
Temporal regulation of the generation of neuronal
diversity in Drosophila

言語: eng

出版者: 

公開日: 2017-10-05

キーワード (Ja): 

キーワード (En): 

作成者: 

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/2297/44394URL



 

 

1 

Temporal regulation of the generation of neuronal diversity in Drosophila 
 

Tetsuo Yasugi and Takashi Nishimura 

 

Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology 

(CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan 

Correspondence: t-yasugi@cdb.riken.jp, t-nishimura@cdb.riken.jp  

mailto:t-yasugi@cdb.riken.jp
mailto:t-nishimura@cdb.riken.jp


 

 

2 

Abstract  
For the construction of complex neural networks, the generation of neurons and glia 

must be tightly regulated both spatially and temporally. One of the major issues in 

neural development is the generation of a large variety of neurons and glia over time 

from a relatively small number of neural stem cells. In Drosophila, neural stem cells, 

called neuroblasts (NBs), have been used as a useful model system to uncover the 

molecular and cellular machinery involved in the establishment of neural diversity. NBs 

divide asymmetrically and produce another self-renewing progenitor cell and a 

differentiating cell. NBs are subdivided into several types based on their location in the 

central nervous system. Each type of NB has specific features related to the timing of 

cell generation, cell cycle progression, temporal patterning for neuronal specification, 

and termination mechanism. In this review, we focus on the molecular mechanisms that 

regulate the proliferation of NBs and generate a large variety of neuronal and glia 

subtypes during development. 
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Introduction 
To create functional neural circuits, diverse types of neurons and glia must be generated 

in a spatially and temporally regulated manner (Greig et al., 2013, Jessell, 2000, Kohwi 

& Doe, 2013, Livesey & Cepko, 2001). In the developing nervous system, multipotent 

neural stem cells proliferate and give rise to differentiating daughter cells. Extrinsic and 

intrinsic factors define the specification of neural stem cells and their descendants. 

These features are conserved between mammals and the fruit fly, Drosophila 

melanogaster. Drosophila neural stem cells, called neuroblasts (NBs), can divide 

asymmetrically to produce another self-renewing progenitor cell and a differentiating 

daughter cell. Although NBs essentially utilize the same molecular machinery for 

establishing asymmetric cell division, they can give rise to different numbers and 

different types of progeny. Over the past few decades, the molecular and cellular 

machineries that regulate NB proliferation have been intensively studied. In this review, 

we focus on the temporal control of NBs. We address the classification of NBs that are 

located in different positions within the developing central nervous system (CNS) and 

discuss different modes of proliferation. We also describe the mechanisms of NB 

generation, reactivation after quiescence, and termination. Additionally, we present 

birth order-dependent mechanisms that produce distinct types of neurons and glia over 

time.  

 

Overview of neural development in Drosophila 

There are two phases in neural development in Drosophila: the embryonic and 

larval/pupal stages. Embryonic NBs produce neurons of the larval CNS and a part of the 

adult CNS, whereas larval/pupal NBs produce neurons that will form approximately 

90 % of the adult CNS (Truman & Bate, 1988). During embryonic stages, NBs 

delaminate from the neuroectoderm (Fig. 1A). Following the production of embryonic 

neurons, most embryonic NBs stop proliferating and become quiescent (Fig. 1C) (Ito & 

Hotta, 1992). The exceptions for this are four mushroom body NBs (MB NBs) and one 

lateral NB in each hemisphere that continue to proliferate during the transition from 

embryo to larva (Fig. 1C).  

The larval CNS is morphologically divided into three parts: the medially located 

central brain; the optic lobe, which is located at the lateral side of the brain; and the 

ventral nerve cord (VNC). The VNC is further subdivided into thoracic and abdominal 
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regions. Larval NBs can be subdivided into several types according to their positions 

and mode of cell division (Fig. 1B). Furthermore, each type of NB shows a different 

pattern of proliferation (Fig. 1C). MB NBs, which are generated during the embryonic 

stage, continuously produce neurons until the late pupal stage (Ito & Hotta, 1992, 

Truman & Bate, 1988). NBs in the central brain and thoracic VNC stop proliferating at 

the early pupal stage, whereas abdominal VNC NBs die at the mid-third instar stage. 

Compared to NBs in the central brain or in the VNC, NBs in the optic lobe have the 

characteristic feature of producing asymmetrically dividing NBs during the larval stages. 

NBs in the optic lobe are generated from neuroepithelial cells (NE cells) during the 

larval stage and stop proliferating at the early pupal stage (see below). 

NBs can be subdivided into three categories based on their method of cell division 

(Type 0, I, and II) (Fig. 1D). Type I NBs are the most common and divide to produce 

another Type I NB and a ganglion mother cell (GMC). The GMC divides again to 

generate two neurons or glia. Type II NBs are located in the posterior dorsal region of 

the larval brain and undergo asymmetric cell divisions to produce intermediate neural 

progenitors (INPs) (Bello et al., 2008, Boone & Doe, 2008, Bowman et al., 2008). INPs 

can self-renew and divide several times to generate GMCs and are therefore recognized 

as transit amplifying NBs. Recently, Type 0 NBs, which are located at the posterior tips 

of the outer proliferation center (tOPC) in the larval optic lobe, have been reported 

(Bertet et al., 2014). Type 0 NBs divide and directly produce post-mitotic neurons. 

Although young tOPC NBs show a mode of Type 0 division, these NBs later divide to 

produce GMCs (Bertet et al., 2014). Further analysis will clarify how many NBs 

undergo direct neurogenesis and whether it is a common feature of NBs to switch their 

mode of division during development.  

Although there are several types of NBs that show different modes of 

proliferation and lineage specification, they essentially utilize the same molecular 

mechanism for establishing asymmetric cell division (Fig. 1E) (reviewed by Chia et al., 

2008, Gonzalez, 2007, Homem & Knoblich, 2012, Knoblich, 2008). During mitosis, the 

Par complex proteins Bazooka (Baz)-Par6-atypical protein kinase C (aPKC) localize to 

the apical cortex (Kuchinke et al., 1998, Petronczki & Knoblich, 2001, Wodarz et al., 

2000). The Par complex directs three cell fate determinants to localize to the basal 

cortex. These cell fate determinants, which include the homeodomain transcription 

factor Prospero (Pros), the NHL domain protein Brain tumor (Brat), and the PTB 
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domain protein Numb, are selectively segregated into the GMC and induce neural 

differentiation (Bello et al., 2006, Betschinger et al., 2006, Doe et al., 1991, Hirata et al., 

1995, Knoblich et al., 1995, Lee et al., 2006, Rhyu et al., 1994). Brat and Pros require 

the adaptor protein Miranda, whereas Numb requires Partner of numb (Pon) for their 

basal localization. The Par complex interacts with the cytoskeleton adaptor protein 

Inscuteable (Insc) and recruits the Mushroom body defect (Mud)-Partner of inscuteable 

(Pins)-Gαi complex to the apical cortex. The Mud-Pins-Gαi complex regulates the 
orientation of the mitotic spindle and thereby ensures the asymmetric segregation of cell 

fate determinants into GMCs (Bowman et al., 2006, Izumi et al., 2006, Kraut & 

Campos-Ortega, 1996, Kraut et al., 1996, Schaefer et al., 2001, Schaefer et al., 2000, 

Schober et al., 1999, Siller et al., 2006, Wodarz et al., 1999). These asymmetrically 

localized proteins are segregated into either an apical daughter cell, which retains the 

stem cell fate, or a basal GMC, which undergoes differentiation.  

Asymmetric cell division of neural progenitor cells is also observed in 

mammalian neurogenesis. After the expansion of neuroepithelial cells by symmetric cell 

division, neuroepithelial cells differentiate into radial glial cells, which divide 

asymmetrically to self-renew and to produce neurons or intermediate progenitor cells 

(Matsuzaki & Shitamukai, 2015). During asymmetric cell division of radial glial cells, 

Numb and Numb-like are asymmetrically distributed and regulate the behavior of 

daughter cells during mouse cortex development (Shen et al., 2002, Zhong et al., 1996). 

It is interesting to speculate that asymmetric protein localization during cell division of 

neural progenitors is fundamental for cell fate determination and the final number of 

neural cells. 

 

Generation and temporal patterning of embryonic NBs 
During embryonic stages, NBs delaminate from the neuroectoderm (Fig. 1A). Proneural 

genes of the achaete-scute complex (AS-C) including achaete (ac), scute (sc), and lethal 

of scute (l’sc) are expressed in proneural equivalence groups of neuroectodermal cells 

and give those cells the potential to differentiate into NBs (Cabrera et al., 1987, Martin-

Bermudo et al., 1991, Skeath & Carroll, 1992). Within the ‘proneural cluster’ cells, 

single cells are selected to be NBs through the Delta (Dl)/Notch-dependent lateral 

inhibition mechanism, and other cells differentiate into epidermal cells (Artavanis-

Tsakonas & Simpson, 1991, Hassan & Vaessin, 1996).  
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      To achieve neuronal diversity, NBs produce different types of neurons in an 

invariant order. During embryonic development, NBs sequentially express at least four 

transcription factors: Hunchback (Hb), Krüppel (Kr), Pdm, and Castor (Cas) (Fig. 2) 

(Brody & Odenwald, 2000, Isshiki et al., 2001, Kambadur et al., 1998). These 

temporally expressed factors are inherited by the progeny of NBs and lead to their 

differentiation into different types of neurons and/or glia (Fig. 2) (Brody & Odenwald, 

2000, Isshiki et al., 2001, Kambadur et al., 1998). Hb and Kr specify first-born and 

second-born cell fates, respectively (Isshiki et al., 2001). In vitro experiments have 

shown that this Hb-Kr-Pdm-Cas progression occurs in a cell-intrinsic manner, where 

one temporal factor stimulates the expression of the next while also inhibiting the 

expression of previous factor (Fig. 2) (Grosskortenhaus et al., 2005). First, Hb induces 

the expression of Kr. Next, Kr promotes the expression of Pdm, which in turn down-

regulates Kr. Similarly, Pdm promotes Cas expression, which in turn inhibits Pdm 

expression. These ‘positive feed-forward’ and ‘negative feed-back’ networks ensure the 

temporal transitions between these transcription factors. In addition, another factor, 

Seven Up (Svp), is involved in the progression of the temporal window by terminating 

Hb expression (Fig. 2) (Kanai et al., 2005). Svp is transiently expressed in Hb+ NBs and 

subsequently switches off Hb expression to progress the NB into the next Kr+ window 

(Kanai et al., 2005). One remaining question is whether this temporal progression is 

coupled to the cell cycle. The transition from the Hb+ window to the Kr+ window 

requires cytokinesis, whereas the Kr-Pdm-Cas transition is cell cycle-independent 

(Grosskortenhaus et al., 2005). Thus, the mechanism that coordinates the intrinsic 

molecular clock and the number of progeny remains unclear.  

A similar form of temporal regulation is found in mammals during neural 

development. In the developing mouse retina, retinal progenitor cells (RPCs) 

sequentially produce specific retinal cell types at varying times during development. 

They first produce retinal ganglion cells, horizontal cells, and cone photoreceptor cells, 

followed by amacrine cells. At later stages, RPCs generate rod photoreceptor cells, 

bipolar cells, and Müller cells (Cepko, 2014). Ikzf1, a mouse ortholog of Hb, is 

expressed during early stages of development and defines early temporal competence 

(Elliott et al., 2008). Casz1, a mouse homolog of Cas, is expressed in RPCs at mid/late 

stages (Mattar et al., 2015). Casz1 suppresses the production of early-born retinal cell 

types and promotes mid- and late-born neural fates (Mattar et al., 2015). Additionally, 
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Ikzf1 also acts as a temporal regulator for determining early neuronal fate in the 

cerebral cortex (Alsio et al., 2013). Based on these similarities between Drosophila and 

mammals, it is interesting to speculate that sequential expression of transcription factors 

and birth order-dependent determination of neuronal identity are fundamental 

mechanisms to generate neuronal diversity. 

 

Quiescence of embryonic NBs and re-entry into cell cycle during the larval period 
Most embryonic NBs stop proliferating and undergo quiescence at the end of 

embryogenesis (Fig. 1C) (Ito & Hotta, 1992). Temporal factors and the mechanisms of 

asymmetric cell division determine the timing by which NBs enter quiescence. Pros is 

one of the basal components during asymmetric cell division, and it acts as a cell fate 

determinant (Fig. 1E) (Doe et al., 1991). A high level of Pros expression induces cell 

differentiation, and the loss of Pros promotes the self-renewal of NBs (Bayraktar et al., 

2010, Cabernard & Doe, 2009, Choksi et al., 2006). Pros shows a transient nuclear 

localization during the stage in which NBs exit the cell cycle. Transient nuclear Pros 

expression at low levels is responsible for inducing NB quiescence (Lai & Doe, 2014). 

Embryonic temporal factors also regulate the timing of quiescence induction. NB 

quiescence occurs precociously in Pdm mutants and is delayed in cas mutants; the 

nuclear localization of Pros is shifted earlier or later in these mutants, respectively (Lai 

& Doe, 2014, Tsuji et al., 2008). The timing of quiescence ultimately affects the final 

number of neurons: Pdm mutants produce fewer neurons, and cas mutants produce 

more neurons than wild type (Tsuji et al., 2008). These findings demonstrate that 

temporal factors regulate both neuronal cell fate and also the number of progeny.  

Dormant NBs begin dividing again after hatching (Fig. 1C) (Truman & Bate, 

1988). NB reactivation occurs in two steps: NBs first re-grow their size and then re-

enter the cell cycle (Fig. 3A). Food intake and the cell-intrinsic activation of Insulin-like 

Receptor (InR)/PI3K/Target of Rapamaysin (TOR) signaling in NBs regulate the 

enlargement of NBs (Fig. 3B) (Britton & Edgar, 1998, Chell & Brand, 2010, Sousa-

Nunes et al., 2011). Glial-derived Drosophila insulin-like peptides (Dilps) activate 

InR/PI3K/TOR signaling in NBs to restore NB size. The secretion of Dilps in glia are 

regulated in part through gap junctions in the subperineurial glia, which cover the brain 

surface and act as the blood-brain barrier (BBB) in Drosophila (Speder & Brand, 2014). 

In addition, the fat body, which is the adipose tissue in Drosophila, plays a critical, non-
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cell autonomous role in the reactivation of NBs (Britton & Edgar, 1998, Sousa-Nunes et 

al., 2011). The fat body secretes a thus far unknown ‘fat body derived signal (FDS)’, 

which might act on glia or might act directly on NBs to cause them to regrow. The 

identification of the FDS and the analysis of the relationship between FDS and 

InR/PI3K/TOR signaling would further facilitate our understanding of this first step of 

reactivation. 

After undergoing enlargement, NBs begin to proliferate (Fig. 3C). Anachronism 

(Ana) is a secreted glycoprotein that prevents premature re-entry into the cell cycle 

(Ebens et al., 1993). Though it has been proposed that Ana expression in glia modulates 

the timing of reactivation, a recent finding showed that miR-124 expression in NBs 

regulates NB proliferation by binding to the 3’UTR of Ana, suggesting the possibility 

that Ana is also required in NBs (Ebens et al., 1993, Weng & Cohen, 2012). Terribly 

reduced optic lobes (Trol), which is a Drosophila Perlecan, promotes the G1-S phase 

transition in NBs either by inactivating Ana function or by acting downstream of Ana 

(Datta, 1995, Voigt et al., 2002). In the developing brain, Trol is localized at the brain 

surface and modulates the Hedgehog (Hh) and FGF signaling pathways to promote NB 

reactivation (Park et al., 2003). Hh and FGF operate in a mutual, positive feedback loop, 

and FGF is epistatic to Hh (Barrett et al., 2008). The Drosophila steroid hormone 

ecdysone and the homeodomain protein Even skipped (Eve) are also involved in the 

G1-S phase transition step (Datta, 1999, Park et al., 2001). It is possible that ecdysone 

regulates the temporal reactivation of NBs because ecdysone is the major endocrine 

hormone that regulates developmental timing (Yamanaka et al., 2013). Interestingly, 

Eve function is not required in the CNS. Because ecdysone can rescue the eve mutant 

phenotype, Eve either acts upstream of ecdysone or modulates ecdysone. Because the 

eve mutation enhances the trol mutant phenotype, it is possible that Eve regulates the 

signaling activity of Hh and/or FGF. Another factor regulating NB reactivation is the 

lipoprotein Lipophorin (Lpp), which is localized in subperineurial glia and inside the 

brain. Lpp likely contributes to the proliferation of NBs by transporting GPI-linked 

proteins from the circulating hemolymph (insect blood) through the BBB and into the 

brain (Brankatschk & Eaton, 2010). These findings demonstrate the importance of glia 

surrounding the brain and NBs for the reactivation process. These glia may act as a 

niche to selectively transduce and integrate extrinsic signals coming from outside the 

brain to inhibit or promote cell growth and the proliferation of NBs.  
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Generation of optic lobe NBs during larval period 
Visual information received by the retina is processed in the optic lobe. The adult optic 

lobe consists of four ganglia: the lamina, medulla, lobula, and lobula plate (Fig. 4A). 

The primordium of the optic lobe invaginates from the posterior procephalic region of 

the head epidermis during the embryonic stage (Green et al., 1993). During the early 

larval stage, the NE sheet of the optic lobe primordium is divided into the outer 

proliferation center (OPC) and the inner proliferation center (IPC) (Fig. 4B and 4C) 

(Hofbauer & Campos-Ortega, 1990, White & Kankel, 1978). Cells in the OPC primarily 

produce lamina neurons and medulla neurons, whereas cells in the IPC differentiate into 

lobula distal cell neurons, lobula plate neurons, and lobula neurons. During OPC 

development, NE cells first proliferate through repetitive symmetric cell divisions. This 

NE expansion is assured by the nutrition supply and the activation of InR/TOR 

signaling in NE cells (Lanet et al., 2013). Following the expansion of NE cells, the 

transition from NE cells to NBs occurs at the medial edge of the OPC, and this 

transition moves from the medial to the lateral OPC (Fig. 4D) (Egger et al., 2007, Egger 

et al., 2011, Yasugi et al., 2008). The proneural wave, which is indicated by the 

transient expression of the proneural factor L’sc, sweeps across the NE sheet from the 

medial to the lateral region and determines the timing of the transition from NE cells to 

NBs (Yasugi et al., 2008). Several signaling pathways are involved in the transition step, 

including EGFR, Fat/Hippo, JAK/STAT, and Notch. EGFR signaling is required for NE 

expansion, L’sc expression, NB differentiation, and the progression of the proneural 

wave (Morante et al., 2013, Yasugi et al., 2010). Fat/Hippo signaling regulates the 

proliferation of NE cells and also promotes the progression of the proneural wave by 

regulating the transduction of EGFR signaling (Kawamori et al., 2011, Reddy et al., 

2010, Richter et al., 2011). Unpaired, a ligand of JAK/STAT signaling, is expressed in 

the lateral-most NE sheet and activates the signal in the lateral side of the NE. The 

activation of JAK/STAT signaling prevents the precocious progression of the proneural 

wave (Ngo et al., 2010, Wang et al., 2011a, Yasugi et al., 2008). Notch signaling is 

transiently activated at the transition zone between NE cells and NBs and inhibits 

precocious NE to NB transition (Ngo et al., 2010, Orihara-Ono et al., 2011, Reddy et al., 

2010, Wang et al., 2011b, Weng et al., 2012, Yasugi et al., 2010). Ecdysone signaling 

also regulates the transition step by inhibiting Dl expression, although the precise 
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mechanism by which the systemic regulation assures this step-by-step progression 

remains unclear (Lanet et al., 2013). The progression of the proneural wave must be 

tightly regulated because its precocious progression results in fewer medullar neurons 

(Yasugi et al., 2008).  

Compared to OPC NBs, less has been reported about NB development in the IPC. 

A recent paper showed an interesting feature of IPC differentiation (Fig. 4E) (Apitz & 

Salecker, 2015). IPC NBs are located at the distal surface of the optic lobe (d-IPC), and 

these NBs are differentiated from NE cells that are located at the more proximal region 

of the IPC (p-IPC). These d-IPC and p-IPC regions are connected by extensive cell 

streams. Progenitor cells emerge via an epithelial-mesenchymal transition (EMT)-like 

mechanism in the p-IPC region and migrate into the d-IPC region through the cell 

streams. In the d-IPC, progenitor cells differentiate into asymmetrically dividing NBs. 

L’sc is expressed in NE cells in the p-IPC and is required for the proper supply of IPC 

NBs.  

 

Temporal regulation in larval NBs 
Similar to embryonic NBs, larval NBs and INPs sequentially express transcription 

factors to generate neuronal diversity. In Type II lineages, INPs sequentially express at 

least three transcription factors (Fig. 5A) (Bayraktar & Doe, 2013). Newly 

differentiated INPs express the SOX-family protein Dichaete (D), whereas older INPs 

express the mammalian Pax6 homolog Eyeless (Ey). The CP2 family member Grainy 

head (Grh) is expressed in middle-aged INPs with some overlap with D or Ey. Like the 

temporal factors in embryonic NBs, there are feed-forward activation and feed-back 

repression mechanisms between the three factors. In young INPs, D induces Grh 

expression, whereas in middle-aged INPs, Grh shuts off D expression and promotes Ey 

expression. In old INPs, Ey terminates Grh expression. In addition to these interactions 

between temporal factors, the Prdm protein Hamlet (Ham) regulates temporal patterning 

by limiting the self-renewal capacity of INPs (Eroglu et al., 2014). Ham is expressed in 

mature INPs and regulates both the transition from Grh+/Ey+ INPs to Grh-/Ey+ INPs and 

timely cell-cycle exit. Temporal factors also define post-mitotic cell types: young INPs 

produce Brain specific homothorax (Bsh)+ neurons or D+ neurons, whereas old INPs 

produce Twin of eyeless (Toy)+ neurons or Repo+ glia. In addition to temporal 

patterning in INPs, Type II NBs express D and Cas, which is followed by the 
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expression of Svp (Bayraktar & Doe, 2013, Maurange et al., 2008). Repo+ glial cells are 

produced during the early NB / old INP window, and Bsh+ neurons are produced from 

the late NB / young INP window (Fig. 5A). These findings suggest that the combination 

of the temporal status of NBs and INPs can expand neuronal diversity. Importantly, the 

down-regulation of Ey causes the anatomical failure of the brain and produces defects in 

negative geotaxis behavior, demonstrating a close relationship between brain structure 

and neural function (Bayraktar & Doe, 2013). 

The adult medulla consists of more than 70 neuronal types with approximately 

40,000 neurons. OPC NBs temporally and sequentially express several transcription 

factors to produce the neuronal diversity in the adult stage. OPC NBs can be subdivided 

into several regions, including main OPC NBs and tOPC NBs (Fig. 4B). In the main 

OPC, NBs sequentially express Homothorax (Hth), Klumpfuss (Klu), Ey, Sloppy paired 

(Slp), D, and Tailless (Tll) (Fig. 5B and 5C) (Li et al., 2013, Suzuki et al., 2013). 

Because the differentiation of NE cells to NBs progresses in a medial to lateral direction, 

young, Hth+ NBs are located laterally, and old, Tll+ NBs are located medially. The 

expression patterns of these temporal factors along with some overlaps in expression 

produces approximately 12 NB types. The tOPC is defined by Wingless (Wg) 

expression in the posterior region of the optic lobe, also referred as the glial precursor 

cell (GPC) area (Dearborn & Kunes, 2004, Perez & Steller, 1996). tOPC NBs use a 

similar but different set of genes from NBs in the main OPC as temporal factors (Fig. 

5D) (Bertet et al., 2014). Newly differentiated tOPC NBs sequentially express 

Distalless (Dll), Ey, Slp, and D. Dll+ NBs directly generate neurons expressing Dll, 

Spalt major (Salm) and Runt (Run). Ey+ NBs produce Svp-positive neurons. Slp+ NBs 

produce Toy+ neurons, and D+ NBs produce D+ and Toy+ neurons. Interestingly, Notch 

signaling induces cell death in NotchON cells from the Ey+ window and in NotchOFF 

cells from the Slp+ and D+ windows. However, it is not yet clear how the Caspase-

dependent cell death mechanism responds the Notch activity nor how the cellular status 

changes between Ey+ and Slp+ windows.  

NBs in the d-IPC show an additional form of temporal competence where two 

phases of NBs generate different types of neurons (Fig. 5E and 5F) (Apitz & Salecker, 

2015). Young NBs express D and Asense (Ase) and give rise to Toy+ distal cell neurons, 

which project neurites to the medulla and lobula or the medulla and lamina in the adult 

stage, whereas old NBs express Tll, Atonal (Ato), and Dachshund (Dac) and give rise to 
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Dac+ lobula plate neurons (Apitz & Salecker, 2015). Similar feed-forward and feed-

back regulatory mechanisms exist between these two stages, as D induces Tll 

expression, and Tll shuts down Tll expression. Thus, the serial expression of 

transcription factors in NBs and their mutual interactions are key mechanisms for 

producing the vast variety of neurons and glia found in the CNS. It is intriguing to ask 

whether cell cycle length and extrinsic factors also affect the progression of the 

temporal windows described above. 

 

Temporal regulation in mushroom body neurons 

MB NBs sequentially produce three types of neurons with distinct axonal projection 

patterns (Fig. 6A) (Lee et al., 1999). From the embryonic to mid-third instar larval 

stages, MB NBs generate γ neurons, and between the mid-third instar stage and 

puparium formation, MB NBs generate α’/β’ neurons. After puparium formation, MB 

NBs produce α/β neurons. Cell-extrinsic and intrinsic factors regulate the transitions of 
MB neurons. The BTB-zinc finger protein Chronologically inappropriate 

morphogenesis (Chinmo) is highly expressed in MB neurons during early stages, and its 

expression gradually decreases during development (Fig. 6A) (Zhu et al., 2006). In 

Chinmo loss-of-function mutants, the number of late-born α/β neurons increases at the 

expense of early-born γ and α’/β’ neurons, suggesting that the temporal gradients of 
Chinmo determine neuronal fate (Zhu et al., 2006). Another BTB-zinc finger protein, 

Abrupt (Ab), is highly expressed in MB neurons during the larval stages, and its down-

regulation during puparium formation is required for the switch from α’/β’ to α/β 
neuronal generation (Fig. 6A) (Kucherenko et al., 2012). Furthermore, ecdysone 

signaling acts as an extrinsic temporal regulator for the transition from α’/β’ neurons to 

α/β neurons (Fig. 6A and 6B). Ecdysone induces the expression of let-7 microRNA, 

which is required for the timely transition from α’/β’ neurons to α/β neurons through 
the negative regulation of Chinmo and Ab expression (Fig. 6B) (Chawla & Sokol, 2012, 

Kucherenko et al., 2012, Sokol et al., 2008, Wu et al., 2012). Contrary to these findings, 

the genetic ablation of prothoracicotropic hormone (PTTH)-producing cells, which 

results in the inhibition of ecdysone synthesis and thus elongates the larval period, does 

not shift the transition timing from α’/β’ to α/β neuronal generation (Lin et al., 2013). 
Further experiments will reveal the molecules that act upstream of Chinmo and regulate 

the γ to α’/β’ transition and the precise mechanism of ecdysone signaling.  
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Developmental plasticity in response to nutrient conditions 
Animal development and tissue growth are often influenced by environmental factors 

such as nutrition. It is challenging to understand how the intrinsic growth program 

adapts to the changes in the environment during development. This is also the case for 

the spacio-temporal production and diversification of the nervous system. Indeed, 

differences in nutritional conditions and in the timing of systemic growth affects the 

proliferation of a subset of NB types. One of the examples demonstrating neuronal 

plasticity in response to nutritional conditions is MB NBs. In this case, larvae that are 

cultivated in protein-starved conditions before being placed to the normal food produce 

excess γ neurons, from MB NBs suggesting that MB NBs are highly plastic to nutrient 
conditions (Lin et al., 2013). In contrast, two antennal lobe lineages, anterodorsal 

projection neuron (adPN) lineage and lateral antennal lobe (lAL) lineage, do not show 

any differences in their final numbers of neurons nor in the neuronal cell types 

generated under protein starvation conditions (Lin et al., 2013). In these lineages, both 

NB proliferation and temporal fate transitions are delayed under nutrient-restricted 

conditions. Similarly, nutritional restriction does not affect the diversity of the neuronal 

cell types produced by OPC NBs, although the total number of neurons is reduced due 

to the decrease of the overall number of OPC NBs (Lanet et al., 2013). These studies 

reveal that both nutrient-dependent and independent growth programs exist during 

neural development. It will be interesting to uncover the mechanisms that underlie the 

differences between those NBs that show or do not show plasticity in response to 

nutritional restriction conditions and the timing of systemic growth. 

 

Termination of NB proliferation 
To produce the exact number of neurons and glia, the termination of NB proliferation 

must be precisely determined. As there are differences in the generation and 

proliferation modes of different types NBs, each type disappears at different time points 

of development via different mechanisms (Fig. 1C).  

In the abdominal VNC during larval stages, there are only three NBs in each 

hemisegment. These NBs die approximately 72 hours (hr) after larva hatched (ALH) 

through an apoptosis-dependent manner (Fig. 1C and 7A) (Bello et al., 2003, Cenci & 

Gould, 2005). At the end of embryogenesis, Cas-positive NBs induce Grh expression. 
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Following the quiescence stage, VNC NBs and Type I and Type II NBs in the central 

brain sequentially express Cas and Svp. These temporal factors (and unidentified 

temporal factors which are expressed after Svp) are required for the timely exit from the 

cell cycle. The Hox protein Abdominal-A (AbdA) is transiently expressed in abdominal 

VNC NBs at the larval stage, and this pulse of AbdA expression triggers apoptosis in 

abdominal NBs (Bello et al., 2003). Grh maintains AbdA expression, and Grh and 

AbdA induce apoptosis in a parallel mechanism (Cenci & Gould, 2005).  

Type I and Type II NBs in the central brain and thoracic VNC NBs use similar 

termination machinery, where they begin to shrink following puparium formation, and 

most NBs exit the cell cycle at approximately 24 hr after puparium formation (APF) 

(Fig. 1C and 7B) (Homem et al., 2014, Ito & Hotta, 1992, Maurange et al., 2008). As 

with abdominal VNC NBs, embryonic Cas induces Grh expression, and after hatching, 

Cas induces Hh expression in these NBs (Chai et al., 2013). Hh signaling acts as an 

autocrine and/or paracrine factor to sustain Grh expression, which in turn prevents 

premature nuclear localization of Pros to exit the cell cycle (Maurange et al., 2008). In 

addition to the regulation by temporal factors and Hh signaling, ecdysone and the 

mediator complex, which is a highly conserved transcriptional mechanism, 

cooperatively regulate NB shrinking and the termination of proliferation in Type I and 

Type II NBs in the central brain (Homem et al., 2014). The mediator complex binds to 

Ecdysone receptor (EcR) and eventually up-regulates the level of oxidative 

phosphorylation (OxPhos), which results in an increase in the oxygen consumption rates 

of pupal NBs. This metabolic change inhibits cell growth and ultimately causes NBs to 

exit the cell cycle. It will be interesting to clarify the relationship between the Grh-

dependent nuclear localization of Pros and the metabolic changes mediated by the 

mediator complex and ecdysone. 

The termination of NBs in the optic lobe has not been extensively investigated. 

Old Tll+ NBs in the main OPC express Pros, implying that the accumulation of nuclear 

Pros induces cell cycle exit (Li et al., 2013). It is also possible that the apoptosis-

dependent mechanism regulates termination because the cell death occurs in both OPC 

and IPC regions during early pupal stages (Hofbauer & Campos-Ortega, 1990). In either 

case, it is plausible that NBs in the optic lobe disappear after a defined number of cell 

divisions and/or passage time following NB formation. 

Compared to other NB subtypes, MB NBs persist for a longer time (Fig. 1C) (Ito 
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& Hotta, 1992, Truman & Bate, 1988). MB NBs begin shrinking approximately 72 hr 

APF and disappear by 96 hr APF (Siegrist et al., 2010, Truman & Bate, 1988). The 

down-regulation of InR/PI3K signaling after 72 hr APF leads to the nuclear localization 

of the transcription factor Forkhead box class O (FoxO), and this accumulation of 

nuclear FoxO regulates the timing of caspase-dependent cell death (Fig. 7C) (Siegrist et 

al., 2010). NBs can persist even to the adult stage and generate new neurons by 

eliminating both the FoxO and pro-apoptotic gene functions (Siegrist et al., 2010). This 

implies that some NBs have the potential ability to survive and proliferate until the adult 

stage.  

Although it has been thought that there is no neuronal production in the adult 

stage in Drosophila (Kato et al., 2009, Siegrist et al., 2010), a recent study has shown 

that there are cell divisions in the adult medulla cortex, those cell divisions produce 

neurons, and the cell division rate increases after injury (Fernandez-Hernandez et al., 

2013). This raises the possibility that some OPC NBs retain their ability to proliferate 

into the adult stage. In the mammalian brain, a small subset of slowly dividing neural 

stem cells are retained in adults primarily in the subgranular zone in the dentate gyrus 

and the subventricular zone of the lateral ventricles (Ming & Song, 2011). Newly 

generated neurons in the adult are thought to be required for functional plasticity and 

brain repair following injury (Deng et al., 2010, Lin & Iacovitti, 2015). Additional 

studies of neurogenesis in the Drosophila adult brain could advance our understanding 

of neuronal plasticity and neurodegenerative disorders.  

 

Conclusion 
A considerable number of studies of Drosophila NBs have revealed molecular and 

cellular mechanisms of asymmetric cell division, lineage specification, and neuronal 

diversification during development. NBs produce a large variety of neurons and glia 

through the sequential expression of transcription factors. Still, much remains to be 

clarified about the establishment of these functional neuronal networks. One remaining 

question is how the specification of NB subtypes is determined. Three types of NBs 

exist in the larval central brain, Type I, Type II, and MB NBs, and each shows different 

proliferation patterns and generates different numbers of progeny. There are 

approximately 100 NBs in the central brain, and systematic clonal analysis has revealed 

that there are approximately 100 stereotyped neuronal lineages that show distinct 
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positioning of cell bodies and neuronal arborization patterns in the adult central brain 

(Ito et al., 2013, Yu et al., 2013). This raises the possibility that the identity of each NB 

is specified at the start of development, producing unique progeny. Another question is 

whether the transition between temporal transcription factors found in several types of 

NB lineages is coupled with cell cycle progression and is regulated by extrinsic factors. 

Lineage tracing techniques can be used to follow all neuronal types from a particular 

NB and will give insight into the temporal competence mechanism (Yu et al., 2010). 

Additionally, it is interesting to speculate how the development of the CNS is plastic to 

environmental conditions and is related to the developmental timing of the whole body. 

It has been shown that the brain is actively protected relative to other tissues during 

nutrient-restricted conditions (Cheng et al., 2011). 

Neurogenesis in Drosophila and in mammals shares several key features in the 

generation of neuronal diversity. In both systems, the temporal regulation of neural stem 

cells defines the position and the connectivity of neurons, which provides the platform 

for brain function. Future analyses will deepen our understanding of the importance of 

timing in neural development. 
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Figure Legends 
Fig. 1. Classification and asymmetric cell division of NBs. (A) Embryonic NBs 

delaminate from the neuroectoderm (NE). NBs divide and generate GMCs on the basal 

side. GMCs divide again to produce two post-mitotic neurons. (B) Larval NBs can be 

subdivided into Type I, Type II, and MB NBs in the central brain (CB), OPC and IPC 

NBs in the optic lobe (OL), and thoracic and abdominal NBs in the ventral nerve cord 

(VNC). (C) Time course of proliferation of NBs. MB NBs continuously divide from the 

embryonic to late pupal stages. OPC and IPC NBs in the OL produce neurons and glia 

throughout the larval to early pupal stages. Type I and Type II NBs in the CB and VNC 

NBs are produced during embryogenesis. At the end of embryogenesis, they stop 

proliferating and become quiescent. These NBs begin dividing again after hatching. (D) 

Three different modes of NB cell division. All NB types divide asymmetrically to self-

renew. Type 0 NBs directly produce post-mitotic neurons. Type I NBs generate GMCs, 

which divide again to differentiate into neurons and/or glia. Type II NBs divide 

asymmetrically and produce transit amplifying intermediate neural progenitors (INPs). 

INPs divide asymmetrically to self-renew, producing another INP and a GMC. GMCs 

divide again and produce neurons and/or glia. (E) During NB mitosis, the apically 

localized Par complex (aPKC/Baz/Par6) recruits the Pins/Gαi/Mud complex to the 
apical cortex through binding to Insc. The Par complex localizes cell fate determinants 

such as Pros, Brat, and Numb to the basal side, which are inherited by the basal progeny. 

  

Fig. 2. Temporal patterning in embryonic NB lineages. Embryonic NBs sequentially 

express Hb, Kr, Pdm, and Cas as they age. The transient expression of Svp shuts off Hb 

expression. The ‘positive feed-forward’ and ‘negative feed-back’ regulatory 

mechanisms between the transcription factors are indicated.  

 

Fig. 3. Reactivation of post-embryonic NBs. (A) NBs maintain a G0-like quiescent state 

just after hatching. NBs start growing again upon food intake and progress through the 

cell cycle. (B) Food intake activates InR/PI3K/TOR signaling in NBs, leading to their 

regrowth. The fat body (FB) secretes a thus far unknown ‘fat body derived signal 

(FDS)’ upon dietary amino acid intake. The FDS acts on glial cells and/or directly on 

NBs, leading to their reactivation. One possibility is that the FDS induces the 

expression of Dilps in glial cells, which activates InR/PI3K/TOR signaling in NBs. (C) 
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Extrinsic factors regulate the G1-S transition in NBs. Ana prevents precocious cell cycle 

re-entry. Hh and FGF show a mutual feedback loop to regulate the re-entry into the cell 

cycle, which is mediated by Trol. Trol acts either downstream of Ana or by inhibiting 

Ana function. Ecdysone stimulates the G1-S transition. The Eve function outside the 

brain controls the transition. Eve acts upstream of ecdysone or modulating ecdysone. 

Eve also genetically interacts with Trol. 

 

Fig. 4. Optic lobe development. (A) The fly visual system at the adult stage. The OL 

consists of the lamina, medulla, lobula, and lobula plate. Light information received by 

the retina is processed through these optic lobe ganglia. (B, C) Lateral view (B) and 

horizontal section (C) of the larval OL; the OPC, NE, lamina, and IPC are shown. The 

OPC can be subdivided into the main OPC and the tOPC. (D) Horizontal section of the 

main OPC. The transition from NE cells to NBs occurs in the medial region of the NE 

sheet. The proneural wave, which is indicated by the transient expression of L’sc, 

sweeps in a medial to lateral direction. OPC NBs divide asymmetrically and produce 

differentiating cells towards the inner side of the brain. The dashed line divides the 

oldest NB lineage from younger lineages. (E) Horizontal section of the IPC. Progenitor 

cells in the p-IPC region migrate into the d-IPC region in streams that connect these 

areas. d-IPC NBs produce distal cells (dc) and lobula plate neurons (lopn).  

 

Fig. 5. Temporal patterning of larval NB lineages. (A) INPs generated from Type II NBs 

serially express D, Grh, and Ey with some overlap. Ham is required for the transition 

from Grh+/Ey+ INPs to Grh-/Ey+ INPs. Old INPs from early NBs produce Repo+ glia, 

whereas young INPs from late NBs produce Bsh+ neurons. (B, C) Main OPC NBs 

express Hth, Klu, Ey, Slp, D, and Tll in a continuous manner. Neurons derived from 

different NB competence windows express specific factors such as Bsh, Run, Drf, and 

Toy. Neurons in which Notch signaling is active express Ap, which further generates 

neuronal diversity. Tll+ NBs produce Repo+ glia. The dashed line in (B) divides the 

oldest NB lineage from younger lineages. (D) tOPC NBs sequentially express Dll, Ey, 

Slp, and D. Dll+ NBs directly produce post-mitotic neurons that express Dll, Salm, and 

Run. Ey+ NBs produce Svp+ neurons. Slp+ NBs and D+ NBs produce Toy+ neurons. 

NotchON cells from Ey+ NBs and NotchOFF cells from Slp+ NBs and D+ NBs undergo 

cell death. (E, F) Young IPC NBs express D and Ase, whereas old IPC NBs express Tll, 
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Ato, and Dac. Young IPC NBs produce Toy+ distal cells (dc), whereas old IPC NBs 

generate Dac+ lobula plate neurons (lopn).  

 

Fig. 6. Temporal patterning in MB neurons. (A) MB NBs sequentially produce three 

distinct types of neurons (γ, α’/β’, and α/β). Chinmo expression is high during the early 
stages and gradually decreases. At the time of puparium formation, ecdysone is induced. 

The expression of Ab decreases, and the expression of let-7 increases during this time 

period. (B) The transition from α’/β’ to α/β  is regulated by ecdysone. Ecdysone 
induces the expression of let-7, which inhibits Chimno and Ab. 

 

Fig. 7. Termination of NB proliferation. (A) Abdominal VNC NBs stop proliferating 

due to apoptosis at approximately 72 hr ALH. The temporal expression of AbdA during 

the larval stage induces apoptotic cell death. Cas expression during late embryogenesis 

induces Grh expression. Sustained Grh expression maintains AbdA expression, and Grh 

causes cell death independent of AbdA. Temporal factors such as Cas and Svp during 

larval stages might promote apoptosis through a parallel mechanism. (B) Type I and 

Type II NBs in the CB and thoracic VNC NBs exit the cell cycle at approximately 24 hr 

APF. Cas expression during late embryogenesis induces Grh, whereas larval Cas 

induces Hh. Hh signaling maintains Grh expression to promote the nuclear localization 

of Pros and cell cycle exit. After puparium formation, Mediator and ecdysone 

cooperatively change the energy metabolism in NBs. An increase in oxidative 

phosphorylation (OxPhos) levels reduces cell growth, which results in cell cycle exit. 

(C) MB NBs undergo apoptotic cell death at approximately 96 hr APF. The gradual 

decrease in InR/PI3K signaling induces caspase-dependent cell death. 

 

 

 
 
















