Ultra low level deep water 137Cs activity in the South Pacific Ocean

M. Aoyama1, Y. Hamajima2

1Meteorological Research Institute
2Low level Radioactivity Laboratory, Kanazawa University

We are measuring 137Cs concentrations of deep water samples in the subtropical gyres in the South Pacific collected during the BEAGLE2003 cruise (Aoyama et al., 2006) at an underground facility (Ogoya Underground Laboratory: OUL, Hamajima & Komura, 2004; Komura & Hamajima, 2004) to achieve extremely low background γ--spectrometry using Ge detectors with high efficiency and low background materials. A detection limit of 137Cs at the OUL is 0.18 mBq for a counting time of 600000 seconds (Hirose et al., 2005). There is a residual problem of underground γ--spectrometry for 137Cs measurements. AMP adsorbs trace amounts of potassium when Cs is extracted from seawater, therefore trace amounts of 40K cause elevation of background corresponding to energy range of 137Cs due to Compton scattering of 40K. To remove 40K from the AMP/Cs compound, a precipitation method including insoluble platinate salt of Cs was used (Aoyama and Hirose, 2008).

We did 1500000 seconds to 2500000 seconds measurements for combined samples from deep water to reduce counting error for the samples of which net activities were around 0.5 - 1 m Bq. We have obtained reliable value of 137Cs activity in the deeper layers. 137Cs activity at the layers between 2000-4500 m ranged from 14 +/- 5 mBq m^-3 to 21 +/- 9 mBq m^-3. The inventory of 137Cs from surface to 1000 m depth ranged from 270 +/- 100 Bq m^-2 to 1050 +/- 130 Bq m^-2, while the inventory from 2000 m to the sea bottom is estimated to be about 50 to 80 Bq m^-2 in this region.