta-
bility. We assume there are only two steps at §; and
92 (1 < @2) on the crystal surface. By using the dis-
tance between two steps | = §j, — §1, the dimensionless
velocities of both steps are given by

din _ (coshl+ A sinhl)(f — %) — (F+17%)
dt (A +Ay)coshi+ (14 A_\y)sinhi
1 7 53
Ty VT 5.1
+1+/\_(f e (5.1)
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- - o TN(F L T8\ (F_ 7-3 By combining egs. (5.1) and (5.2), the change of the step
-d—Z{—Q— = (coshl+ At smhl)(f ) = (-l = ) distance is given by
dt (A= + Ay)coshl+ (14 A_X;)sinhl
f+173%). 5.2
) (52)
al _ (N2 =2 fel + F(D)I~ 53)
dt [\~ +Ay)coshi+ (14 Ay )sinhi](1+ M) (1 +A2)’
where
F) =[2+ A+ +A)@+222) + (1 4+ A1) (1 +A-) (A + A-)]sinhl
F{2 A+ 2)Op +22) +2(1 +Ax) (14 )] coshl
+2(1+ 201+ A0). (5.4)

In the steady state, di/df = 0, f satisfies

;P03 5 s
f=—%-x (55)
If A_ > )y, the stability boundary in f-I diagram is
similar to Fig. 1 of ref. 20. When the undersaturation
exceeds a critical value, there appear two steady step
distances 5 and I, (I; < I): I is the stable and'ly is
unstable. When the initial step distance is larger than
lu, the repulsion between steps overcomes the attractive
force by the surface diffusion field, and the steps sepa-
rate. When the initial step distance is smaller than Zu,
the step distance becomes l5 and a stable > pair is formed.
At the critical undersaturation, /5 and [, coincide and
the critical step distance I, is determlned by df / dl =0
with eq. (5.4). The critical pair size I, is insensitive to
the kinetic coefficients, and mainly determined by the
form of step interaction, for example [, ~ 3 /2 with the
elastic repulsion (v = 2). The critical undersaturation
strongly depends on the asymmetry of the step kinetics,
and expressed as

8 \_4+A. 3
___27()\——_)\” ()\+ 4 A > )\.|_)\_ > 1)

. 8e2 A A
fC ~ ——2—7—@ ()\.,.)\_ > A-}- + )\_ > 1)

16(e? + 3/2
— - > 1 - ).
ﬁH(/\_ —) (I> A +A-> A 000)
(5.6)
The critical undersaturation becomes very large if asym-

metry is weak. Thus a strong asymmetry is necessary
for the pairing.

5.2 Formation of three-body bound state

Although simple bound state of more than three steps
does not appear in the one-sided model, it is observed
in real systems.!) Since conditions for the formation of
a three-body bound state are in general not simple, we
have to rely on numerical calculation. Figure 4 shows the
parameter region of Ay for the formation of three-body
bound state. When the undersaturation is sufficiently
large, a three-body bound state appears if A, is small
and very asymmetric. As the undersaturation increases,
the parameter area for the three-body bound state be-
comes larger. The maximum values of Ay and A\_ in

this region are approximately proportional to f 1/3, This
simple relation is valid when the undersaturation is large
so that the step distances in the bound state are much
smaller than the surface diffusion length.

In some limiting cases we can study conditions for the
formation of three-body bound state analytically. From
numerical analysis we learned that the three-body bound
state is formed in the same way with repulsion only be-
tween nearest neighbor steps. Therefore nearest neigh-
bor interaction is essential. For simplicity we assume
that the step repulsion acts only between nearest neigh-
bors, and strong asymmetry in kinetics as Ay = 0 and
A~ > 1. When there are only three steps, Step 1, Step 2
and Step 3 at 71, 72 and g3 (1 < %2 < ¥3) on the sur-
face with small distances I3 (= §2 — §1) and la2(= §3 — =)
such that A_l1, A\_l» < 1, the velocities of the steps are
approximately given by

r T T T T | T T T T | T T
8 - -
6 - -
Ar b i
4 - |
2 -
- 4

0 it ‘. |

0 50 100 150
A
Fig. 4. Parameter region where the three-body bound state ap-

pears. The different hatching represents various undersatura-
tion. f = —0.83 x 104, —1.0 x 104, —1.63 x 104, —2.0% x 104, for
the increasing order.
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Once a bound state is formed, the three steps move
steadily: dl;/dt = 0 and dly/d¢ = 0. These two con-
ditions determine the step distances as

(5.10)
(5.11)

i; — 21/3|f|—1/3’
B = 11,

The stability of this configuration is tested by giving a
small perturbation 5l~1 to the upper terrace and observing
if the first step escapes. From egs. (5.7), (5.8) and (5.9),
the dimensionless growth rate of the perturbation @ is

given by
o= ()\_ - 3) 5
A_ L) B

Thus for the three-body bound state to be stable, A_
needs to be smaller than the critical value,

~\ 1/3
. _ o[ 171
o)

The above relation and the ratio of the distances ob-
tained from eqgs. (5.10) and (5.11), I3/l3 = 2/3 agree
with the numerical result for large undersaturation.

In the above configuration, the local undersaturations
at the three steps satisfy the relation, fo > fi > fg. In
the one-sided model the distribution of the adatom den-
sity is shown in Fig. 5(a). With an increase of the upper
step distance Iy (the left side is higher than the right),
Step 1 increases the area on the right, where Step 1 emits
atoms, but Step 2 does not increase its area on the right.
Consequently Step 1 increases the velocity, and Step 2
cannot catch up with Step 1. Therefore the three-body
bound state is unstable in the one-sided model. On the
other hand when the three-body bound state is formed
with A_ < A*, the distribution of the adatom density
is very different as shown in Fig. 5(b). Step 2 emits
atoms onto terraces on both sides, and Step 1 absorbs
atoms from the terrace on the right. With an increase of
the step distance l~1, Step 2 increases the area for emit-
ting atoms while Step 1 increases the area for absorbing
adatoms. Consequently Step 1 decreases the velocity and
Step 2 increases the velocity. Therefore Step 2 can catch
up with Step 1 and the three-body bound state is stable.

Near the critical resistance \* , strange behavior is ob-
served. When A_ is slightly larger than A\* two step pairs
oscillate as shown in Fig. 6. The lower side pair on the
right is faster than the upper side pair, and they collide.
At first the upper step in the upper pair is expelled.
Since the three-body bound state is unstable with this
parameters, the three steps left behind cannot form a
three-body bound state, and the next step is expelled
too. Since the lower step is faster than the upper step,
they form a step pair again. And the whole process is
repeated; the collision of two pairs, the collapse of the
upper pair and the reformation of the upper pair.

In the numerical simulation a four-body bound state
is formed with an increase of undersaturation. The pa-
rameter region is similar to that for a three-body bound
state. Though we have no evidence, bound state consist-
ing of more steps may be possible with extremely large
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Fig. 6. The oscillation of the two step pairs in the moving frame
with a velocity of three-body bound state when Ay = 2, A_ = 40
and f = —10%.

unrealistic undersaturation when the step kinetics are
fast and the Schwoebel effect is sufficiently large.
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5.8 Velocity of a step pair and a three body bound state
The velocity of an isolated step is proportional to the
undersaturation and given by eq. (2.6) as

2+ A +A)f
A+ )+ r)

When a step pair is formed, the step distance and the
undersaturation satisfv eq. (5.5). In the large undersat-
uration the step distance is very small, and given by

A FA) (A +A0)+H4(1+24) (T+A2)

~
~ =

A+ =2 ) A +A)f

(5.14)

U=

1/3

—~n

(5.15)
The resultant velocity of the pair is

414+ X +20)f
CHA+2) Qs+ A0 +H41+ 20X+ A)
(5.16)
This result is different from that of the one-sided
model,??) where the velocity of a step pair is propor-
tional to |f|>/%. In the one-sided model the velocity of
the upper step is determined by the diffusion current
on the lower side terrace. The terrace width between
the steps is determined by the competition between the
surface diffusion and the repulsion, and the velocity de-
pends on the form of the repulsion. In the present case
the velocity of the upper step is determined by the sur-
face diffusion for both side terraces. With the large |f]
the surface diffusion onto the left upper terrace finally
dominates and recovers the linear dependence of the ve-
locity on f. By using egs. (5.10) and (5.11), the velocity
of the three-body bound state in Ay =0 and A_ > 1is
also obtained as

Upair ~

Fthweo & %i_m. (5.17)

Figure 7 shows the dependence of these velocities on
the undersaturation obtained by numerical simulation.
A solid line, a broken line and a dotted chain line rep-
resent the velocity of an isolated step, a step pair and
a three-body bound state. The velocity of an isolated
step is always proportional to the undersaturation, which
agrees with eq. (5.14). The step pair appears when |f] is
about 10. Near the critical undersaturation the velocity
of the step is not proportional to |f] but to |f|3/2. With
an increase of the undersaturation, the velocity of the
step pair gradually becomes proportional to | f |. From
the above argument we expect that the velocity of an
n-body bound state is also proportional to the undersat-
uration if the |f| is sufficiently large.

§6. Summary

In this paper we studied the change of the character
of bound states by the change of the strength of asym-
metry in the step kinetics. As regard to the formation of
a step pair, the strength of asymmetry affects mainly on
the critical undersaturation. The critical undersatura-
tion becomes larger as the asymmetry decreases. Except
that, the condition for the pair formation in the general
asymmetric model is similar to the one-sided model. The
drastic changes appear in the many step system. With
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Fig. 7. Dependence of the velocities of bound states on under-
saturation. With an increase of undersaturation, each line ap-
proaches gradually to the one of dotted lines, which are propor-
tional to |f]. '

a certain asymmetry, many-body bound states, which
do not appear in the one-sided model, can exist stably.
They appear when the step kinetics is fast and the asym-
metry of step kinetics for both side terraces is sufficiently
large. The parameter region of A1 where the many-body
bound state is stable becomes large with increasing of
undersaturation. The upper limit of A_ is proportional
to | |1/3, of which the exponent depends on the form of
step repulsion.

In the general asymmetric case near the critical point,
the most unstable mode for an equidistant step train is in
the long wavelength, which is in contrast to the pairing
instability in the one-sided model. As a result of com-
petition between the repulsion and the surface diffusion,
the fastest growing fluctuation of a particular wavelength
is selected. The density modulation of steps induced
by the instability moves slowly in the same direction
as the steps, and its amplitude grows exponentially as
the Mullins-Sekerka instability.?®) When the amplitude
of fluctuation becomes large, nonlinear effects come into
play. Taking account of the nonlinear effect near the
critical undersaturation, the evolution equation of step
density obeys the Benney equation with a large disper-
sion term. This result corresponds to the appearance of
an array of equidistant bunches. The predicted profile
exhibits a sharp change of step density at the lower side
and a gradual change at the upper side.

In this paper we have assumed A_ > Ay. If the
Schowebel effect is opposite, Ay > A_, that is, the
adatoms on the upper terrace are incorporated into the
step more easily than that on the lower terrace, bunching
occurs in growth above a critical supersaturation since
the problem is symmetric with the change of variables
y— —y,and f — —f.

Although we do not yet have a clear example of bunch-
ing in sublimation by the Schwoebel effect, step bunching
observed in growing crystals such as GaAs*?) and SiC*V
are also the candidates of the present mechanism.



1062

Masahide SATO and Makio UwWAHA

Acknowledgments

M. U. thanks Y. Saito for useful discussions.

The

present work is partially supported by the Grant-in-Aid
from Japanese Ministry of Education. The authors are
benefited by the interuniversity cooperative research pro-
gram of IMR, Tohoku University.

1)
2)

3)

10)
11)
12)
13)
14)
15)

16)
17)

18)

A. V. Latyshev, A. L. Aseev, A. B. Krasilnikov and S. I
Stenin: Surf. Sci. 213 (1989) 157.

A. V. Latyshev, A. L. Aseev, A. B. Krasilnikov and S. I.
Stenin: Surf. Sci. 227 (1990) 24.

Y. Homma, R. J. Mcclelland and H. Hibino: Jpn. J. Appl.
Phys. 29 (1990) L2254.

S. Stoyanov: Jpn. J. Appl. Phys. 30 (1991) 1.

A. Natori: Jpn. J. Appl. Phys. 33 (1994) 3538.

B. Houchmandzadeh, C. Misbah and A. Pimpinelli: J. Phys.
I France 4 (1994) 1843.

D. Kandel and E. Kaxiras: Phys. Rev. Lett. 76 (1996) 1114.
C. Misbah, O. Pierre-Louis and A. Pimpinelli: Phys. Rev. B
51 (1995) 17283.

C. Misbah and O. Pierre-Louis: Phys. Rev. E 53 (1996)
R4318.

M. Sato and M. Uwaha: J. Phys. Soc. Jpn. 65 (1996) 1515.
D. J. Benney: J. Math. Phys. 45 (1966) 150.

T. Kawahara: Phys. Rev. Lett. 51 (1983) 381.

T. Kawahara and M. Takaoka: Physica D 39 (1989) 43.

T. Kawahara and S. Toh: Phys. Fluids 31 (1988) 2103.

Y. Kuramoto and T. Tsuzuki: Prog. Theor. Phys. 55 (1976)
356.

G. I. Sivashinsky: Acta Astronaut. 4 (1977) 1177.

P. Manneville: Propagation in Systems Far From Equi-
librium, ed. J. E. Wesfreid et al. (Springer, Berlin, 1988)
p. 265.

R. L. Schwoebel and E. J. Shipsey: J. Appl. Phys. 37 (1966)
3682.

19)
20)
21)
22)
23)
24)

25)
26)

27)
28)
29)
30)
31)
32)
33)

34)

35)
36)
37)
38)
39)
40)

41)

(Vol. 66,

R. L. Schwoebel: J. Appl. Phys. 40 (1969) 614.

M. Uwaha: Phys. Rev. B 46 (1992) 4364.

M. Uwaha: J. Cryst. Growth 128 (1993) 92.

M. Sato and M. Uwaha: Phys. Rev. B 51 (1995) 11172.

M. Sato and M. Uwaha: Europhys. Lett. 38 (1995) 639.
W. K. Burton, N. Cabrera, and F. C. Frank: Philos. Trans.
R. Soc. London Ser A 234 (1951) 299.

Y. Saito and M. Uwaha: Phys. Rev. B 49 (1994) 10677.

A. Pimpinelli, I. Elikinani, A. Karma, C. Misbah and J.
Villain: J. Phys.: Condens. Matter 6 (1994) 2661.

D. Kandel and J. D. Weeks: Phys. Rev. Lett. 74 (1995) 3632.
B. S. Bales and A. Zangwill: Phys. Rev. B 41 (1990) 5500.
W. W. Mullins: Metal Surfaces, ed. W. D. Robertson and
N. A. Gjostein (Metall. Soc. AIME, Metals Park, 1963).

V. I. Marchenko and A. Ya. Parshin: Zh. Eksp. Teor. Fiz.
79 (1980) 257; translation: Sov. Phys. JETP 52 (1980) 129.
F. Liu and H. Metiu: Phys. Rev. E 49 (1994) 2601.

G. Ehrich and F. G. Hudda: J. Chem. Phys. 44 (1966) 1039.
W. W. Mullins and R. F. Sekerka: J. Appl. Phys. 34 (1963)
323.

M. Uwaha and P. Noziéres: Morphology and Growth Unit
of Crystals, ed. I. Sunagawa (Terra Scientific, Tokyo, 1989)
p. 17.

P. Noziéres: Solid Far from Equilibrium, ed. C. Godréche
(Cambridge Univ. Press, Cambridge, 1992) p. 1.

I. Bena, C. Misbah and A. Valance: Phys. Rev. B 47 (1993)
7408.

In ref. 10 we wrote that the bunch recedes with a sharp front
and a smooth end in negative §, which is wrong.

M. Uwaha, Y. Saito and M. Sato: J. Cryst. Growth 146
(1995) 164.

W. W. Mullins and J. P. Hirth: J. Chem. Phys. Solids 44
(1963) 1391.

H. W. Ren, X. Q. Shen and T. Nishinaga: J. Cryst. Growth
166 (1996) 217.

T. Kimoto, A. Itoh and H. Matsunami: Appl. Phys. Lett.
66 (1995) 3645.




