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The study of point defects in semiconductors has attracted much attention be-

cause of the crucial effects of such defects on various properties of materials. Some

defects capture carriers and affect the electrical conductivity of semiconductors.

Therefore, control of defects is necessary for device fabrication. Vacancies are fun-

damental defects, which are extensively studied theoretically and experimentally.

We study the silicon vacancy by carrying out first-principles calculations based on

quantum mechanics.

In this work, we use supercell model and consider the vibrational effect to calculate

the vacancy concentration. We use large-scale supercells containing up to 1728-

atomic sites for calculating the formation energy and up to 216-atomic sites for

calculating the vibrational effect. We confirm the convergence of calculational

results with respect to the cell size. The vibrational effect is computed from

the phonon calculation by using harmonic approach. Without the vibrational

effect, the concentration is much lower than the experimental estimates; thus, it

is expected that the vibrational effect significantly contributes to the increase of

the concentration.

Our results show that the formation energy is calculated to be 3.46 eV, and the

vacancy concentration at the silicon melting point is estimated to be 7.4 × 1016

cm−3. These values are consistent with experimental results. We find that the

vibrational effect significantly increases the vacancy concentration about 104 times.
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Chapter 1

Introduction

1.1 Background

Semiconductor materials have been widely used in electronic devices such as tran-

sistor and light emitting diode. Computer, an electronic product that is necessary

for our daily work, has a main part that is processor containing a large amount of

semiconductor-based transistors. Thus, the quality of transistors plays an impor-

tant role in enhancing the performance of the computer. In 1947, a germanium

point-contact transistor was invented [1]. Several years later, a working silicon-

based transistor was launched. At that time, silicon transistor replaced germanium

transistor because of the ability of silicon to work in high-temperature operation

in which germanium is restricted to low temperature.

Since the time of the invention of the silicon transistor, the development of silicon-

based semiconductor devices has been so fast as the Moore’s Law predicted [2].

Such devices are widely used in various electronic devices because of their capabil-

ity to be downsized to several nanometers. One effort to enhance the performance

of the semiconductor-based electronic devices is to understand their defect prop-

erties.

There are many types of defects (Fig. 1.1) such as vacancy, interstitial atom, and

impurity atom. In this study, we are going to focus on vacancies in silicon and

1
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Figure 1.1: Some types of defects in semiconductor.

germanium. Vacancies in silicon have been investigated by studying their defects

properties such as the formation energy and vacancy concentration.

The formation energy means energy required to form a certain configuration of

defects. In other words, the formation energy may represent the stability of such

defect configuration. Some previous studies investigated the defects properties;

i.e., the formation energy of the silicon monovacancy. The formation energy of the

silicon monovacancy was approximated to be 3.0 – 4.1 eV in the past theoretical

[3–6] and experimental studies [7–11]. A converged value of the formation energy

is necessary; i.e., to accurately calculate the concentration of the vacancy. An ex-

perimental result of the ultrasonic measurements [12] observed the monovacancy
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Figure 1.2: Schematic diagram of MOSFET: (a) PMOS and (b) NMOS.

and supposed that the concentration in low-temperature is found to be the same

as that near the melting point. However, the defects observed by them might be

different from the monovacancy as examined in previous studies [13, 14]. There-

fore, the concentration of the silicon monovacancy near the melting point is a need

to be clarified.

Recently, germanium is re-found to be a promising candidate as an active layer

in electronic device; i.e, metal-oxide-semiconductor-field-effect-transistor (MOS-

FET) (Fig. 1.2) due to its high carrier mobility[15, 16]. As shown in Table 1.1,

germanium has higher hole mobility than other semiconductor materials. In other

word, germanium is suitable for P-type MOSFET (PMOS), whereas group III and

V semiconductors are suitable for N-type MOSFET (NMOS). However, group III

and V semiconductors such as gallium arsenide (GaAs) make mass production

significantly more expensive than germanium; thus, germanium is still expected

to be a promising candidate for NMOS [16]. Wu et al. [17] has recently carried

out an experimental demonstration of complementary-metal-oxide-semiconductor

(CMOS) circuits using germanium-based PMOS and NMOS. Their work supports

the expectation that the use of germanium as a channel in CMOS enhances its

performance.

It was reported that germanium is applicable for MOSFET that is possible to

down-size to several nanometers; i.e., a 20-nm Ge-based CMOS inverters have been

demonstrated by Wu et al. [17]. However, the performance of the Ge-based CMOS
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Table 1.1: Carrier mobility of semiconductors [16, 18, 19].

Properties Si Ge GaAs InAs InSb

Electron mobilty (cm2V −1s−1) 1500 3900 9200 40000 77000

Hole mobility (cm2V −1s−1) 450 1900 400 500 850

is needed to be enhanced [20–23]. An effort to enhance the performance of the

semiconductor-based devices is to study the defect properties in the semiconductor

materials. For this purpose, we study vacancies in germanium and present the

discussion in Appendix.

In this study, we focus on the silicon monovacancy. We carry out a large-scale

density-functional-theory calculation to accurately estimate the concentration of

the silicon monovacancy. We use supercells containing 1728- and 216-sites for

calculating formation energy and the vibrational effect on the concentration of the

monovacancy, respectively.

1.2 Density Functional Theory as An Efficient

Method

The development of information technology is supported by the invention of the

electronic devices such as computer, mobile phone and television. Such devices

contain materials whose characteristic determines the performance of the devices.

Materials are characterized by the electronic structures, which are related to the

electron behavior. Therefore, the understanding of the concept of electrons are

necessary.

Electrons are considered as both particle and wave, called wave-particle duality.

A usual way to describe the electron behavior is formulating it in the form of

Schrödinger equation based on wavefunctions. We can find the electronic proper-

ties of such material from the wavefunctions, which are solved from the Schrödinger

equation. However, a problem arises for a large and complex system containing
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hundreds even thousands of atoms. For instance, a cluster consisting of 100 Pt

atoms involves more than 23,000-dimensions wavefunctions [24]. This problem is

difficult to be solved, even impossible for a more complex system. Therefore, an

efficient method is needed to overcome this difficulty.

In 1998, Walter Kohn and John A. Popple were awarded the Nobel Prize in chem-

istry for their contribution in the practical and efficient method for solving the

many-body problem, called the density functional theory (DFT). The key idea of

DFT is to represent the many-body Schrödinger equation based on wavefunctions

of an interacting system by single-particle Schrödinger equation based on electron

density. Thus, we do not need to know the motion of every interacting particle in

a system. We only need to know the density of valence electrons as a function of

position. The DFT simplify the complex problem and reduce the dimensions from

3N variables to just three spatial variables of the electron density. By knowing

only the electron density, we can calculate electronic properties of materials. The

DFT as an efficient method can be computationally applied to solve a complex

system consisting of thousands of atoms; thus, the DFT calculations are reliable

in representing a real system.

1.3 The Purpose of Study

Vacancies in semiconductors are fundamental defects, which are extensively stud-

ied. We study the silicon monovacancy and calculate the concentration of the

vacancy that is one of the important properties in controlling defects.

Clarification of the silicon monovacancy concentration at temperature near melt-

ing point is needed, because reliability of experiment of the concentration is not

established. For this purpose, we carry out large-scale reliable calculations of the

silicon monovacancy. We confirm the convergence of calculational results with re-

spect to the cell size. In this calculation, we consider the vibrational effect, which

is expected to significantly increase the concentration.
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1.4 Outline of Dissertation

This dissertation consists of four chapters. In Chapter 1, the background of this

research is introduced. We explain theory and application of the density functional

theory in Chapter 2. In Chapter 3, we describe the calculational results of the

vacancy concentration. In this chapter, we clarify the effect of the vibrational

effect that significantly increases the concentration. The computational method

used in the calculations is also given in this chapter. Finally, we give a summary

and explain the future scope in Chapter 4.

We discuss symmetry and group theory, which are related to Chapter 3, in Ap-

pendix A. In Appendix B, we discuss the development of this study: stability of

the multivacancies in germanium.



Chapter 2

Theory and Application of

Density Functional Theory

The results in this dissertation are computed by using the first-principles density-

functional-theory (DFT) calculations based on quantum mechanics. We use the

PHASE [25] code to carry out the DFT calculations. The parameters used in the

calculations are obtained from the optimization process. For instance, the lattice

constant is obtained from the volume optimization with respect to total energies

of the unit cell. The cutoff energy used for the volume optimization is obtained

from checking convergence so that the formation energy difference between trial

cutoff energies is not significant. We only use the atomic number and atomic

positions, which are required in the first-principle calculations. Therefore, there

is no empirical parameters employed in the DFT calculations. The use of the

density functional reduces the dimension of the system; thus, the calculation of

larger and more realistic systems is possible. The DFT calculations acquire a

degree of accuracy, which provides comparable results with the experiments.

In this chapter, we explain a brief overview of the concept of the density functional

theory. We explain the basis of the DFT in section 2.1. Next, we explain the

application of the DFT in Section 2.2.

7
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2.1 Basis of Density Functional Theory

A fully interacting Schrödinger equation of a complex system consisting of

many electrons and nuclei is given by

ĤΨ(r1,R1, r2,R2, ...) = EΨ(r1,R1, r2,R2, ...) (2.1)

where Ĥ is Hamiltonian operator and E is the eigen value representing a total

energy of the system. R1,R2, ... and r1, r2, ... are the cartesian positions of the

nuclei and the electrons, respectively. The Hamiltonian operator Ĥ is expressed

as:

Ĥ = T̂e + T̂n + V̂ee + ˆVnn + V̂en (2.2)

where T̂e is the many-electrons kinetic energy operator , T̂n is the many-nuclei

kinetic energy operator, V̂ee is the electron-electron interaction energy operator,

ˆVnn is the nucleus-nucleus interaction energy operator, and V̂en is the electron-

nucleus interaction energy operator.

The kinetic energy operators are expressed as follows:T̂e = −1
2

∑N
i ∇2

i (ri),

T̂n = −1
2

∑
j

1
Mj

∇2
i (Rj),

(2.3)

and the interaction energy operators are expressed as:
V̂ee = 1

2

∑
i̸=j

1
|ri−rj |

ˆVnn = 1
2

∑
i̸=j

ZiZj

|Ri−Rj |

V̂en = −
∑

i,j
Zj

|ri−Rj |

(2.4)

where the Mi, Zi, and Ri are the mass of the i-th nucleus and the atomic num-

ber, respectively. This equation is too complex and difficult to be solved, even

impossible for the system containing many complex atoms.
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2.1.1 Born-Oppenheimer approximation

As mentioned above, the system represented by Eq. (2.2) is too complex and

thus needs an approximation to simplify. Considering the large mass difference

between a nucleus and an electron and assuming that the motion of the nuclei is

negligible compared to that of the electrons, we neglect T̂n and ˆVnn. Therefore,

the Hamiltonian operator in Eq. (2.2) is simplified as:

Ĥ = T̂ + V̂ee + V̂en, (2.5)

and the Schrödinger equation in Eq. (2.1) is then expressed as:

ĤΨ =

[
−1

2

N∑
i

∇2 +
1

2

∑
i̸=j

1

|ri − rj|
−

∑
i,j

Zj

|ri −Rj|

]
Ψ = EΨ, (2.6)

This approximation method is called the Born-Oppenheimer approximation.

In the case of complex systems, although Eq. (2.6) is a simple form of Eq. (2.1), it

needs a certain method to solve the eigenvalue problem. We next reduce our prob-

lem to a problem of finding the electronic ground state solutions. For this purpose,

it is a need to introduce some approximations such as the variation principle and

Hartree-Fock approximations. We first discuss the variation principle.

2.1.2 The variation principle

It is an impossible way to find any eigenfunction of the Hamiltonian operator,

but we can consider all the many-body eigenfunctions ϕi. Assuming that the

set of these eigenfunctions is complete, we can expand any other wavefunction ψ

representing the same system as a linear combination of ϕi, given by

|Ψ⟩ =
∑
i

ci|ϕi⟩ (2.7)
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where ci are the expansion coefficients. The eigenstates |ϕi⟩ are assumed to be

orthonormal, and the wavefunction is assumed to be normalized. Then the expec-

tation value for the energy of the wavefunction is expressed as:

E = ⟨Ψ|Ĥ|Ψ⟩ (2.8)

=
∑
i,j

c∗jci⟨ϕi|Ĥ|ϕj⟩

=
∑
i

|c2i |Ei

≥ E0

∑
i

|c2i |= E0

where E0 the ground state energy of Ĥ, and
∑

i|c2i |= 1 because the wavefunction

is normalized. The expectation value of the energy of any wavefunction ψ is thus

higher than or equal to the ground state energy. In the computational point of

view, this result is very important since this allows us to find the ground state

energy and wavefunction by testing ‘trial wavefunctions’. If the trial wavefunction

is far from the true wavefunction, the calculation takes more computational cost,

such as time consuming, even the calculation does not converge. Therefore, we

need to find a trial wave function as close as the true wave function by employing

certain technic.

We are going to present a technic for finding a good trial wavefunction. We

assume that the approximate wavefunction can be expanded in terms of a set of

plane waves, which is given by

ϕ =
N∑
j

cj exp(−ik · rj). (2.9)

Eq. (2.9) satisfies the minimum condition and is normalized, which is given by

∂

∂c∗j
⟨ϕ|Ĥ|ϕ⟩ = 0 (2.10)

for all cj. We next introduce a parameter by introducing a new quantity which

is given by

K = ⟨ϕ|Ĥ|ϕ⟩ − λ [⟨ϕ|ϕ⟩ − 1] . (2.11)
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Minimizing Eq. (2.11) with respect to c∗j and λ, one obtains

∂K

∂c∗j
=
∂K

∂λ
= 0 (2.12)

where λ is now called the Lagrange multiplier. Inserting Eq.(2.9) into Eq.(2.12),

we get

∑
j

cj

(
⟨exp(−ik · ri)|Ĥ|exp(−ik · rj)⟩ = λ⟨exp(−ik · ri)|exp(−ik · rj)⟩

)
. (2.13)

Then, a compact form of the eigenvalue equation is expressed as:

∑
j

Hijcj = λδij. (2.14)

Eq. (2.14) can be solved by calculating the matrix elementHkj and δij. If Eq.(2.13)

is multiplied by c∗i and we sum it over i, an explicit form of is obtained, given by

λ =

∑
i,j c

∗
i cj⟨exp(−ik · ri)|Ĥ|exp(−ik · rj)⟩∑

i,j c
∗
i cj⟨exp(−ik · ri)|exp(−ik · rj)⟩

, (2.15)

where λ corresponds to a different expectation value, and the eigenvector corre-

sponds to the smallest eigenvalue resulting the best ϕ. The smallest eigenvalue

is the closest approximation for the ground state energy. We next introduce an

approximation method to simplify the problem, called the Hartree-Fock approxi-

mation.

2.1.3 The Hartree-Fock approximation

A main problem in solving the many-body Schrödinger equation is the represen-

tation of the many-body wavefunction. In 1920, D. Hartree [26] introduced an

approach, named after himself, the Hartree approximation. The idea is to sim-

plify the problem of electron-electron interactions by expanding the many-electron

wavefunction into a product of single-electron wavefunction, which leads to solving

the multi-electron Schrödinger equation of the wavefunction. Using this hypothesis
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and employing the variation principle, we get N equations needed to be solved for

an N single-electrons system. The wavefunction Ψ(ri) of this system is expressed

as:

ΨH(r1, r2, r3, .........rN) =
1√
N
ϕ(r1), ϕ(r2), ϕ(r3), .........ϕ(rN) (2.16)

where Ψ(ri) contains the spatial wavefunction ϕ(ri).

However, the Hartree approximation does not consider the exchange interaction

since Eq.(2.16) does not satisfy the Pauli’s exclusion principle. The Hartree ap-

proximation is failed to cover the Pauli’s exclusion principle since the Hartree

product wavefunction is symmetric. Therefore, we need to introduce a reasonable

approximation that has physical meaning. Then, Hartree and Fock introduced an

approximation that deals with the concept that electrons are considered as distin-

guished particles. In the Hartree-Fock (HF) scheme, the system with N-electron

wavefunction is approximated by an antisymmetric function.

The Hartree-Fock scheme is then described by using Slater Determinant, expressed

as:

ΨHF =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ2(r1) · · · ϕN/2(r1)

ϕ1(r2) ϕ2(r2) · · · ϕN/2(r2)

...
... · · · ...

ϕ1(rN) ϕ2(rN) · · · ϕN/2(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.17)

by introducing the additional orthonormal constraint:∫
ϕ∗
i (r)ϕi(r)dr = ⟨ϕi|ϕj⟩ = δij. (2.18)

Using the above Slater Determinant, we can determine the HF energy from the

expectation value of the Hamiltonian Eq.(2.6), given by

E = ⟨ΨHF |Ĥ|ΨHF ⟩ = 2

N/2∑
i

hi +

N/2∑
i

N/2∑
j

(2Ji,j −Ki,j). (2.19)
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The first term of the Eq. (2.19) indicates the kinetic energy of electrons and

interaction between electrons-nuclei. The second term represents the interaction

between two electrons, called Coulomb and exchange integrals, where

hi =

∫
ϕ∗
i (r1)ĥϕi(r1)dr1 (2.20)

Jij =

∫ ∫
ϕ∗
i (r1)ϕi(r1)

1

|r1 − r2|
ϕ∗
j(r2)ϕj(r2)dr1dr2 (2.21)

Kij =

∫ ∫
ϕ∗
i (r1)ϕj(r1)

1

|r1 − r2|
ϕ∗
j(r2)ϕi(r2)dr1dr2 (2.22)

The term Jij is called the Coulomb integrals, which are found in the Hartree

Approximation. Here, the exchange integral Kij is introduced.

To present a simple way to understand the Coulomb and exchange interactions

in Eq. (2.19), we consider VHF as the Hartree-Fock potential. This potential

describes the repulsive interaction between one electron and other N-1 electrons

averagely, consisting Coulomb operator Ĵ and exchange operator K̂, expressed as:

Ĵϕ(r) =

∫
dr2

|Œj (r2)|2

|r1 − r2|
Œi(r1) (2.23)

K̂ϕ(r) =

∫
dr2

Œ ∗
j (r2)Œi(r2)

|r1 − r2|
Œj (r1) (2.24)

The Hartree-Fock scheme is constructed based on the effective wavefunction and

potential. We guess the first set input of Slater determinant based on Pauli’s

principle and thus we have a reasonable approximation of the wavefunction. Then,

we construct the potential operator by considering the electron’s interaction, which

is taken into account averagely, and considering the self-interaction in one electron.

Next iteration is computed based on the new orbitals from the previous calculations

until the convergence is reached. This technique is called as self-consistent field

(SCF).
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2.1.4 Density functional theory (DFT)

In Section 2.1, we discussed the Hartree-Fock approximation that deals with

the exchange interaction. However, the Hartree-Fock equations neglect the cor-

relation effect due to many-body interactions. Since the effects of electronic cor-

relations are not negligible, a computationally efficient and practicable density-

functional-theory scheme that covers both exchange and correlation effects are

required. Nowadays, DFT is an efficient and practical method to describe ground

state properties of materials due to high computational efficiency and good accu-

racy. The major idea of the DFT is to represent an interacting system by electron

density, not wave functions. DFT is totally based on two theorems stated by Ho-

henberg and Kohn in 1964 [27]. In the following sections, we explain these two

theorems.

2.1.4.1 Hohenberg-Kohn theorems

The work of Hohenberg and Kohn can be resumed as two important theorems.

These theorems provide technics to determine the Hamiltonian operator and the

properties of the system based on electron density. The electronic density n(r) is

given by

n(r) = N
∑
s1

...
∑
sN

∫
...

∫
|Ψ(r1, s1, r2, s2, .......rN, sN)|2dr1dr2......drN (2.25)

and ∫
n(r)dr = N (2.26)

Theorem I. (Hohenberg-Kohn 1) In external potential of interacting particles

for any system υext (r) , the potential υext (r) is determined uniquely by the ground

state particle density n0 (r).

Proof: The first theorem can be proved by reductio ad absurdum. Suppose that

there were two different external potentials υ
(1)
ext (r) and υ

(2)
ext (r) which lead to the

same ground state density n(r). The two external potentials having two different

Hamiltonian, Ĥ(1) and Ĥ(2), and different ground state wavefunction,ψ(1) and ψ(2),
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are hypothesized to have the same ground state density n0 (r). Since ψ(2) does not

belong to the ground state of Ĥ(1), it follows that

E(1) =
⟨
ψ(1)

∣∣∣Ĥ(1)
∣∣∣ψ(1)

⟩
<

⟨
ψ(2)

∣∣∣Ĥ(1)
∣∣∣ψ(2)

⟩
(2.27)

The inequality of Eq.(2.27) is from the concept that the ground state is non-

degenerate, which follows the arguments of Hohenberg and Kohn. The last term

in Eq.(2.27) can be expressed as

⟨
ψ(2)

∣∣∣Ĥ(1)
∣∣∣ψ(2)

⟩
=

⟨
ψ(2)

∣∣∣Ĥ(2)
∣∣∣ψ(2)

⟩
+
⟨
ψ(2)

∣∣∣Ĥ(1) − Ĥ(2)
∣∣∣ψ(2)

⟩
= E(2) +

∫
d3r

[
υ
(1)
ext (r) − υ

(2)
ext (r)

]
n0 (r) (2.28)

then

E(1) < E(2) +

∫
d3r

[
υ
(1)
ext (r) − υ

(2)
ext (r)

]
n0 (r) , (2.29)

Using the same way, we can find the similar expression with Eq. (2.29) for E(2)

just by exchanging superscripts (1) and (2),

E(2) < E(1) −
∫
d3r

[
υ
(1)
ext (r) − υ

(2)
ext (r)

]
n0 (r) (2.30)

If we add Eq.(2.9) and Eq.(2.10), we arrive at the contradictory inequality E(1) +

E(2) < E(1) + E(2). This inequality means that there cannot be two different ex-

ternal potentials leading to the same non-degenerate ground-state charge density.

Thus, the theorem is proved by reductio ad absurdum.

Theorem II. (Hohenberg-Kohn 2) For any particular υext (r), the exact ground

state energy of the system is the global minimum value of this functional, and the

density n (r) that minimizes the functional is the exact ground state density n0 (r).
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Proof: Since all properties such as the kinetic energy etc., are uniquely defined if

n (r) is specified, then each of such properties can be described as a functional of

n (r), along with the total energy functional

EHK [n] = T [n] + Eint [n] +

∫
υext (r)n (r) d3r + EII ,

where EII is the interaction energy of nuclei. Since the kinetic energy T [n] and the

internal potential energy Eint [n] are the same for all systems, we describe them

to be a universal functional F [n]; then, one gets

= F [n] +

∫
υext (r)n (r) d3r + EII . (2.31)

We now consider a system with the ground state density n(1) (r) corresponding to

external potential υ
(1)
ext (r), given by

E(1) = EHK

[
n(1)

]
=

⟨
ψ(1)

∣∣∣Ĥ(1)
∣∣∣ψ(1)

⟩
. (2.32)

Then, we introduce a different density, n(2) (r) , corresponding to a different wave-

function ψ(2), given by

E(2) =
⟨
ψ(2)

∣∣∣Ĥ(1)
∣∣∣ψ(2)

⟩
. (2.33)

It follows immediately that the energy E(2) of this state is greater than E(1), since⟨
ψ(1)

∣∣∣Ĥ(1)
∣∣∣ψ(1)

⟩
<

⟨
ψ(2)

∣∣∣Ĥ(1)
∣∣∣ψ(2)

⟩
.

Minimizing E(2) with respect to n (r) and expressing total energies of the system

as a function of n (r), one obtains the ground state energy. The correct density

minimizing the energy is then addressed to the ground state density. In this way,

DFT exactly reduces the N-body problem to the determination of a 3-dimensional
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function n(r) which minimizes the functional EHK [n(r)]. However, the problem

still remains that EHK [n(r)] is not known.

2.1.4.2 The Kohn-Sham equations

Kohn and Sham reformulated the problem in a more familiar form, leading to

practical applications of DFT. They continued to prove the theorem stating that

the total energy of the system depends only on the electron density of the system

[28], expressed as:

E = E[n(r)]. (2.34)

The idea is that an interacting electrons system is mapped into an auxiliary sys-

tem of a non-interacting electrons with the same ground state charge density n(r).

For a system of non-interacting electrons, the ground-state charge density is rep-

resented as a sum over one-electron orbitals, given by

n(r) = 2
N∑
i

|Ψi(r)|2, (2.35)

where i runs from 1 to N/2 if we consider the double occupancy of all states.

The electron density n(r) can be varied by changing the wave function Ψ(r) of

the system. If the electron density n(r) corresponds to the said wavefunction,

then its total energy is the minimized energy, and the whole system is in a ground

state. The Kohn-Sham approach is to replace an interacting-electrons system with

a non-interacting-electrons system, which move in an effective potential [28]. The

effective potential contains the external potential, Coulomb interaction between

electrons, and the exchange and correlation interactions. By solving the equations,

we can get the ground state density and energy. The accuracy of the solution

is limited to the approximation of exchange and correlation interactions. It is

convenient to write Kohn-Sham energy functional for the ground state including

external potential as:

EKS = Ts[n(r)] + EH [n(r)] + EXC [n(r)] +

∫
drVext(r)n(r). (2.36)
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The first part of Eq. (2.36) is the kinetic energy of non-interacting electrons,

expressed as:

Ts[n(r)] = − h̄2

2m
2
∑
i

∫
Ψ∗

i (r)∇2Ψ∗
i (r)dr (2.37)

The second term is the Hartree energy containing the electrostatic interaction

between cloud of charge:

EH [n(r)] =
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′ (2.38)

All effects of exchange and correlation are grouped into exchange-correlation en-

ergy EXC . If all the functional EXC [n(r)] were known, we could obtain exact

ground state density and energy of the many-body problem.

Kohn-Sham energy problem is a minimization problem with respect to the density

n(r). Solution of this problem can be obtained by using functional derivative as

follows :

δEKS

δΨ∗
i (r)

=
δT [n]

δΨ∗
i (r)

+

[
δEext[n]

δn(r)
+
δEH [n]

δn(r)
+
δEXC [n]

δn(r)

]
δn(r)

δΨ∗
i (r)

−
δ
(
λ
(∫

n(r)dr−N
))

δn(r)

[
δn(r)

δΨ∗
i (r)

]
= 0, (2.39)

where λ is Lagrange multiplier and the exchange-correlation potential VXC is given

by the functional derivative

VXC =
δEXC [n]

δn(r)
. (2.40)

Since

δn(r)

δΨ∗
i (r)

= Ψi(r),

the last term is the Lagrange multiplier for handling the constraints so that we

can get a non-trivial solution.
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The first, second, and third terms of Eq. (2.39) are given by

δT [n]

δΨ∗
i (r)

= − h̄2

2m
2∇2Ψi(r), (2.41)[

δEext[n]

δn(r)
+
δEH [n]

δn(r)
+
δEXC [n]

δn(r)

]
δn(r)

δΨ∗
i (r)

= 2(Vext(r) + VH(r) + VXC(r))Ψi(r),

δ
(
λ
(∫

n(r)dr−N
))

δn(r)

[
δn(r)

δΨ∗
i (r)

]
= 2εiΨi(r) (2.42)

Inserting Eq. (2.41) and (2.42) to Eq. (2.39), we can obtain Kohn-Sham equation

satisfying many-body Schrödinger equation.[
−1

2
∇2 + VKS(r)

]
Ψi(r) = εiΨi(r) (2.43)

where

VKS(r) = Vext(r) + VH(r) + VXC(r) (2.44)

or,

VKS(r) = Vext(r) +
e2

2

∫
n(r′)

|r− r′|
dr′ + VXC(r). (2.45)

If the virtual independent-particle system has the same ground state as the real

interacting system, then the many-electron problem reduces to one electron prob-

lem. Thus we can write:

VKS(r) = Veff (r) (2.46)

The kinetic energy Ts[n(r)] is given by

Ts[n(r)] =
∑
i

εi −
∫
n(r)Veff (r)dr (2.47)

Substituting this formula in Eq. (2.36), one obtains the total energy, given by

EKS[n(r)] =
∑
i

εi +
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n] −

∫
n(r)Veff (r))dr (2.48)
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Figure 2.1: Self-consistent scheme of Kohn-Sham equation.

Since the Hartree term and Vxc depend on n(r) , which depend on Ψi, the Kohn-

Sham equation should be solved in an iterative self-consistent way. Starting from

an initial guess for n(r) and then calculating the corresponding VH and Vxc, the

Kohn-Sham equations for the Ψi can be solved, producing a new density that will

be used as a new initial guess in the next iterative step. This procedure is then

repeated until the convergence is reached. This iterative procedure is described in

a flowchart as shown in Fig. 2.1.
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2.1.5 Exchange and correlation functional

As we know from the previous section that the major problem of DFT comes

from the exact unknown-functionals for exchange and correlation, except for the

free-electron gas. The many-body problems are re-written as the effective one-

electron problem by using the Kohn-Sham equation. However, the Kohn-Sham

equation cannot be solved since the derivative EXC [n(r)] is unknown. Therefore,

it is a need to have an accurate exchange-correlation energy EXC [n(r)] or po-

tential VXC(r) functional in order to give a satisfactory description of a realistic

condensed-matter system. The familiar exchange-correlation functionals widely

used are the local density approximation (LDA) and generalized gradient approx-

imation (GGA) functionals that we are going to discuss in the section.

2.1.5.1 Local density approximation (LDA)

Since the functional EXC [n(r)] is unknown, one has to find a good approximation

for it. A simple approximation based on homogeneous electron gas (HEG), which

was suggested by Hohenberg and Kohn, is the LDA or in the spin polarized case

the local-spin-density approximation (LSDA). The exchange-correlation energy

per particle eXC [n(r)] is expressed as:

ELDA
xc [n(r)] =

∫
n(r)ehomo

xc (n(r))dr

=

∫
n(r)

[
ehomo
x (n(r)) + ehomo

c (n(r))
]
dr, (2.49)

and for the spin polarized system, given by

ELSDA
xc [n+(r), n−(r)] =

∫
n(r)ehomo

xc (n+(r), (n−(r))dr. (2.50)

The exchange energy ex(n(r)) is given by

eLDA
x (n(r)) = − 3

4π
kf , (2.51)

where the Fermi wavevector kf = (3π2n)
1
3 .
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The expression of the correlation energy density of the HEG at high-density limit

is defined as:

ec = Aln(rs) +B + rs(Cln(rs) +D), (2.52)

and the density limit has the form

ec =
1

2

(
g0
rs

+
g1

r
3/2
s

+ ...

)
, (2.53)

where the Wigner-Seitz radius rs is related to the density as:

rs = (3/(4πn))

13. (2.54)

As for spin-polarized systems, the exchange energy functional is known exactly

from the result of spin-unpolarized functional:

Ex[n+(r), n−(r)] =
1

2
(Ex[2n+(r)] + Ex[2n−(r)]). (2.55)

The spin correlation energy density ec(n(r), ξ(r) is constructed to interpolate

extreme values ξ = 0,±1, corresponding to spin-unpolarized and ferromagnetic

situations. The exchange-correlatiomn potential VXC(n(r)) in LDA is given by

δEXC [n]

δn(r)
=

∫
dr

[
ϵxc + n

∂ϵxc
∂n

]
(2.56)

VXC(r) = ϵxc + n
∂ϵxc
∂n

, (2.57)

EXC [n] =

∫
drn(r)ϵxc([n], r), (2.58)

where ϵxc([n], r) is the energy per electron that depends only on the density n(r).
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2.1.5.2 Generalized gradient approximation (GGA)

As explained above that the LDA is used as an approach to the homogeneous

electron gas. In the case of the inhomogeneous density, we have to introduce the

expansion of electronic density in the term of gradient and higher order derivatives,

which are usually called as the generalized gradient approximation (GGA). The

GGA is still local but also take into account the gradient of the density at the

same coordinate. Three most widely used GGAs are those proposed by Becke [29]

(B88) , Perdew et al. [30, 31], and Perdew, Burke and Enzerhof [32] (PBE). The

exchange-correlation energy functional of the GGA is the generalized form of Eq.

(2.50) which includes corrections from density gradient ∇n(r), defined as:

EGGA
xc [n+(r), n−(r)] =

∫
n(r)exc[n(r)FXC [n(r), |∇n+(r)|, |∇n−(r)|, .......]dr

(2.59)

FXC is the escalation factor that modifies the LDA expression due to the variation

of the density around the considered point [33]. The exchange energy expansion

will introduce a term that proportional to the squared gradient of the density.

If we consider up to fourth order, the similar term also appears commensurate

with the square of the density’s Laplacian. Recently, the general derivation of

the exchange-gradient expansion has been up to sixth order by using second-

order density-response-theory [34]. The lowest order (fourth order) terms in the

expansion of Fx have been calculated analytically [34, 35], which is given by

FX(m,n) = 1 +
10

81
m+

146

2025
m2 − 73

405
nm+Dm2 +O(∇ρ6) (2.60)

where

m =
|∇ρ|2

4(3π2)2/3ρ8/3
, (2.61)

and

n =
∇2ρ

4(3π2)2/3ρ5/3
(2.62)

are the reduced density gradient and reduced Laplacian of density, respectively.

There are some descriptions of GGA compared with LDA (LSDA):
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1. GGA enhances the binding energies and atomic energies,

2. GGA enhances the energetics, geometries, and dynamical properties of wa-

ter, ice, and water clusters,

3. Semiconductors are marginally better described within the LDA than in

GGA, except for binding energies,

4. For 4d -5d transition metals, the improvement of GGA over LDA is not clear,

depends on how well the LDA does in each particular case,

5. Lattice constant of noble metals (Ag, Au, and Pt) are overestimated in GGA.

2.1.6 Plane waves method

We are now able to solve the Kohn-Sham equation (Eq. (2.43)) since the

exchange-correlation functionals were introduced. The next step is to reach the

equilibrium geometries by evaluating the atomic forces. For this purpose, the

plane-wave method is employed. Plane waves are not centered at the nuclei but

extend throughout the complete space. They implicitly involve the concept of

periodic boundary condition. In practice, the Kohn-Sham equation is described

by using the plane waves. The periodic arrangement of the atoms within the cell

in the real space requires the wave functions satisfying Bloch’s theorem, which can

be expressed as:

Ψi(r) = exp(ik · r)uk(r), (2.63)

where uk(r) is periodic in space, which can be expanded into a set of plane waves

ui(r) =
∑
G

ci,Gexp(iG · r) (2.64)

Inserting Eq. (2.64) to Eq. (2.63), each electronic wave function can be expressed

as:

Ψi(r) =
∑
G

ci,k+Gexp(i(k + G) · r) (2.65)



Chapter 2. Theory and Application of Density Functional Theory 25

Kohn-Sham equation (Eq. (2.43)) is then substituted in terms of reciprocal space

k as follows:

∑
G’

[
1

2
|k+G|2δG,G′ + VKS(G-G’)

]
ci,k+G = εici,k+G (2.66)

The solution of the Kohn-Sham equation is obtained by diagonalizing the Hamil-

tonian matrix. The diagonal part represents the kinetic term, otherwise represent

the potential term. To limit the summation over G, cutoff energy is applied to

the kinetic term, which is expressed as:

Ecut =
1

2
|k+G|2≡ G2

cut (2.67)

The limitation of the cutoff energy is necessary by setting a computationally-

reasonable cutoff energy value.

2.1.7 Pseudopotential

Maximum number of plane waves is required to expand the tightly-bonded core

electrons; thus the large value of cutoff energy is needed. However, the large cut-

off energy means increasing the computational cost even making the calculation

unreasonable; i.e., consuming more time. Therefore, it is necessary to introduce

an approach to replace the effects of the tightly-bound core electrons. Another

effect we should consider is the strong Coulomb potential of the nuclei. Since

valence electrons affect more significantly than the core electrons of the electron

structure, an effective ionic potential acting on the valence electrons, called pseu-

dopotential, can be introduced. The usage of the pseudopotential is to replace

the Coulomb potential of the nuclei and the effects of the tightly-bound core elec-

trons. There are two types of famous pseudopotentials, the norm-conserving and

ultrasoft pseudopotentials.
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2.1.7.1 Norm-conserving pseudopotential

This type of pseudopotential should follow some requirements [36] which are:

1. All the electrons and pseudo valence eigenvalues are the same as the selected

atomic configuration,

ϵAE
i = ϵPS

i . (2.68)

2. All the electrons and pseudo valence eigenvalues are in agreement in an

external core region,

ΨAE
i (r) = ΨPS

i (r), r ≥ Rc. (2.69)

3. The logarithmic derivatives and their first energy derivative of real and

pseudo wavefunctions match at the cutoff radius Rc,

d

dr
ln ΨAE

i (r) =
d

dr
ln ΨPS

i (r). (2.70)

4. The total charge inside core radius Rc for each wave function must be same

(norm conservation),

Rc∫
0

dr|ΨAE
i (r)|2=

Rc∫
0

dr|ΨPS
i (r)|2. (2.71)

5. The logarithmic derivatives of all-electron and pseudo wavefunctions must

be same for r ≥ Rc. This condition is implied by point 4.

2.1.7.2 Ultrasoft pseudopotential

The ultrasoft pseudopotential is introduced to obtain smoother pseudo-wavefunctions

[37]. The pseudo-wavefunctions are classified into two parts:
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1. Ultrasoft valence wavefunctions that omit norm conservation criteria ϕUS
i .

2. A core augmentation charge.

Qnm(r) = ΨAE∗
n (r)ΨAE

m (r) − ΨUS∗
n (r)ΨUS

m (r) (2.72)

The ultrasoft pseudopotential takes the form of

V US = Vloc(r) −
∑
nmI

D0
nm|βI

n⟩⟨βI
m|, (2.73)

where β is projector function, which is expressed as:

|βn⟩ =
∑
m

|Xm⟩
⟨Xm|ϕn⟩

, (2.74)

and they are strictly localized inside the cutoff region for the wavefunctions, and

the X - functions are defined as:

|Xn⟩ = (ϵn − T̂ − Vloc)|ϕn⟩ (2.75)

D0
nm = ⟨ϕn⟩|Xm⟩ + ϵmqnm. (2.76)

The scattering properties of the pseudopotential can be improved by using more

than one β projector function per angular momentum channel.

It is necessary to use the generalized eigenvalue formalism. For this purpose, we

introduce the overlap operator S

Ŝ = 1 +
∑
nmI

qnm|βI
n⟩⟨βI

m|, (2.77)

where

qnm =

∫ rc

0

drQnm(r) (2.78)

Finally, the charge density is defined as:
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n(r) =
∑
i

ϕ∗
i (r)Ŝϕi(r) (2.79)

=
∑
i

[
|ϕi(r)|2+

∑
nmI

QI
nm(r)⟨ϕi|βI

n⟩⟨βI
m|ϕi⟩

]
.

2.2 Application of the Density Functional The-

ory

In the previous section, we explained the basis of the density functional theory

(DFT). We are going to present applications of the DFT in the crystal system.

The DFT can be employed to calculate the lattice constant, phonon calculation,

density of states and so on. We first explain the optimization process of the lattice

constant.

2.2.1 Lattice constant optimization

An important process required in the DFT calculations is lattice constant opti-

mization; thus, this process is conducted in the calculations, which are going to be

discussed in Chapter 3. We carry out the DFT calculations based on the general-

ized gradient approximation (GGA). We use the norm-conserving pseudopotential

and 9 Ryd cutoff energy for the plane wave basis set.

We calculate the lattice constant by optimizing the cell volume over the total

energy. We use the Birch-Murnaghan equation of states (BM-EOS) to accurately

compute the optimized lattice constant. The BM-EOS is given by [38, 39]

E(V ) = E0 +
9

16
V0B0[(Z − 1)3B′

0 + (Z − 1)2(6 − 4Z)], (2.80)

where Z = ( V0

V

)2/3
. E0, V0, B0, and B′

0 are determined from the curve-fitting,

which are the minimum energy, cell volume at E0, bulk modulus at V0, and first-

derivative of the bulk modulus at V = V0, respectively.
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The BM-EOS is computed using the least-square minimization. The optimization

process is conducted numerically by using Levenberg-Marquardt method (LM)

[40, 41]. The LM method combines Gauss-Newton and steepest-descent methods

to decrease the iteration steps so that the convergence can be reached rapidly. Let

the model curve is given by

E(V ) = E(y) = f(xi, αj), i = 1, 2, ..., n j = 1, 2, ...,m (2.81)

where E(y) is the estimated value of y, and xi is the independent variable. f(xi, αj)

is fitted to the datum pairs (xi, yi).

The parameter α is then optimized by minimizing

ξ(αj) =
n∑
i

[yi − f(xi, αj)]
2. (2.82)

In each step of iteration, α is updated by a correction δ to be (α+ δ). Expanding

f(xi, αj) in Taylor series gives

f(xi, αj + δj) = f(xi, αj) +
m∑
j

(
∂fi
∂αj

)
δj (2.83)

= f(xi, αj) + Jiδj,

where Ji is gradient of fi. Substituting Eq. 2.83 to Eq. 2.82 gives

ξ(αj + δj) =
n∑
i

[yi − f(xi, αj) − Jiδj]
2 (2.84)

= ∥y− f(α) − Jδ∥2 ,

Minimizing ξ by taking the first derivative over δ follows

∂ξ(αj + δj)

∂δj
= 0 (2.85)

JT [y− f(α)] − JTJδ = 0

(JTJ)δ = JT [y− f(α)], (2.86)
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Then, by introducing the damping factor λ, the LM algorithm is given by

[JTJ + λdiag(JTJ)]δ = JT [y− f(α)], (2.87)

where J is Jacobian matrix. f and y are two vectors containing parameters of

f(xi, αj) and yi, respectively.

The calculation of the BEM-EOS requires guess parameters. If the guess param-

eters are closer to the exact values, the iteration reaches the convergence faster.

Farther from the exact values, the iteration steps increase, even the calculation

does not reach the convergence. To overcome this problem, we use guess param-

eters obtained from the second-order polynomial fitting. The second-order poly-

nomial fit doest not acquire accurate extracted-parameters. However, the use of

the polynomial fitting reduces the iteration steps; thus, the convergence is reached

rapidly.

The calculated results of the BM-EOS fitting are given in Figs. (2.2) and (2.3) for

silicon and germanium, respectively. The BM-EOS gives accurate results, which

are shown by a good fit between the input data (closed-circles) and the curve model

(solid line). The optimized lattice constants are 5.604 Å for germanium and 5.466

Å for silicon, which are close to the experimental values of 5.657 Å (Ge) [42] and

5.431 Å (Si) [43]. Therefore, our calculations well reproduce the experimental

results. The optimized lattice constant is then used in the DFT calculations in all

supercell systems.

2.2.2 Vibrational frequency

The optimized lattice constant is then used to calculate the defect properties of

materials such as vibrational frequencies. The vibrational frequencies are needed

to calculate the vacancy concentration; thus, this calculational method is used in

Chapter 3. First, we relax all atoms to find the optimized structure. We consider

a small atomic displacement of 0.05 Å about their equilibrium positions so that

the potential energy around the equilibrium geometry can be expanded in a Taylor
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Figure 2.2: Volume optimization to estimate the lattice constant of silicon by
using the Birch-Murnaghan equation of states. Closed-circles and
solid lines are the input data and the curve model, respectively.

series. The Taylor expansion around minimum at x0 is given by

E(x) = E(x0)+

[
∂E(x)

∂xi

]
x0

xi+
1

2!

[
∂2E(x)

∂xi∂xj

]
x0

xixj+
1

3!

[
∂3E(x)

∂xi∂xj∂xk

]
x0

xixjxk+...,

(2.88)

The linear term (second term) describes forces on all atoms. In the equilibrium

geometry, these forces are zero; thus, the linear term vanishes. Since the atomic

displacement is small, the contribution of the cubic and higher terms is considered

to be small and thus we neglect these terms. Therefore, Eq. (2.88) reduces to the
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Figure 2.3: Volume optimization to estimate the lattice constant of germa-
nium by using the Birch-Murnaghan equation of states. Closed-
circles and solid lines are the input data and the curve model,
respectively.

harmonic approximation given by

E(x) ≈ E(x0) +
1

2!

[
∂2E(x)

∂xi∂xj

]
x0

xixj. (2.89)

In one dimension, the force acting on the atom in any system is given by

F (x) = −
[
∂E(x)

∂x

]
. (2.90)
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Considering the equation of motion of a spring system, we can express the har-

monic approximation (Eq. (2.89)) as

F (x) = −
[
∂E(x)

∂x

]
= −k△x, (2.91)

where k =
[
∂2E(x)
∂x2

]
x0

is the spring constant. Integrating Eq. (2.91) over x gives

the potential of the harmonic oscillator, which is expressed as:

E(x) = E(x0) +
k

2
(△x)2, (2.92)

In three dimensions, the equation of motion corresponding to Eq. (2.89) is

mτ üτ = −
∑
τ ′

Φτ,τ ′uτ ′ , (2.93)

where m and uτ are mass of atom and the displacement vector, respectively. The

label τ = (i, α), τ ′ = (j, β) refers to an atom i and the cartesian components

α, β = x, y, z. For a supercell consisting of N atoms in three dimensions, τ runs

from 1 to 3N , and Φ is a 3N × 3N matrix. Φτ,τ ′ is the second derivative of the

potential energy, which is called the force constant matrix, given by

Φτ,τ ′ =
∂2E(r)

∂uτ∂uτ ′
. (2.94)

where E(r) is the potential energy in 3D, which is given by

E(r) = E0 +
1

2

∑
τ

∑
τ ′

Φτ,τ ′uτuτ ′ , (2.95)

Corresponding to Eq. (2.90) we get

Φτ,τ ′ = − ∂Fτ

∂uτ ′
≈ −Fτ (△uτ ′)

△uτ ′
(2.96)
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Eq. (2.96) can be solved numerically, and we use the central difference approxi-

mation, which is given by

∂Fτ

∂uτ ′
=

Fτ |uτ=a
− Fτ |uτ ′=−a

2a
. (2.97)

where a is the displacement parameter.

Next, we change varibale by setting wτ = uτ/
√
mτ to make the system of equations

symmetric; Eq. (2.93) is then given by

ẅτ = −
∑
τ ′

Dτ,τ ′wτ ′ , (2.98)

Assuming the solution of Eq. (2.98) is wτ = Qζτ exp(iωt+ δ), we get

ω2ζτ =
∑
τ ′

Dτ,τ ′ζτ ′ , (2.99)

where Dτ,τ ′ = Φτ,τ ′/
√
mτmτ ′ is called dynamic matrix. Eq. (2.99) is the homo-

geneous linear system of equations with eigenvalues ω2 and eigenvectors ζ. From

the eigenvalue problem, the solution of Eq. (2.99) must satisfy the following:

det

(
Φτ,τ ′√
mτmτ ′

− ω2

)
ê = 0. (2.100)

Therefore, the square of the vibrational frequencies ω2 are the eigenvalues of the

dynamic matrix Dτ,τ ′ . The vibrational frequencies are found by diagonalizing the

dynamic matrix whose elements are obtained from the numerical calculations of

Eq. (2.97).

2.2.3 Phonon density of states

The calculated vibrational frequencies are then used to calculate the phonon den-

sity of states (DOS). The calculation of DOS is conducted to evaluate whether the

softening of the vacancy system of the silicon monovacancy appears. Thus, this

calcaulation is used in Chapter 3. The DOS is computed by introducing Gaussian
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broadening obtained from the Gaussian integral, which is given by

G(x) =

∫ ∞

−∞
exp

(
−x2

)
dx (2.101)

=
√
π.

The Gaussian distribution function is defined as:

P (x) = A exp

[
−1

2

(
x− ν

σ

)2
]
. (2.102)

Normalizing Eq. (2.102) and using Eq. (2.101), one gets A = 1
σ
√
2π

, and the

normalized Gaussian distribution function is given by

N(x) =
1

σ
√

2π
exp

[
−1

2

(
x− ν

σ

)2
]
. (2.103)

We then introduce the DOS as follows:

D(E) =
∑
i,j

1

σ
√

2π
exp

[
−1

2

(
Ei − hνj

σ

)2
]
, (2.104)

where ν is the vibrational frequencies and σ is a parameter, which is related to

the “full width at half maximum” (FWHM). i and j run over parameter x and

the vibrational modes, respectively.

The FWHM is found from the half-maximum point xh as follows:

1

σ
√

2π
exp

[
−1

2

(
xh − ν

σ

)2
]

=
1

2
f(xmax). (2.105)
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Since f(xmax) is found at xmax = ν, one gets

1

σ
√

2π
exp

[
−1

2

(
xh − ν

σ

)2
]

=
1

2
f(ν) (2.106)

=
1

2

1

σ
√

2π

exp

[
−1

2

(
xh − ν

σ

)2
]

=
1

2
.

Solving on xh we get xh = ±σ
√

2 ln 2 + ν. The FWHM is then given by

FWHM = x+ − x− = 2σ
√

2 ln 2. (2.107)

In the DOS calculation, we use FWHM = 80 cm−1.



Chapter 3

Vibrational Effect on the

Concentration of the Silicon

Monovacany

3.1 Introduction

The study of point defects in semiconductors has attracted much attention because

of the crucial effects of such defects on various properties of materials. Some

defects capture carriers and affect the electrical conductivity of semiconductors.

Therefore, control of defects is necessary for device fabrication [3].

The silicon vacancy is a fundamental defect and has been extensively investigated

theoretically [3–6, 44–47] and experimentally [7–11]. Electron paramagnetic res-

onance (EPR) measurement has clarified the Jahn-Teller effect that lowers the

symmetry from Td [7]. Theoretical studies based on the density functional the-

ory (DFT) show the symmetry of D2d for the neutral charge state [3–5, 45–47].

Negative-U behavior was examined by experimental [48] and theoretical studies

[49].

The formation of defects depends on crystal growth rate [50]. Vacancies are created

at high crystal growth rates, whereas interstitials are created at low crystal growth

37
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rates. At high temperatures up to the melting point, a finite vacancy concentration

is observed in thermal equilibrium [51]. The formation energy of the monovacancy

is estimated to be 3.1 – 4.1 eV in some experimental studies [8–11].

Recently, Goto et al. [12] have observed elastic softening at a very low temper-

ature by ultrasonic measurements. They found the elastic softening below 20

K. Their analysis leads to the conclusion that the softening is induced by high-

symmetry (Td) defects, and they considered that the softening originates from the

monovacancy. However, the defects observed by them might be different from the

monovacancy examined in previous studies [13, 14]. Goto et al. supposed that

the concentration deduced from the results of a low-temperature experiment is

the same as that of the thermal equilibrium monovacancy near the melting point;

therefore, the concentration near the melting point should be clarified.

In this study, we carry out a large-scale first-principles calculation to accurately

estimate the concentration of the monovacancy. We use large supercells containing

1728 and 216 sites for calculating formation energy and the vibrational effect on

the concentration of the monovacancy, respectively. The calculations are much

larger than those in previous studies; i.e., up to 1000-site supercell calculation for

the formation energy and up to 64-site supercell calculation for the vibrational

effect have been carried out thus far [3–6, 46, 52, 53]. By using large supercells,

we confirm good convergence. We expect that the vibrational effect significantly

contributes to the increase in the concentration of the monovacancy and thus the

calculation without the vibrational effect is not reliable.

3.2 Computational Details

To simulate defects, we use supercell models (see Fig. 3.1) containing 64, 216, 512,

1000, and 1728 atomic sites. We remove one atom from supercells and then allow

all remain atoms to relax so that the atomic force is less than 5 × 10−2 eV/Å.

Γ-point and Monkhorst-Pack grid (kMP ) [54] are carried out in the Brillouin zone

integration. The use of supercell models efficiently reduces computational cost;

however, it introduces an error, which is due to defect-defect image interactions
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Figure 3.1: Supercell containing 512 atomic sites, which is generated from a
4× 4× 4 times 8-sites unit cell.

[4, 55–57]. The error decreases as the supercell size increases. Thus, a larger

supercell gives more accurate results of electronic properties such as formation

energy.

The formation energy (Ef ) of a neutral vacancy is calculated as [3, 5]

Ef = Ev
N−1 − (

N − 1

N
)EN , (3.1)

where EN is the total energy of the perfect supercell consisting of N atoms and

Ev
N−1 is the total energy of the supercell for the monovacancy. By using the
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formation energy, the concentration of the vacancy is roughly approximated by [8]

C0 = N0 exp(− Ef

kBT
), (3.2)

where N0, kB, and T are the total number of atoms per unit volume, Boltzmann

constant, and temperature, respectively. However, when the vibrational effect and

configurational entropy are considered, the concentration is given by [46]

CS = C0nc exp(− F f
vib

kBT
), (3.3)

where nc is the number of geometries with the lowest energy. A neutral vacancy

has the D2d symmetry, nc = 3, which gives the formation configurational entropy

Sf
c = 1.1kB. F f

vib is the formation vibrational free energy given by [46]

F f
vib = F v

vib − (
N − 1

N
)F p

vib, (3.4)

where F v
vib and F p

vib are the vibrational free energies of the vacancy and perfect

crystal, respectively. These vibrational free energies are given by [46, 58]

Fvib = kBT
∑
i

ln[sinh(
hνi

2kBT
)], (3.5)

where h is Planck’s constant and ν is the vibrational frequency. i runs over the

vibrational modes.

The formation vibrational entropy Sf
vib is given by [59]

Sf
vib = Sv

vib − (
N − 1

N
)Sp

vib, (3.6)

where Sv
vib and Sp

vib are the vibrational entropies of the vacancy and perfect crys-

tal, respectively, which can be calculated from the first derivative of Fvib over

temperature [58]:

Svib = −
(
∂Fvib

∂T

)
V

. (3.7)

In the above calculation of the vacancy concentration in Eq. (3.3), we need to
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evaluate the vibrational frequencies. Thus, the second derivatives of the energy

over atomic coordinates are computed numerically within the harmonic approx-

imation, i.e., the second derivatives are estimated from the atomic force for the

geometry where the atom is in a displaced position. We consider an atomic dis-

placement of 0.05 Å in this calculation. The vibrational frequencies are obtained

by diagonalizing the dynamical matrix whose elements are calculated from the

second derivatives. The detail explanation of the calculation of the vibrational

frequencies was previously given in Chapter 2.

3.3 Results and Discussion

3.3.1 Formation energy

We calculate the formation energy and concentration of the silicon neutral mono-

vacancy V 0
Si

. The initial geometry of the unrelaxed monovacancy has the Td sym-

metry. During relaxation, Jahn-Teller effect lowers the symmetry from Td. We

find that the most stable geometry of the vacancy has the D2d symmetry for all

supercells. The results are in agreement with those of previous theoretical calcu-

lations [3–6, 44]. The symmetry lowering from Td to D2d is explained in Appendix

A.

In the D2d geometry, four nearest-neighboring atoms form two pairs, as shown in

Fig. 3.2. The two distances between the nearest-neighboring atoms are denoted

by L1 and L2 (L1 > L2), which are shown in Table 3.1. The calculated volume

of the tetrahedron, whose top is placed at a nearest-neighbor site, is smaller than

that of the ideal one (Table 3.1). This volume reduction originates from the inward

relaxation of the nearest-neighbor atom.

We plot the displacement of atoms from the ideal position in Fig. 3.3. As the

distance from the vacancy center increases, the displacement tends to decrease. In

the 1728-site cell, the displacement of the atoms, which are more than 9.2 Å from

the vacancy center, is very small (less than 0.005 Å), expecting that the 1728-sites
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Figure 3.2: Geometry of the neutral vacancy: four nearest-neighboring atoms
of the vacancy form two pairs. L1 and L2 are the distances be-
tween two atoms, where L1 > L2.

supercell-size is large enough and giving a converged value of the formation energy.

We calculate the formation energy using supercells whose sizes are up to 1728

atomic sites. As shown in Table 3.1, for the 64- and 216-atomic-sites supercells,

Γ-point produces both D2d and Td symmetries. The Td symmetry has higher for-

mation energy by 0.19 and 0.40 eV for the 64- and 216-atomic sites, respectively.

However, when kMP = 8 and kMP = 64 are used as k-point Brillouin-zone sam-

pling, the optimized geometry tends to have the D2d symmetry. This indicates that

the geometry having the Td symmetry is less stable compared with that having

the D2d symmetry, and thus D2d is considered as the ground state of the system.

Moreover, the 512 – 1728-atomic-sites supercells produce the D2d symmetry, which

also indicate that the most stable geometry of the silicon monovacancy has the

D2d symmetry.
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Figure 3.3: Displacements of atoms from the ideal position as a function of
the distance from the vacancy.

To minimize the defect-defect image interactions appearing from the use of the

supercell model, we use large supercell whose size is 1728 atomic sites, and we

confirm the convergence with respect to the cell size. The formation energy well

converges when a 1728-atomic-site supercell is used (Table 3.1). The difference

between the formation energies calculated from 1000- and 1728-site supercells is

very small (0.02 eV). We next confirm the convergence by decreasing the atomic

force from 5 ×10−2 eV/Å to 2 ×10−3 eV/Å in the 1728-sites calculation and we

find that the formation energy difference is very small (0.003 eV). Therefore, our

calculated value (3.46 eV) well converges and is close to the experimental values.

Dannefaer et al. [8] carried out the positron annihilation experiment and esti-

mated the formation energy to be 3.6±0.2 eV. Watkins and Corbett [9] estimated
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Table 3.1: Results of supercell calculations. Vr is the defect volume change
defined as Vr = (V -V0)/V0, where V and V0 are the volumes of
the tetrahedra formed by the four nearest-neighboring atoms of
the relaxed and ideal vacancies, respectively [52]. L1 and L2 are
distances between the nearest-neighboring atoms in the relaxed
geometries (see Fig. 3.2). The ideal (unrelaxed) bulk distance
and defect volume are 3.87 Å and 6.81 Å3, respectively. Ef is the
formation energy and N is the supercell size.

N k-point Vr (%) L1 (Å) L2 (Å) Symmetry Ef (eV)

64 Γ -30.75 3.60 3.16 D2d 3.05

Γ 3.72 3.72 Td 3.24

8 3.57 3.47 D2d 3.48

64 3.59 3.47 D2d 3.65

216 Γ -43.00 3.44 2.90 D2d 3.31

Γ 3.46 3.46 Td 3.71

8 3.48 2.96 D2d 3.52

512 Γ -42.29 3.43 2.94 D2d 3.43

1000 Γ -42.72 3.42 2.94 D2d 3.48

1728 a Γ -44.08 3.44 2.87 D2d 3.46(3)

1728 b Γ 3.44 2.89 D2d 3.46(0)

aatomic force = 5 ×10−2 eV/Å
batomic force = 2 ×10−3 eV/Å

the formation energy to be 3.6 ± 0.5 eV from the EPR experiment. Shimizu et

al. [10] estimated the formation energy to be 3.6+0.3
−0.1 eV from the Raman shift

measurement. Fukata et al. [11] used a quenching method and estimated the

formation energy to be about 4.0 eV. These results are consistent with the present

value.

The previous theoretical calculations that used 64 – 1000-atomic-site supercells

show that the formation energies are 3.0 – 4.1 eV [3–6, 52, 53], which are close to

our value. The 1000-site calculation based on the GGA [4] gives a value of 3.62

eV, which is close to the present value from the 1728-site calculation (3.46 eV). A
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recent 512-site calculation based on the Heyd-Scuseria-Ernzerhof screened hybrid

functional [53] gives a formation energy of 4.08 eV.

3.3.2 Vacancy concentration

We next calculate the vibrational frequencies by using a 216-site supercell. In this

calculation, we use relaxed atomic positions of the vacancy system and displace

each atom 0.05 Å from their equilibrium positions. The vibrational frequencies are

computed numerically by using the harmonic approach. The calculated vibrational

frequencies over the number of modes are shown in Fig. 3.4.

The density of states (DOS) is computed by introducing Gaussian broadening

(Eq. (2.103)) whose half-width is 50 cm−1 (Fig. 3.5). Comparing the DOS of

the vacancy system with that of the perfect system, we find that the vibrational

frequencies are lower in the vacancy case. This softening of the vacancy system is

expected to increase the vacancy concentration.

Next, the monovacancy concentration is calculated. The concentration as a func-

tion of temperature is given in Fig. 3.6. We use the formation energy estimated

from the 1728-site cell calculation and calculate vibrational frequencies by using

the 64- and 216-site supercells. At the melting point (1685 K), CS in Eq. (3.3)

is estimated to be 8.2 × 1016 and 7.4 × 1016 cm−3 by using the 64- and 216-site

supercell calculations, respectively. Thus, the result is insensitive to the supercell

size used in the calculation of vibrational frequencies. C0 in Eq. (3.2) is estimated

to be 2.2 × 1012 cm−3, which is much lower than CS, by considering the vibrational

effect and configurational entropy. The high CS value is mainly due to the fact

that the vibrational frequencies are softened in the vacancy system. The configu-

rational entropy effect increases the concentration only three times, and thus the

entropy only slightly affects the concentration.

The formation vibrational entropy as a function of temperature is given in Fig.

3.7. The entropy converges at 1100 K, giving a value of 9.1kB. At the melting

point, the Sf
vib values calculated from the 64- and 216-site supercells are 9.3kB and
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Figure 3.4: Vibrational frequency for each mode calculated from the perfect
supercell (black) and its vacancy system (blue).

9.1kB, respectively. Thus, the sum of the vibrational and configurational entropies

is ∼ 10kB.

From a positron annihilation study, Dannefaer et al. [8] estimated the vacancy

concentrations to be 1014 – 1016 cm−3 at 1500 K [51]. At this temperature, we

estimate the concentration to be 4.0 × 1015 cm−3, which shows very good agree-

ment with their estimations. At the melting point (1685 K), Voronkov and Falster

[60] obtained a vacancy concentration of 1015 cm−3 by analyzing experimental re-

sults of boron doping [61]. Our calculated value (7.4 × 1016 cm−3) is somewhat
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Figure 3.5: Vibrational density of states calculated from the 64-sites (left)
and 216-sites (right) supercells for vacancy system (solid line) and
perfect system (dashed line).

Figure 3.6: Vacancy concentration as a function of inverse temperature cal-
culated from the 64-sites (left) and 216-sites (right) supercells.
Calculations of CS (solid line) and C0 (dashed line) are carried
out by using Eqs. (3.3) and (3.2), respectively.

higher. The small deviation may come from the use of a different formation energy

(Voronkov and Falster used the value of 4.5 eV).

Goto et al. [12] detected a defect by low-temperature ultrasonic measurement

and considered that the detected defect is a monovacancy. By analyzing the

results of the low-temperature experiment, they estimated the concentration to

be 1015 cm−3 and expected that the concentration would be the same as that

at the melting point. Their estimated concentration is only slightly lower than

our present value at the melting point (7.4 × 1016 cm−3). Thus, this seems to
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Figure 3.7: Formation vibrational entropy (Sf
vib) in Eq. (3.6) as a function of

temperature.

support their expectation. However, it should be noted that monovacancies likely

agglomerate in cooling specimens as argued in Ref. 19. If so, the detected defect

is not a monovacancy.

Lannoo and Allan calculated the vibrational entropy using Green’s-function tech-

nique and obtained a vibrational entropy value of 6kB or more [62, 63]. Using

the same technique, Leite et al. calculated a 17-atom cluster and showed that the

vibrational entropy can reach 10kB [64]. Al-Mushadani and Needs conducted a

DFT calculation based on the local density approximation (LDA) using 64 atomic

sites and obtained a vibrational entropy of about 1 × 10−3 eVK−1 (12kB) and a

vacancy concentration of 1016 cm−3 at 1500 K [46]. Our calculated vibrational

entropy value is 9.1kB and the vacancy concentration is 4.0 × 1015 cm−3. These

values are close to the theoretical results.



Chapter 4

Summary

4.1 Conclusion

We have carried out DFT calculations of V 0
Si

by using large-scale supercells. The

supercells were larger than those in the previous studies [3–6, 46, 52, 53] and we

confirmed the convergence of calculational results. Therefore, we believe that the

present DFT calculations give reliable results. In the 1728-site supercell calcula-

tion, we found that the displacement of the atoms, which are more than 9.2 Å

from the vacancy site, is very small (less than 0.005 Å), suggesting that the calcu-

lational formation energy converges. In fact, we found that the formation energy

estimated from the 1728-site supercell calculation is 3.46 eV, and we confirmed the

convergence. The estimated formation energy is close to the experimental values.

As for the vibrational effect, we found that the 64- and 216-site supercell calcula-

tions give similar results, indicating that the results well converge. The vacancy

concentrations at 1500 and 1685 K (silicon melting point) were estimated to be 4.0

× 1015 and 7.4 × 1016 cm−3, respectively, which are in good agreement with the

experimental values. We found that the vibrational effect significantly increases

the vacancy concentration about 104 times.
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4.2 Future Scope

By using the DFT calculations based on quantum mechanical simulation, we get

useful results. We succeed to simulate the silicon monovacancy by using a large-

scale supercell. We show that the vibrational effect significantly contributes to

the increase of the concentration of the silicon monovacancy. We show that the

calculation without the vibrational effect is not reliable. Our results are consistent

with those of the recent ultrasonic measurements [12].

In this study, we focus on the monovacancy. The study of multivacancies is im-

portant. Some configurations were proposed such as the “part of hexagonal ring”

(PHR) and fourfold configurations (Fig. 4.1). In the silicon case, it was theoreti-

cally clarified that the fourfold configurations are more stable than the PHR ones

[66]. A very recent deep-level transient spectroscopy (DLTS) measurement has

also found that the fourfold configuration is the most stable configuration in the

case of the silicon trivacancy [67]. In the germanium case, we carry out calcula-

tions of multivacancies whose sizes are 1 ≤ Nv ≤ 6. We clarify the stability of the

vacancies in germanium and show prominent differencess between the silicon and

germanium vacancies. We present the detail results in Appendix B. This study

opens the future research of defects in semiconductors such as the DLTS and EPR

studies to confirm these results.

For further study, we would like to apply this calculation scheme in other materials

such as carbon and SiC (silicon carbide) having the same diamond-structure. The

investigation of the vacancy concentration and the clarification of the most stable

configurations in such materials would give useful guidance in understanding the

defects properties in such materials.
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Figure 4.1: The hexavacancy forming a hexagonal-ring configuration is shown
in (a). The fourfold configurations of the tri-, tetra-, and penta-
vacancies are shown in (b), (c) and (d), respectively. Red open-
circles represent vacancies, and blue and black closed-circles do in-
terstitial atoms and their nearest-neighboring atoms, respectively.



Appendix A

Symmetry and Group Theory

In Chapter 3, we mentioned the configuration of the monovacancy having the

D2d and Td symmetries. The symmetries are determined by using group theory

analysis. In this part, we explain the symmetry and group theory.

A symmetry element belongs to a molecule if the symmetry operation leaves the

entire molecule atoms unchanged (identical atoms and bonds having been moved

are not taken into account). A symmetry element contains a point, line or a plane

with a rotation and or reflection operations. Table A.1 shows symmetry elements

and their symbols and definition.

Molecules are grouped based on their symmetry. The symmetry operations in

Table A.1 satisfying all of the requirements of a group belongs to a group. In

general, a set of operations is addressed to a group if they follow the rules below.

Let we have elements A, B, and C. They form a group G if satisfies four axioms

as follows:

1. (Closure) If A and B are members of G, then the product A • B must also be

a member of G.

2. (Identity) There is an identity element E such that any elemenent A of G

satisfies E • A=A • E=A.
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Table A.1: Symmetry operation and its elements and symbols.

Symbol Element Symmetry operation

E Identity

Cn n-fold axis Rotation by 2π/n

σ Mirror plane Reflection

i Center of inversion Inversion

Sn n-fold axis of Rotation by 2π/n

improper rotation followed by reflection

perpendicular to

the principle axis

3. (Associativity) For all A, B, C in G, the multiplication is associative satisfying

(A • B) • C = A • (B • C).

4. (Inverse) For any element A of G, there is element A−1 such that A • A−1 =

A−1 • A = E.

A.1 Point group

The group theory can be used to predict molecular properties such as molecular

orbital and symmetry properties. Here, we focus on the point group and use it

to analyze the geometry of defects and identify the point groups they belong.

Atomic geometries having the same symmetry elements are collected into point

group. The identification of the point group for such geometries commonly uses

the character table representation. The character table representations of selected

point groups are given in Table A.2 – Table A.3.
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Table A.2: Character table representation of point group Td.

Td E 8C3 3C2 6S4 6σd

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 -1 -1

E 2 -1 2 0 0 (2z2 − x2 − y2,
√

3(x2 − y2))

T1 3 0 -1 1 -1 (Rx, Ry, Rz)

T2 3 0 -1 -1 1 (x, y, z) (xy, xz, yz)

Table A.3: Character table representation of point group D2d.

D2d E 2S4 C2 2C ′
2 2σd

A1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 -1 -1 Rz

B1 2 -1 2 0 0 x2 − y2

B2 1 -1 1 -1 1 z xy

E 2 0 -2 0 0 (x, y) (xz, yz)

(Rx, Ry)

Table A.4: Character table representation of point group D3d.

D3d E 2C3 3C2 i 2S6 3σd

A1g 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 -1 1 1 -1 Rz

Eg 2 -1 0 2 -1 0 (Rx, Ry) (x2 − y2, 2xy)

(xz, yz)

A1u 1 1 1 -1 -1 -1

A2u 1 1 -1 -1 -1 1 z

Eu 2 -1 0 -2 1 0 (x, y)



Appendix A. Symmetry and Group Theory 55

Table A.5: Character table representation of point group C2h.

C2h E C2 I σh

Ag 1 1 1 1 Rz x2, y2, z2, xy

Bg 1 -1 1 -1 Rx, Ry xz, yz

Au 1 1 -1 -1 z

Bu 1 -1 -1 1 x, y

Table A.6: Character table representation of point group C2.

C2 E C2

A 1 1 z, Rz x2, y2, z2, xy

B 1 -1 x, y, Rx, Ry yz, xz

Table A.7: Character table representation of point group D3.

D3 E 2C3 3C2

A1 1 1 1 x2 + y2, z2

A2 1 1 -1 y,Rz

E 2 -1 0 (x, y) (Rx, Ry) (x2 − y2, 2xy) (xz, yz)

Table A.8: Character table representation of point group C2v.

C2v E C2 σv(xy) σ′
v(yz)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 -1 -1 Rz xy

B1 1 -1 1 -1 x,Ry xz

B2 1 -1 -1 1 y,Rx yz
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A.2 Jahn-Teller effect

One of applications of the point group is to analyze the symmetry breaking ob-

served in the molecular geometry that lowers the symmetry and energy. In 1937,

Hermann Jahn and Edward Teller introduced the Jahn-Teller effect by using group

theory [68]. The JahnTeller effect essentially describes a geometrical distortion of

molecules that reduces its symmetry. This effect is observed in the defective crystal

system; i.e., the silicon and germanium monovacancies having tetrahedral shape

with the Td symmetry is geometrically distorted to the D2d symmetry.

The tetrahedral shape formed by four atoms neighboring a vacancy of the silicon

monovacancy has six same side lengths (Fig. A.1 (a)). It has symmetry operations

of E, C2, C3, S4, and σd, as shown in Fig. A.1 (b). Based on Table A.2, the

tetrahedral shape belongs to Td symmetry. In the optimized geometry, the six

side lengths are distorted forming two pairs, one pair consists of two same side

lengths, denoted by L1, and another pair consists of four same side lengths, denoted

by L2 (Fig. A.2 (a)). This new shape has symmetry operations of E, C2, C
′
2, S4,

and σd, as shown in Fig. A.2 (b); thus it belongs to D2d symmetry. Therefore, the

Jahn-Teller effect reduces the Td symmetry to the D2d symmetry. This symmetry

reduction is shown by character table representation in Table A.9.
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Figure A.1: Ideal structure of the silicon monovacancy: (a) four nearest-
neighboring atoms forming a tetrahedral shape with the six same
side lengths denoted by L. The vacant site is in the center. (b)
symmetry operations of the Td symmetry.

Figure A.2: Optimized structure of the silicon monovacancy: (a) four
nearest-neighboring atoms forming a tetrahedral shape with the
two side pairs denoted by L1 and L2. The vacant site is in the
center. (b) symmetry operations of the D2d symmetry.
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Table A.9: Character table representation of the symmetry reduction from
Td to D2d.

Td D2d

A1 A1

A2 B1

E A1 + B1

T1 A2 + E

T2 B1 + E



Appendix B

Development of the Study:

Stability of the Multivacancies in

Germanium

In this part, we present the calculational details and results of the multivacancies

in germanium. We simulate two favorable configurations, the “part of hexagonal

ring” (PHR) and fourfold configurations of the tri-, tetra-, and penta-vacancies.

Next, we compare the results of germanium and silicon.

B.1 Introduction

Defects in semiconductors play important roles in fabricating semiconductor-based

electronic devices because they have crucial effects on the electronic structures.

Recently, germanium has attracted much attention due to its high carrier mobility

as an active layer and its compatibility with silicon in electronic devices [15, 69].

Whereas defects in silicon were well studied [3, 4, 9–11, 44, 52], those in germanium

are not well clarified. As for vacancies, the mono- and divacancies have been

investigated theoretically [70–74] and experimentally [15, 75, 76].
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Figure B.1: PHR configurations. The PHR configurations of the tri-, tetra-,
and penta-vacancies are shown in (b), (c), and (d), respectively,
whereas the hexavacancies is shown in (a). Red open-circles are
vacancies.

Magic number has been discussed for Si multivacancies [77]. The dangling bond

counting (DBC) model, proposed by Chadi and Chang [77], indicates the stabil-

ity of multivacancies in silicon. According to this model, the decrease of dan-

gling bonds (broken bonds) makes the vacancies more stable. The model leads

to so-called magic numbers: the numbers of missing host atoms of n = 4m + 2

(m = 1, 2, 3, ...) are energetically stable [44, 77–79]. Chadi and Chang concluded

that the hexavacancy (V6) having a hexagonal ring network of missing atoms and

decavacancy (V10) having a cage network are energetically stable.
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The stability of the hexavacancy (Fig. B.1(a)) was also examined by using the

density-functional-theory calculations [78, 80, 81]. It was suggested that the stable

configurations of multivacancies in silicon have “part of hexagonal ring” (PHR)

configuration formed by sequentially removing atoms from a hexagonal ring (Fig.

B.1(b)–(d)). However, Makhov and Lewis [66] have carried out calculations and

found that the fourfold configurations of the tri-, tetra-, and penta-vacancies (Figs.

B.2 and B.3) are more stable than the PHR configurations. In the fourfold config-

urations of tri-, tetra-, and penta-vacancies, three, two, and one interstitial atoms

are introduced, respectively, into the hexavacancy and each introduced atom forms

four covalent bonds (Figs. B.2 and B.3). A very recent deep-level transient spec-

troscopy (DLTS) measurement has found that, in the case of the trivacancy in

silicon, the fourfold configuration is energetically more favorable than the PHR

configuration [67], which is consistent with the results of Makhov and Lewis.

As mentioned above, the stability of silicon multivacancies has been extensively

studied. Moreover, magic numbers of multivacancies of GaAs [82] and graphene

[83] were also studied. However, little is known for the stability of germanium

multivacancies.

In this study, we carry out the density-functional-theory calculations to study

the stability of germanium vacancies. We also carry out calculations of silicon

vacancies and compare the results of germanium and silicon. In the case of the tri-,

tetra-, and penta-vacancies in silicon, we show that the fourfold configurations are

more stable than the PHR ones. As for germanium, the results of tetra- and penta-

vacancies give a similar conclusion with those in silicon. However for trivacancy,

we find that the fourfold configuration is less stable by 0.1 – 0.2 eV than the PHR

configuration.

B.2 Computational Details

We simulate defects by using supercells containing 216 atomic sites. The Brillouin-

zone integration is carried out using a 8-points Monkhorst-Pack grid (kMP =

8) [54]. We check the convergence for the di- and tri-vacancies by carrying out
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Figure B.2: Fourfold configurations. The hexavacancy is shown in (a). The
fourfold configurations of the tetra- and penta-vacancies are
shown in (b) and (c), respectively. Red open-circles represent
vacancies, and blue and black closed-circles do interstitial atoms
and their nearest-neighboring atoms, respectively.

calculations using 64 points and find that the formation energy differences are

less than 0.1 eV. We use the 216 atomic-sites supercells since we confirmed the

convergence: we check the convergence for the germanium trivacancy, and find

that the formation energy difference between calculations from 216 and 512 site

calculations are less than 0.1 eV.

To find the optimized geometry, we fully relax all atoms so that the atomic forces

are less than 5 ×10−2 eV/Å. We carry out calculations of the multivacancies

for the vacancy size 1 ≤ Nv ≤ 6. We simulate two configurations, the PHR
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and fourfold configurations, for the tri-, tetra-, and pentavacancies. The PHR

configurations are formed by sequentially removing three, four, or five atoms from

the hexagonal ring. The hexavacancy forming a hexagonal ring in Fig. B.1(a)

has twelve nearest-neighboring atoms with twelve broken bonds. After relaxation,

each two neighboring atoms pairs so that six new bonds are created (Fig. B.2(a)).

Thus, there is no broken bond at all in the hexagonal-ring configuration. As for

the PHR configurations, there are two broken bonds left at the ends of the vacancy

chain Fig. B.1(b)–(d).

The fourfold configurations are formed by introducing three, two, or one self-

interstitial atoms to the ring-hexavacancies for the tri-, tetra-, and penta-vacancies,

respectively. Each self-interstitial atom makes new bonds with four neighboring-

atoms while the others pair, as in the PHR configuration; thus, there is no broken

bonds at all (Figs. B.2(b)–(c) and B.3). This configuration is expected to be stable

due to the decrease of broken bonds [66, 77]. We next determine the symmetry of

each configuration by using point group analysis, which is described in Appendix

A.1.

We calculate the formation and dissociation energies for each defect system. The

formation energy (Ef ) is calculated as [3, 5, 74]

Ef = Ev − (
M −Nv

M
)EM , (B.1)

where EM is the total energy of the perfect supercell consisting of M sites, Ev is

the total energy of the vacancy system, and Nv is the number of vacancies. We

calculate two types of the dissociation energies D1 and D2, which are respectively

given by Eqs. (B.2) [47, 78, 79] and (B.3) [44, 47, 82]:

D1 = Ef
Nv−1 + Ef

1 − Ef
Nv
, (B.2)

and

D2 = Ef
Nv+1 + Ef

Nv−1 − 2Ef
Nv
, (B.3)
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Figure B.3: The fourfold configuration of the trivacancy. The blue closed-
circles represent the interstitial atom while the black closed-circles
(A, B, C, and D) represent their four nearest-neighboring atoms.

where Ef
Nv

, Ef
Nv−1, and Ef

Nv+1 are the formation energies of the supercell containing

Nv, (Nv − 1), and (Nv + 1) vacancies, respectively, whereas Ef
1 is the formation

energy for the monovacancy.

B.3 Results and Discussion

B.3.1 Monovacancy

We first calculate formation energies of the monovacancy by using Eq. (B.1).

In the silicon case, the calculated formation energy is 3.52 eV, which is in good

agreement with the experimental value of 3.6 ± 0.5 eV [9]. The value calculated

from the 216 site cell in the present calculation is close to that calculated from the

1728 site calculation (3.46 eV) that we presented in Chapter 3. The Jahn-Teller

effect [7] lowers the symmetry, and the optimized geometry has the D2d symmetry.

The symmetry lowering from Td to D2d is explained in Appendix A.2.
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Table B.1: Calculated formation energies (in eV) of the PHR and fourfold
configurations in germanium and silicon. Nv is the vacancy size
and Ef is the formation energy.

Nv Ef (Ge) Ef (Si)

PHR Fourfold PHR Fourfold

1 2.32 3.52

2 4.10 5.25

3 5.67 5.79 7.08 6.38

4 7.14 6.82 8.37 7.16

5 7.96 7.74 8.97 8.23

6 8.49 9.05

In the germanium case, we find that the calculated formation energy is 2.32 eV,

which is close to the experimental value of 2.35±0.11 eV [84–93]. The determined

symmetry is D2d, which is the same as in the silicon case. However, the germanium

monovacancy has lower formation energy than the silicon monovacancy. This

smaller energy of germanium is expected to be due to the weak covalent bonds.

Fig. B.4 shows the charge density distribution in the perfect crystal of silicon and

germanium. In the silicon case, the charge density shows one maximum peak in

the bond region while in the germanium case, the charge density shows double

peak (Fig. B.4). These results indicate that covalent bonds in germanium are

weaker than those in silicon.

The previous theoretical studies showed that the formation energies of the germa-

nium monovacancy are 2.0 – 2.9 eV [70–72, 94]. A recent 64-site calculation based

on the Heyd-Scuseria-Ernzerhof range-separated hybrid functional [95] gives the

formation energy of the germanium monovacancy of 2.87 eV.

B.3.2 Divacancy

We next study the silicon divacancy. From the electron paramagnetic resonance

experiment, the pairing model was proposed [96] but a DFT study supported the



Appendix B. Development of the Study: Stability of the Multivacancies in
Germanium 66

Table B.2: Calculated bond angles of the fourfold configurations in germa-
nium and silicon trivacancies. The atoms denoted by A, B, C, D,
and I are shown in Fig. B.3.

Bond angles Germanium Silicon

̸ AIB 163.2◦ 158.4◦

̸ CID 106.2◦ 108.6◦

̸ AIC, ̸ BID 86.9◦ 89.6◦

̸ AID, ̸ BIC 102.9◦ 103.1◦

resonant-bonding (RB) model [97, 98] whose symmetry is the same as the pairing

model (C2h). We find that the RB configuration has lower formation energy than

the pairing one but the energy difference is very small (0.01 eV). A previous

large-scale DFT calculation also reported that the both configurations have close

energies [97]: The 512-site cell calculation indicates that the RB configuration has

slightly 0.02 eV lower formation energy than the pairing configuration.

In the germanium case, we find that the pairing configuration has very slightly

lower formation energy value (within 0.002 eV) than the RB configuration. Öğüt

and Chelikowsky carried out cluster calculations and also found that two config-

urations have similar formation energies, i.e., the RB configuration has only 0.03

eV lower formation energy than the pairing configuration [99].

We conclude that the RB and pairing configurations have close energies in both

cases of silicon and germanium; thus the determination of the most stable config-

urations is still unclear.

B.3.3 Trivacancy

We calculate formation energies of the PHR and fourfold configurations for the

trivacancy. In the fourfold configuration, three interstitial atoms are introduced in

the hexavacancy (Fig. B.3). We find that the geometries of silicon and germanium

trivacancies have D3 symmetries.
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Figure B.4: Charge density distributions in the perfect supercell of silicon
(top) and germanium (bottom). The unit in the color bar is
e/(a.u.)3.

In the case of silicon, we find that the fourfold configuration has 0.70 eV lower

formation energy than the PHR configuration (Table B.1). On the other hand,

we find that the fourfold configuration has 0.12 eV higher formation energy than

the PHR configuration in the case of germanium (Table B.1). Therefore, the most

stable configurations of the silicon and germanium are different.

As for the germanium trivacncy, we check the convergence of the formation en-

ergy difference by carrying out two calculations. The first calculation is carried



Appendix B. Development of the Study: Stability of the Multivacancies in
Germanium 68

out by using a GGA-based 216-sites calculation and we find that the fourfold con-

figuration has 0.20 eV higher formation energy than the PHR configuration. The

second calculation is carried out by using a 512-sites calculation and we find that

the formation energy difference is 0.13 eV lower in the case of the PHR configura-

tion. These results are very close to that calculated from the LDA-based 216-sites

calculation (0.12 eV); thus, our calculated result well converges.

Each of the interstitial atoms introduced in the hexavacancy forms four bonds

(Fig. B.3). As is shown in Table B.2, the deviations from the sp3 ideal bond angle

(109.5◦) in the case of germanium are larger than those in the case of silicon. This

result indicates that the four bonds in the germanium trivacancy are weaker than

those of the silicon trivacancy. To confirm the weak covalent bonds, we calculate

the ratio of the bond-length of the four bonds of the interstitial atom to that of the

crystal. We find that the ratios in the germanium trivacancy are 1.06 – 1.13, which

are larger than the corresponding values (1.04 – 1.11) in the silicon trivacancy (Ta-

ble B.3). These results also indicate that the bonds in the germanium trivacancy

are weak. Moreover, the charge density calculation shows that the bonding charge

between the interstitial atom I and its four nearest-neighboring atoms (i.e., atom

A and atom C) in the case of germanium is lower than that in the case of silicon

(Fig. B.5).

B.3.4 Multivacancies

We carry out calculations of the multivacancies whose sizes are 4 ≤ Nv ≤ 6. In

the case of the tetra- and penta-vacancies, we carry out calculations of the PHR

and fourfold configurations. In the case of silicon, the fourfold configurations have

lower formation energies than the PHR configurations by 1.21 and 0.74 eV for the

tetra- and penta-vacancies, respectively (Table B.1). The determined symmetries

of the fourfold configurations are C2h and C2, respectively. These results are

consistent with those of the previous DFT study [66].

In the case of germanium, the fourfold configurations of the tetra- and penta-

vacancies have lower formation energies than the PHR configurations as in the
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Figure B.5: Charge density distribution in the fourfold configuration of the
silicon (top) and germanium (bottom) trivacancies. Atoms de-
noted by A, C, and I are shown in Fig. B.3. The unit in the color
bar is e/(a.u.)3.

silicon case. However, the formation energy differences are 0.32 and 0.22 eV, re-

spectively and thus the differences are smaller than the corresponding values in the

case of silicon (Table B.1). These small formation-energy differences in the germa-

nium tetra- and penta-vacancies are expected to be due to the fact that the four

bonds of the interstitial atoms are weak as in the case of the trivacancy. We find

the symmetries are C2h and C2 for the tetra-, and penta-vacancies, respectively,

as in the silicon case.

We finally calculate the formation energies of the hexavacancies. The formation

energies are 8.49 and 9.05 eV in the cases of germanium and silicon, respectively.

The formation energy differences between the hexavacancies and pentavacancies

are small, which are 0.53 eV in the case of germanium and 0.08 eV in the case of

silicon (Table B.1); thus, the hexavacancies are expected to be stable. We find the

D3d symmetry in both cases of germanium and silicon hexavacancies.
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Figure B.6: Calculated dissociation energies (D1) of the most stable configu-
rations as a function of vacancy size Nv. The dashed and solid
lines represent the silicon and germanium cases, respectively.

B.3.5 The dissociation energy

We here calculate dissociation energies D1 (Eq. (B.2)) and D2 (Eq. (B.3)) of

the most stable configurations from divacancy to pentavacancy. D1 is the binding

energy for the vacancy reaction VNv → VNv−1 + V whereas D2 is the dissocia-

tion energy for the vacancy reaction 2VNv → VNv+1 + VNv−1 [47]. The calculated

dissociation energies are shown in Figs. B.6 and B.7 for D1 and D2, respectively.

In the silicon case, we find that the tetravacancy has the energy peak, which sug-

gests that the tetravacancy is not easy to dissociate and is thus stable. Meanwhile,
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Figure B.7: Calculated dissociation energies (D2) of the most stable configu-
rations as a function of vacancy size Nv. The dashed and solid
lines represent the silicon and germanium cases, respectively.

there is no peak in the case of germanium. Therefore, the germanium tetravacancy

is not so stable compared with the silicon tetravacancy.

To confirm the stability of the silicon tetravacancy, we calculate the ratio of the

bond-length of the four bonds of the interstitial atom to that of the crystal. We

find that the ratios in the silicon tetravacancy are 1.04 – 1.08, which are smaller

than the corresponding values (1.05 – 1.11) in the germanium tetravacancy. We

also find that the deviations from the sp3 ideal bond angle in the case of silicon

are smaller than those in the case of germanium. These results indicate that the

bonds in the silicon tetravacancy are strong and thus the silicon tetravacancy is

not easy to dissociate.
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Table B.3: Calculated bond lengths (L) of the fourfold configurations in ger-
manium and silicon trivacancies. The atoms denoted by A, B, C,
D, and I are shown in Fig. B.3. The crystal bond lengths (L0) are
2.43 and 2.37 Å for germanium and silicon, respectively. Ratio of
the fourfold bond and crystal bond lengths are also shown.

Bond Germanium Silicon

L (Å) Ratio L (Å) Ratio

I-A 2.74 1.13 2.64 1.11

I-B 2.74 1.13 2.64 1.11

I-C 2.57 1.06 2.47 1.04

I-D 2.57 1.06 2.47 1.04

B.4 Conclusion

We have carried out DFT calculations of multivacancies in germanium and sili-

con. For the monovacancy, we found that the optimized geometry has the D2d

symmetry for both germanium and silicon. The formation energy is smaller in

germanium than that in silicon, which is expected to be due to the fact that the

covalent bonds in germanium are weaker than those in silicon. In the case of the

divacancy, we found that the RB and pairing configurations have close energies in

both cases of silicon and germanium. In the case of the trivacancy, the fourfold

configuration is the most stable in silicon but the PHR is the most stable in ger-

manium. This difference between silicon and germanium is expected to be due to

the fact that the covalent bonds of the interstitial atoms in the fourfold configura-

tion are weak in the case of germanium. As for the tetra- and penta-vacancies, the

fourfold configurations are the most stable in both cases of silicon and germanium.

However, the energy differences between the most stable fourfold configurations

and metastable PHR ones are small in the case of germanium compared with the

case of silicon, which is expected to originate from the fact that the covalent bonds

of the interstitial atoms in the fourfold configurations are weak in germanium as

in the case of the trivacancy. By calculating dissociation energies, we find that

the silicon tetravacancy is not easy to dissociate and is thus stable whereas the

germanium tetravacancy is not so stable compared with the silicon one.
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In this study, we find prominent differences between the silicon and germanium

multivacancies. Experiments of germanium multivacancies such as DLTS and

electron paramagnetic resonance are expected to confirm these difference.
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