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Recent CMB observation seems to strongly support the existence of inflation. Even

so, only a few realistic inflation scenarios which have close relation to particle physics

seems to have been known unfortunately. Including the inflation, there are several

issues beyond the Standard Model of particle that have been clarified by observa-

tions: neutrino mass and mixing, existence of dark matter and baryon asymmetry

that need to be explained in a comprehensive way. The radiative neutrino mass

generation with an inert doublet is known as a promising model that successfully

explains those three phenomenology issues employed at a TeV scale. Therefore, here

we consider an extension of the radiative neutrino mass model by using a complex

singlet scalar to explain inflation phenomena as well. The feature of the radiative

neutrino mass model can be kept as long as the new scalar singlet is much heavy

compared to the right-handed neutrino and the inert doublet.

To evade the Lyth bound, a minimum requirement to generate sufficient tensor-

to-scalar ratio constrained by recent observation, a particular scalar potential form

is chosen such that the inflaton is restricted to evolve along a spiral-like valley

and it behaves as single field inflaton. As a result of long trajectory taken during

inflation, the inflaton can be kept to be a sub-Planckian field. It is shown that the

feature of the inflaton is similar to the power-law chaotic inflation but having better

prediction.
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Chapter 1

Introduction

1.1 Background and purposes

The standard model (SM) of particle is now considered to be extended due to un-

successful explanation of some observational phenomena in this framework. Those

phenomena are the neutrino masses and mixing [1–4], the existence of dark matter

[5, 6] and the baryon number asymmetry in the universe [7, 8]. Finding a model

that can explain all those phenomena simultaneously without causing any tension

to other phenomenological problems would be a crucial step to understand the new

physics beyond the SM. One of a promising candidate for that purpose is a simple

extension of the SM with an additional doublet scalar and three right-handed neu-

trinos. Z2 symmetry is also imposed as a new one. The new particles are signed

Z2-odd parity meanwhile all of the SM particles are signed Z2-even parity. Since

the additional doublet scalar is assumed to have no vacuum expectation value and

than it is forbidden to interact with the SM fermions due to this exact Z2 symme-

try, it is named an inert double [9]. Naturally, this model provides a mechanism

to generate small neutrino masses at one-loop level and also dark matter candidate

which could be the lightest Z2-odd particle. Moreover, there are a hint to produce

baryon number asymmetry through spharelons of electroweak vacuum transition

from lepton number asymmetry produced from the decay of the right-handed neu-

trinos [10]. Several studies [11–13] show a simultaneous explanation of those three

1



Chapter 1. Introduction 2

phenomenology beyond the SM can be achieved under minimal tensions with other

phenomenology such as lepton flavor violating processes. In fact, it is found to be

successfully realized if the dark matter candidate is the lightest neutral component

of the inert doublet with mass O(1) TeV. The baryon number asymmetry can also

be successfully explained through resonant leptogenesis due to the mass degeneracy

of right-handed neutrinos with mass of order TeV scale.

On the other hand, the existence of inflationary expansion of the universe at

very early time is strongly supported by the CMB observation. Severe observational

constraints such as Planck 2013 and Bicep2 restrict the allowed inflation model now

[14, 15]. They completely disfavor any model predicting at almost scale invariant

and blue tilted scalar power spectrum. They also prefer to a single field model

over more complicated scenarios. There are also theoretical constraints such as the

Lyth bound [16] that restricts the allowed field value to realize the sufficient tensor-

to-scalar ratio. The η problem is another one that is a kind of hierarchy problem

between the inflaton mass and the Hubble parameter. In single field inflation mod-

els, since the Lyth bound prevents the inflaton field to have a value below Planck

scale, the higher order terms suppressed by the Planck mass appear to ruin the

flatness of the inflaton potential. If there is no symmetry protecting the potential,

this difficulty is caused and the η problem is inevitable as well. The observation by

Planck 2015 [17] tightening the tensor-to-scalar ratio constraint to be r0.002 < 0.11

(95 % CL) so that only a few model can still survive, as instances the hiltop quartic

model, R2-inflation, Higgs-inflation and power-law chaotic inflation with power less

than two.

From such many inflation models that survive from the observational con-

straints, there are not so many inflaton candidates that play any role in particle

physics. Even so, they have still problems. As instances, the power law chaotic

inflation which is motivated by axion monodromy suffers trans-Planckian problem

due to the Lyth bound and the η problem, and the Higgs inflation suffers from the

unitary problem caused by a large non-minimally coupling [18, 19].

Motivated by the above facts, we consider an extension of the radiative seesaw

model with a complex scalar to explain the inflation of the universe as well without

disturbing favorable features of the original model. To evade the Lyth bound and
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the η problem, the field value of the inflaton which corresponds to the complex

scalar will be kept in sub-Planckian values by choosing a potential in such a way

that only a particular dynamics of the inflaton is allowed. In this scenario, the

spectral index and the tensor-to-scalar ratio could have values in a region favorable

by the recent CMB observations depending on the parameter sets in the inflaton

potential.

1.2 Outline of the thesis

This dissertation will consist of five chapters. In chapter 1, the motivational back-

ground and the purposes are mentioned. In chapter 2, we explain the concept of the

inflation idea in the early time of the universe, including how the inflation criteria is

manifested in the several realizations, the cosmological perturbations from inflation

which are seeds of inhomogeneity of the energy density that eventually grow to be

any structure in the universe seen today, and in the last part of the chapter we

explain theoretical constraints on the inflation models, the Lyth bound and the η

problem. In chapter 3, the radiative neutrino masses model and its extension due

to an additional complex scalar are elaborated. Then in chapter 4, the scenario of

inflation due to the complex scalar in the modified radiative neutrino mass model

is explained. The calculation and also the predictions favored by the recent CMB

observations are also clarified in this part. Finally, in chapter 5 the results and

discussion are summarized.



Chapter 2

Physics of Inflation

2.1 Standard Big Bang cosmology and its prob-

lems

The Big Bang cosmology is known to be a successful model describing the evolution

of the universe. The Big Bang cosmology assumes that the universe originates

from an infinitely hot and dense gaseous state and expands being cooled down

afterward. This theory is extremely successful to explain fundamental cosmological

observations: the homogenous cosmic expansion, the cosmic microwave background

radiation (CMB) and the abundance of light elements [20]. However, the behavior

of the early universe before nucleosynthesis is uncertain. The problems related

to the initial condition of the universe such as the horizon problem, the flatness

problem, the initial singularity problem and so on, are motivations to introduce the

hypothesis of inflation, that is there was a period of very rapid expansion of the

universe at very early times [21–23].

The Big Bang theory is based on the cosmological principle stating that the

universe is homogenous and isotropic on the largest scales and physical laws gov-

erned by general relativity. The only possible geometry of the universe obeying

4



Chapter 2. Physics of Inflation 5

the symmetry dictated by the cosmological principle is the Friedmann-Robertson-

Walker (FRW) spacetime with a metric defined as

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2(dθ2 + sin2 θdφ2)

]
, (2.1)

which is completely determined by cosmic scale factor a(t), and the curvature of

spatial hypersurface κ at a constant cosmic time t. Here, κ = −1, 0,+1 describe

open universe, flat universe and closed universe, respectively. The scale factor

a(t) represents the radius of the universe at a given time. It is sometimes more

convenient to adopt comoving coordinate xi, for which the FRW metric can be

represented as ds2 = −dt2 + a2(t)γijdx
idxj. The information of spatial curvature of

the hypersurface is contained in the spatial metric γij. Here, the length L between

two points in the comoving surface is constant all the time, but the physical length

grows as the universe expands a(t)L. The cosmological principle also requires that

the gaseous of the universe behave as a perfect fluid with the stress energy tensor

given by

Tµν = (ρ+ p)UµUν − pgµν . (2.2)

where ρ and p denote the energy density and the pressure of the fluid, respectively.

Inserting the FRW metric to the Einstein field equation Rµν− 1
2
Rgµν = 8πGTµν , the-

00 and the-ij components of the Einstein equation lead to the Friedmann equations

H2 =
ρ

3M2
pl

− κ

a2
, (2.3)

ä

a
= − 1

6Mpl

(ρ+ 3p), (2.4)

where Mpl := 1√
8πG

= 2.435 × 1018 GeV is the reduced planck mass and H := ȧ
a

is

called the Hubble parameter, which is estimated today as H0 = (67.3± 1.2) km s−1

Mpc−1 [24]. The conservation of energy-momentum implies the continuity equation

ρ̇+ 3H(ρ+ p) = 0. (2.5)

From this continuity equation, the behavior of the energy density can be derived
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during the expansion of the universe as follows: ρ ∝ a−3 for matter for which the

pressure is negligible compared to the energy density, and ρ ∝ a−4 and p = ρ/3 for

radiation. The relation p = −ρ is satisfied for domination of the cosmological con-

stant in the Einstein equation. Thus, its energy density is kept constant throughout

the expansion.

The first puzzle of the standard theory of cosmology is related to homogeneity

and isotropy of the universe. The observations of the CMB show that widely sepa-

rated regions of the space have almost the same temperature about 2.728◦ K with

temperature variations of the order 10−5 [25]. This is remarkable since those regions

appear to be causally disconnected at the recombination time when radiation is de-

coupled from matter and the CMB was emitted. On the other hand, the universe

must be homogenous enough at this decoupling time to explain the homogeneity of

the CMB observed today. Thus, it is difficult to understand how those regions share

physical properties if they have never causally interacted each other. This puzzle

is known as the horizon problem. There is also a relevant question how structures

we know today such as stars and galaxies have formed from such highly homoge-

nous early universe. Conceptually, two points are said to be causally connected if

there is a null geodesic of the photon between them, ds2 = 0. Taking account of

only the radial direction and defining conformal time τ :=
∫
dt/a(t) from the FRW

metric ds2 = −dt2 + a2(t)dχ2 := a2(τ) [−dτ 2 + dχ2], the null geodesic is given by

∆χ = ±∆τ . If the Big Bang is considered to start from ti = 0, the observable of

greatest comoving distance at time t is

χph(τ) =

∫ t

ti

dt

a
=

∫ a

ai

(aH)−1d ln a. (2.6)

The quantity χph(τ) is called (comoving) particle horizon, meanwhile (aH)−1 is

called comoving Hubble radius. If the pressure and the energy density of the fluid

dominating the universe satisfy the equation of state p := wρ (i,e w = 0 for mat-

ter dominated universe, w = 1/3 for radiation dominated universe, and w = −1

for vacuum energy domination), one can derive behavior of the Hubble radius as

(aH)−1 = ȧ−1 = βa
1
2

(1+3w) by using Friedmann equation. Here, β is a constant.
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Therefore, the comoving Hubble horizon is found for w > −1/3

χph(t) =
2β

1 + 3w
a(t)

1
2

(1+3w) =
2

1 + 3w
(aH)−1. (2.7)

This shows that the particle horizon could be almost equal to the Hubble radius

in all epochs of the Big Bang history. Particles separated more than the particle

horizon could have never communicated each other and completely disconnected

causally. However, although particles separated more than the Hubble radius can-

not communicate now, there is a possibility that they were in the causal contact

early on. The present Hubble radius could be much larger than those at the CMB

time. By comparing them, it can be shown that there were about 10−6 of causally

disconnected regions in the present horizon [26].

The next puzzle comes from the first Friedmann equation which implies

Ω(t)− 1 =
κ

(aH)2
, Ω(t) :=

ρ(t)

ρcr(t)
, ρcr(t) :=

3H2

8πG
. (2.8)

The present density parameter Ω(t0) is measured 1.02±0.02 with the best-fit age of

universe t0 is 13.7±0.2 Gyr ' 4.3×1017 s [27]. The scale factor evolves like a ∼ tp

with p < 1. Therefore, the factor (aH)−2 = ȧ−2 grows with time. If we go back in

time, |Ω− 1| would be closer to zero to explain the present value of density parame-

ter. For example, the assumption that the universe is dominated by matter from the

recombination time tr ' 1.2× 1013 s to the present day requires |Ω(tr)− 1| < 10−4.

Furthermore, assuming that the universe is dominated by radiation from Planck

time tpl ' 10−43 s to the time of matter-radiation equality teq ' 2.0 × 1012 s, the

density parameter at Planck time should satisfy |Ω(tpl)− 1| < 10−64. This value

shows that if the initial energy density ρ(tpl) is chosen to be smaller than the critical

energy density ρcr(tpl) by ρcr(tpl)× 10−64, the universe would expand quickly before

structures are formed in it. On the other hand, taking the initial energy density

larger would make it collapses too fast. This extreme fine-tuning, called flatness

problem, demands more natural way to explain it.

The main point of the horizon problem is how to make the causally discon-

nected regions detected in the CMB could communicate in the past. Thus, if the

Hubble radius was larger in the past (aIHI)
−1 compared to the present Hubble
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radius (a0H0)−1, the horizon problem can be solved. The period during shrink-

ing of the Hubble radius is called inflation period. This shrinking Hubble radius

during inflation should be followed by the growing Hubble radius afterwards. This

gives the following picture. We consider two particles separated by the distance

λ < (aH)−1. They communicate during inflation until at a moment before horizon

exit λ = (aH)−1. Their physical properties are freezed during λ > (aH)−1 after-

wards until horizon reentry after the inflation is terminated. After that, the particles

follow ordinary Big Bang cosmology. Assume that the universe is dominated by ra-

diation from a energy scale near the GUT scale TE ' 1014 GeV up to today, the

comparison of both Hubble radius gives a0H0/aEHE = aE/a0 ' T0/TE ' 10−27

thus (aIHI)
−1 > 1027(aEHE)−1. T0 ' 10−3 eV is the recent CMB temperature and

a ∼ T−1 is obtained from the entropy conservation. By adding an assumption that

the Hubble parameter is approximately constant during the inflation, the universe

should expand exponentially by factor a ln(aE/aI) > 62 to solve the above men-

tioned flatness problem. Later, this factor is called e-folding number of inflation.

The shrinking Hubble radius as the inflation criteria is equivalent to some

other criteria [28, 29]:

• Since d(aH)−1/dt = −ä/(ȧ2) is satisfied, accelerated expansion ä > 0 is re-

quired.

• Since d(aH)−1

dt
= − 1

a
(1 − ε) where ε := − Ḣ

H2 is satisfied, the shrinking Hubble

radius implies ε < 1. Furthermore, if e-folding number N is defined through

dN := d ln a = Hdt, ε = −d lnH
dN

< 1 means that fractional change of Hubble

parameter per e-folding should be kept small during the inflation. To realize

the smallness of ε, its fractional change should be also small |η| :=
∣∣d ln ε
dN

∣∣ =∣∣ ε̇
Hε

∣∣ < 1. Thus, the shrinking condition of the Hubble radius is equivalently

stated as condition ε, |η| < 1.

• Using Friedmann equations, the parameter ε can be written as ε = 3
2

(1 + w)

for the fluid satisfies p = wρ. Thus, as ε < 1 during inflation, this can be

realized by the negative pressure w < −1/3.
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2.2 Realization of inflation

It is well known that the Einstein equation of gravity Rµν− 1
2
Rgµν = 8πGTµν+Λgµν

can be derived directly from an action principle: The action is stationary under small

variations of the metric tensor. The action leading to the Einstein equation can be

written as a composition between a gravitational action, known as Hilbert-Einstein

action SEH and a matter action SM . The action is S = SEH + SM where

SEH = −
∫
d4x
√
−g

M2
pl

2
(R+ 2Λ) , (2.9)

SM =
∑
fields

∫
d4x
√
−gLfields, (2.10)

here g := det(gµν), Mpl is the reduced Planck mass and R is the Ricci scalar [30].

The variation of SEH and SM are given as

δSEH =
M2

pl

2

∫
d4x
√
−g
(
Rµν − 1

2
Rgµν − Λgµν

)
δgµν , (2.11)

δSM = −1

2

∑
fields

∫
d4x
√
−gT µνfieldsδg

µν , (2.12)

so that the variation principle δS/δgµν = 0 leads to the Einstein equation of gravity.

Through this action, we will show later how inflation criteria ε = −Ḣ/H2 < 1 could

be realized by some action form.

2.2.1 Slow-roll inflation

Lets consider a scalar field φ which is minimally coupled1 to Einstein gravity through

its action

SM =

∫
d4x
√
−gL =

∫
d4x
√
−g(X − V (φ)), (2.13)

1Minimal coupling refers to the case with the coefficient ξ = 0 in the interaction term 1
2ξRφ

2

in the Lagrangian density. Otherwise, it’s called non-minimally coupled scalar to gravity.
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where X := −1
2
gµν∂µφ∂νφ is canonical kinetic term and V (φ) denotes potential

term of the scalar field φ. If the signature of the metric is taken as (−,+,+,+), the

variation of this action respected to the metric tensor leads to the energy-momentum

tensor given by

Tµν = − 2√
−g

δS

δgµν
= Lgµν + ∂µφ∂νφ. (2.14)

If the scalar field φ is spatially homogenous in the FRW spacetimes, T µν takes the

form of perfect fluid and its energy density and pressure can be written as

ρ =
φ̇2

2
+ V (φ), p =

φ̇2

2
− V (φ), (2.15)

respectively. Hence, as one of the inflation condition is when ρ+ 3p < 0 should be

satisfied, an acceleration expansion can be realized if the potential term dominates

V (φ) > φ̇2/2. This realization of the exponential expansion of the universe is known

as a standard mechanism to generate inflation. It is called slow-roll approximation

[20].

Substitution of energy density of the scalar field in to time derivative of the

Friedmann equation H2 = ρ/(3M2
pl) gives

2HḢ =
1

3M2
pl

[
φ̇φ̈+ V ′φ̇

]
, (2.16)

where we denote V ′ := dV/dφ. On the other hand, the second Friedmann equation

leads to an identity Ḣ + H2 = − 1
6M2

pl
(ρ + 3p). Therefore, Ḣ = − 1

2M2
pl

(ρ + p) =

− 1
2M2

pl
φ̇2. Substitution of Ḣ to the equation (2.16) leads to the equation of motion

φ̈+ 3Hφ̇+ V ′ = 0. (2.17)

This semiclassical equation of motion, where quantum fluctuations of the field are

considered small enough, might be understood as that in classical mechanics for a

ball rolling down with friction in the potential V . The friction term 3Hφ̇ arises due

to the expansion of the universe which causes the red shifting of the field momentum

during expansion. Additional friction terms might be included here, such us Γφ̇ to
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represent decay of the field causing inflation, the inflaton φ, to other particles with

decay rate Γ−1.

Domination of the potential term in the energy density should be kept long

enough to generate inflation sufficiently. Therefore, the potential would be almost

flat during inflation since the kinetic energy term is kept small enough. Furthermore,

acceleration of the field has to be very small as the kinetic energy is negligible

during that time. Thus, the equation of motion of the field and the Hubble scale

can approximately given to be

3Hφ̇ ' −V ′, (2.18)

H2 ' V

3M2
pl

, (2.19)

respectively. The equation (2.19) tells us how the cosmic scale factor grows by factor

a(t) = a1 expH(t− t1) := a1 expN , a(t1) := a1 during inflation. The number of

e-folds of the growth in the scale factor when φ rolls from φ1 to φ2 is

N(φ1 → φ2) =

∫ t2

t1

Hdt '
∫ φ2

φ1

H

φ̇
dφ ' 3

∫ φ2

φ1

H2

−V ′
dφ (2.20)

' − 1

M2
pl

∫ φ2

φ1

(
V

V ′

)
dφ. (2.21)

To solve the flatness problem, the e-folding number is required to have a value about

50−60. This number depends on the processes after horizon exits such as reheating

phenomena and others [31, 32]. Slowly-varying Hubble parameter {ε, η} could be

guarantied by imposing the following conditions:

ε = − Ḣ

H2
=

φ̇2/2

M2
plH

2
'
M2

pl

2

(
V ′

V

)2

:= εV � 1, (2.22)

δ := − φ̈

Hφ̇
� 1, (2.23)

η = 2(ε− δ)� 1, (2.24)

ηV := δ + ε 'M2
pl

V ′′

V
� 1. (2.25)
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These εV and ηV are called slow-roll parameters which is simply written as ε and η

respectively except there is urgency to differentiate the notation.

2.2.2 Kinetically driven inflation

The slow-roll approximation strongly restricts the shape of the potential V (φ) be-

cause of εV � 1. The potential should be flat enough in some interval in order to

realize sufficient inflation. In contrast, the Hubble slow-roll conditions, {ε, |η|} < 1

allow to relax the constraint. The condition Ḣ < H2 can be possibly caused not by

potential domination but by the kinetic energy domination which is allowed by non-

trivial dynamics. A possible scenario of this type of inflation is given by considering

a non-canonical kinetic term in the gravitational action [33, 34], such as

S =

∫
d4x
√
−g
(
M2

pl

2
R+ P (ϕ,X)

)
. (2.26)

The energy-momentum tensor of this action is

Tµν = P (ϕ,X)gµν +
∂P (ϕ,X)

∂X
∂µϕ∂νϕ. (2.27)

This equation shows that if ∂µϕ is a time-like vector (i.e X > 0), the normalization

of uµ := ∂µϕ/(
√

2X) leads to energy-momentum tensor

Tµν = (ρ+ p)uµuν + P (ϕ,X)gµν , (2.28)

ρ = 2XP,X − P, p = P (ϕ,X), (2.29)

where P,X := ∂P (ϕ,X)
∂X

. Hence, the accelerated expansion can be realized even without

potential domination in the Lagrangian density, as long as condition XP,X < P is

satisfied, i.e. either (i) when X is small that corresponds to slow-roll inflation

driven by field potential, or (ii) P,X is small. This type of inflationary model is

called k-inflation [33–38]. Taking flat Friedmann universe as the background, then

two independent equations for two unknown background variables φ(t) and time
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dependent cosmic scale-factor a(t) can be written down in the form

H2 =
ρ

3M2
pl

, ρ̇ = −3H(ρ+ p). (2.30)

Therefore, to describe expanding universe, that is for H > 0, ones should solve field

evolution given from time derivative of H2. In case of X = 1
2
ϕ̇2 as an example, the

field dynamics equation is given by

(ϕ̈+ 3Hϕ̇)P,X + 2Xϕ̈P,XX + 2XP,Xϕ − Pϕ = 0. (2.31)

2.2.3 Modified gravity inflation

Two previous inflation realizations are based on an assumption that the gravitation

action takes the form of Hilbert-Einstein action (2.9), and where we consider the

fields that generate the inflation as additional ingredient in the spacetimes. How-

ever, even without a matter field content, inflation can be realized as long as the

gravitational action sector is allowed to be modified. Writing the action as

S =

∫
d4x
√
−g
(
M2

plf(R)

2
+ Lmatter

)
, (2.32)

the variation of this action with respect to the metric leads to a field equation

F (R)Rµν −
1

2
f(R)gµν −∇µ∇νF (R) + gµν�F (R) =

1

M2
pl

Tµν (2.33)

where � := gµν∇µ∇ν is the covariant d’Alembertian operator associates to the

covariant derivative ∇µ, Tµν is the energy-momentum tensor of the matter field and

F (R) := df(R)/dR for a Ricci scalar R of the Ricci tensor Rµν .

The Ricci tensor and the Ricci scalar completely depend on the metric gµν .

Thus, in the FRW universe, they can be written in term of the Hubble parameter.

The components of the Ricci tensor are found to be R00 = 3(Ḣ + 62H) and Rij =

3(Ḣ+ 3H2 + (2κ/a2))gµν meanwhile the Ricci scalar is R = 6(Ḣ+ 2H+ (κ/a2)). In

case of a perfect fluid in the flat FRW background, the field equation (2.33) turns
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to be Friedmann-like equations as follows [39–44] :

3FH2 =
(FR− f)

2
− 3HḞ +

ρ

M2
pl

, (2.34)

−2FḢ = F̈ −HḞ +
ρ+ p

M2
pl

, (2.35)

where ρ and p are the energy density and the pressure of the fluid, respectively.

The continuity equation

ρ̇+ 3H(ρ+ p) = 0 (2.36)

is also hold as a consequence of the energy-momentum conservation ∇µT
µ
ν = 0.

To associate with the inflation of the universe, lets assume that the f(R) is

explicitly written in the form f(R) = R+ αR2, (α > 0, n > 0). When the matter is

absent (ρ = 0), the first Friedman-like equation (2.34) gives

3(1 + nαRn−1)H2 =
1

2
(n− 1)αR2 − 3n(n− 1)αHRn−2Ṙ, (2.37)

which is under an assumption (1 + nαRn−1) ' nαRn−1, it gives

H2 ' n− 1

6n

(
R− 6nH

Ṙ

R

)
. (2.38)

Thus, the inflation condition ε < 1 can be satisfied for ε = − Ḣ
H2 ' 2−n

(n−1)(2n−1)
if

we take n > (1 +
√

3)/2 [43]. One of the inflation model favorable by the recent

observation based on this kind of the inflation realization is the Starobinsky model

in which it defines f(R) := R + R2

6M2
pl

[45].

2.3 Cosmological Perturbation and Inflation

Cosmological perturbation is a cornerstone of modern cosmology to describe the

formation of structures of the universe and its evolution. During inflation stage,

seeds of inhomogeneities of the universe are produced by quantum fluctuation and
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eventually grow to classical density perturbation due to a rapid expansion. As en-

ergy density is dominated by the inflaton field during inflation stage, perturbation of

the energy density or of the energy-momentum tensor induces inflaton perturbation

and vice versa. On the other hand, perturbation of the energy-momentum tensor

induces the perturbation of the metric as well, through Einstein’s field equation.

It shows how the perturbations of the inflaton and of the metric field are closely

related each other and could not be investigated separately.

The inflaton field could be divided into homogenous classical component ϕ(t)

and quantum fluctuation which depends on hypersurface coordinate δϕ(t, x) such

that ϕ(t, x) = ϕ(t) + δϕ(t, x). Inflaton fluctuations imply local densities fluctuation

δρ(x) which is preserved after inflation. Local fluctuations in the CMB temperature

∆T (x) which is proportional to δρ(x) are therefore unavoidable [26].

At a linearized level, the metric of the spacetime could be written as a summa-

tion of the homogenous FRW metric gµν(t) and the unperturbed metric δgµν(t, x) ,

that is gµν(t, x) = gµν(t) + δgµν(t, x). This perturbation contains 10 degrees of free-

dom which are decomposed in 4 scalars, 2 divergence-free vectors, and 2 trace-less

and divergence-free tensors. Then the scalar metric perturbation can be written in

term of the line-element as

ds2 = a(τ)2
[
−(1 + 2A)dτ 2 + 2∂iBdτdx

i − (1− 2ψ)δij − 2∂i∂jEdx
idxj

]
, (2.39)

where τ is the conformal time. Since the general relativity is a gauge theory where

gauge transformations are the ones between local references, quantities defined in

the unperturbed background are compared with those on the real physical spacetime

at the same point. By fixing local references, comparison of two references leads to

coordinate transformation xµ 7→ x̃µ = xµ+ξµ. As the result, every tensor, including

the perturbations such as the metric perturbation, changes along the flow of a given

vector field ξµ by an amount of Lie derivative of the tensor:

δϕ 7→ δϕ+ Lξϕ, (2.40)

δgµν 7→ δgµν + Lξgµν . (2.41)
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A quantity is preserved by the transformation of the references if its Lie deriva-

tive is vanish. As such examples, we have Bardeen’s potentials Φ and Ψ:

Φ := A+H(B − E ′) + (B − E ′)′, Ψ := −C −H(B − E ′), (2.42)

where H := a′/a and a prime denotes a derivative with τ . This H(τ) is analogous

with the Hubble parameter H(t) in the cosmological time. The gauge invariance

allows us to choose A = Φ and ψ = −Ψ while B = E = 0, which is so called

longitudinal gauge. The perturbed metric therefore can be written as

ds2 = a(τ)2
[
−(1 + 2Φ)dτ 2 + (1− 2Ψ)δijdx

idxj
]
. (2.43)

Evaluation of the perturbed Einstein equation with δGµ
ν = κ2δT µν , where

κ2 := 8πG = 1/M2
pl, gives

∇2Φ− 3H (HΦ + Φ′) =
κ2

2

(
ϕ′0δϕ

′ − ϕ′20 Φ + a2∂ϕV (ϕ)δϕ
)
, (2.44)

Φ′ +HΦ =
κ2

2
ϕ′0δϕ, (2.45)

Φ′′ + 3HΦ′ +
(
2H′ +H2

)
Φ =

κ2

2

(
ϕ′0δϕ

′ − ϕ′20 Φ− a2∂ϕV (ϕ)δϕ
)
. (2.46)

ϕ0 represents the unperturbed field component. The spatial component of the

perturbed Einstein equation leads to a relation Ψ = Φ.

Spatial curvature on the hypersurface of a constant conformal time for the

flat universe is given by (3) R = 4
a2
∇2ψ. On a different slice, where the time is

transformed to t 7→ t+ δτ , the curvature perturbation ψ changes as ψ 7→ ψ +Hδτ .

For a comoving observer, who only perceives the universe to be isotopic, a variation

of ϕ would be detected as δϕcom = 0. As a result, the transformation on constant

time hypersurface δϕ 7→ δϕ−ϕ′δτ leads to the time displacement δτ = δϕ/ϕ′ which

corresponds to the transformation from a slice with the generic δϕ to a comoving

slice orthogonal to the comoving observer. Thus, the curvature perturbation on the
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comoving hypersurfaces can be written as

R := ψ |δϕ=0 = ψ − H
ϕ′
δϕ = ψ −Hδϕ

ϕ̇
(2.47)

= Φ− H2

Ḣ

(
Φ− Φ̇

H

)
. (2.48)

The second equation could be obtained by adopting equation (2.45) and the relation

Ψ = Φ obtained from the spatial component of the perturbed Einstein equation.

This intrinsic curvature perturbation R is also gauge invariant as it is given entirely

in terms of the gauge-invariant quantities. This quantity is constant on each scale

on the outside of the horizon. Thus, its spectrum gives the curvature perturbation

amplitude of different modes when they cross into the Hubble radius during the

matter or radiation dominated epoch. Fourier expansion of R and its vacuum

expectation value are given as

R =

∫
d3k

(2π)3/2
Rk(τ)eik·x, 〈RkR∗k′〉 =

2π2

k3
PR(k)δ3(k− k′), (2.49)

respectively. PR(k) is known as the spectrum of comoving curvature perturbation.

It depends only on the magnitude of the wave number.

Quantum fluctuations during inflation are the source of large scale structure

of the universe observed today. Therefore, studying of the quantization of the per-

turbations is required to understand it correctly. Canonical commutation relation

between the scalar field perturbation and its canonical conjugate than needs to be

defined. To do so, one can start from the total action of the scalar field and the

gravitational field and then expand it up to the second order of the perturbations.

We find it as

S =
1

2

∫
d3xdτ

(
(v′)2 − (∂iv)2 +

z′′

z
v2

)
(2.50)

where v and z are defined by v := −zR and z := aϕ̇/H [46]. It is a kind of free

scalar field action with a time dependent effective mass term m2(τ) = −z′′/z. In

terms of the slow roll approximation, z can be written as z2 = 2a2ε2. Therefore,
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z′′/z can be exactly expressed as

z′′

z
= a2H2

[
2− ε+

3

2
η − 1

2
εη +

1

4
η2 + ηκ

]
, (2.51)

where we used ε := − Ḣ
H2 , η := ε̇

Hε
and κ := η̇

Hη
. As d

dτ
(aH)−1 = ε−1, we can obtain

the first order approximation of z′′/z as

z′′

z
' ν2 − (1/4)

τ 2
, ν :=

3

2
+ ε+

1

2
η. (2.52)

It shows how the effective mass m2(τ) ' z′′/z depends on the conformal time τ or

the comoving Hubble radius (aH)−1.

Canonical conjugate of v can be found from equation (2.50) as πv = ∂L
∂v′

= v′.

Quantization of the theory means to promote the classical variables {v, πv} to the

quantum operators {v̂, π̂v} so that they satisfy the following commutation relations:

[v̂(τ,x), π̂v(τ,x
′)] = iδ3(x− x′),

[v̂(τ,x), v̂(τ,x′)] = [π̂v(τ,x), π̂v(τ,x
′)] = 0. (2.53)

If the operator v̂(τ,x) is expanded with the plane waves basis which is one of

complete solutions of the classical equation of motion (2.50), we have

v̂(τ,x) =

∫
d3k

(2π)3/2

(
vkâke

ik·x + v∗kâ
†
ke
−ik·x

)
(2.54)

where vk = vk(τ) are complex and time dependent coefficients. To satisfy standard

commutation relation between the creation and annihilation operators â† and â, the

normalization condition for the coefficient vk(τ) requires

v′k(τ)v∗k(τ)− v∗′k (τ)vk(τ) = 2i. (2.55)

The vacuum |0〉 can now be defined as the state which is annihilated by all ak, such

as ak |0〉 = 0.
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The minimal action principle for equation (2.50) produces the equation of

motion for vk as follows

v′′k + (k2 − z′′

z
)vk = 0. (2.56)

Inside the horizon where k/aH → ∞ is satisfied, the contribution of the time-

dependent effective mass term z′′/z is negligible in this equation. Thus, vk has a

solution in the small wavelength limit such as

lim
k
aH
→∞

vk =
1√
2k
eikτ . (2.57)

This can be a good initial condition to solve equation (2.56). In the approximation

that the slow-roll parameters are constant in time, this equation has a general

solution in terms of the first and second kind of Hankel functions H
(1)
ν and H

(2)
ν as

vk(τ) =
√
−τ
[
αH(1)

ν (−kτ) + βH(2)
ν (−kτ)

]
. (2.58)

Imposing the boundary condition (2.57) at the asymptotic limit inside the horizon,

the linear combination coefficients in the general solution of vk should be normalized

to be α =
√
π

2
ei(ν+ 1

2
)π
2 and β = 0. Thus the resulting expression of vk inside the

horizon is given as

vk(τ) =

√
π

2
(−τ)1/2ei(ν+ 1

2
)π
2H(1)

ν (−kτ). (2.59)

On the other hand, the solution outside of the horizon is given in large wavelength

k/aH → 0 limit of equation (2.58) as

lim
k
aH
→0
vk = ei(ν−

1
2

)π
2 2ν−

3
2

Γ(ν)

Γ(3/2)

1√
2k

(−kτ)
1
2
−ν , (2.60)

where we have used lim k
aH
→0H

(1)
ν (−kτ) = i

π
Γ(ν)

(−kτ
2

)−ν
and
√
π/2 = Γ(3/2) in the

equation. Since vk is related to Rk as vk = −zRk, the power spectrum of comoving



Chapter 2. Physics of Inflation 20

curvature perturbation in equation (2.49) can be expressed as

PR = 22ν−3

(
Γ(ν)

Γ(3/2)

)2

(1− ε)2ν−1

(
H

2π

)2(
H

ϕ̇

)2(
k

aH

)3−2ν

. (2.61)

This expression shows how the power spectrum stays constant outside the horizon

during the time when the slow-roll approximation is valid. Thus, we can choose to

evaluate it at the time when the scale k exits the horizon, i.e k = aH. The slow-

roll parameters for each k are kept their values at horizon exit so that to produce a

general solution given in equation (2.58), even though they may change significantly

afterward. Scale dependance of the power spectrum PR is expressed in terms of the

spectral index of the comoving curvature perturbation ns, given by

ns − 1 :=
d lnPR
d ln k

= 3− 2ν = −6ε+ 2η (2.62)

where the last equality is obtained from the first order slow-roll approximation for

k = aH. Due to the smallness of the slow-roll parameters, the spectral index of the

curvature perturbation may slightly deviate from which corresponds to the scale

invariant ns = 1. Taking account of ν ' 3/2, the power spectrum PR can be

compactly written as

PR(k) = ∆2
R

(
k

aH

)ns−1

, ∆2
R := PR(k = aH) =

V

24π2M4
plε

∣∣∣∣∣
k=aH

. (2.63)

The dependence of the spectral index on the scale is defined through the running

of the spectral index

n′s :=
dns
d ln k

∣∣∣∣
k=aH

' 16εη − 24ε2 − 2ξ. (2.64)

where ξ is defined as ξ := M4
plV
′V ′′′/V 2.

The procedure to compute the quantum fluctuation of the scalar perturbation

is also applicable to those of the tensor perturbations. Linear tensor perturbation

of the background metric is given by transverse and traceless perturbation of spa-

tial metric δgij = a2(τ)hij, where |hij| � 1 is satisfied. This fluctuation may be

detected as the gravitational wave in the background spacetime. The symmetrical
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spatial tensor hij has six degrees of freedom originally. They are reduced two de-

grees of freedom or polarizations by the traceless condition δijhij and the transverse

condition hij,k = 0(k = 1, 2, 3). As the 3-tensor hij is gauge-invariant, the calcula-

tion could be simplified. Expansion of the Einstein-Hilbert action containing tensor

perturbations is given in the second-order action as

S =
Mpl

8

∫
d3xdτa2

[
(h′ij)

2 − (∇hij)2
]
. (2.65)

This is found to be similar to the massless scalar field action in a flat space by

including the prefactor Mpl/2 in the redefinition of the scalar field. We define

Fourier expansion of the transverse and traceless tensor as

hij(τ,x) =

∫
d3k

(2π)3/2

2∑
λ=1

hk,λ(τ)ελij(k)eik·x (2.66)

where ελij(k) is a time-independent polarization tensor that naturally satisfies the

same conditions as hij: symmetric, traceless (δijεij = 0) and transverse (kiεij = 0).

These polarization tensor need to be linearly independent and orthogonal ελijε
λ′∗
ij =

δ′λλ. To simplify the calculation, we can choose a condition ε∗ij(k, λ) = εij(−k, λ). A

field redefinition vk,λ :=
Mpl

2
ahk,λ changes the tensor perturbations action (2.65) to

S =
2∑

λ=1

1

2

∫
d3kdτ

[(
v′k,λ
)2 −

(
k2 − a′′

a

)
(vk,λ)

2

]
. (2.67)

To quantize the field vk,λ, the scalar modes vk(τ) introduced in the quantization

of the scalar fluctuation can be used. For this purpose, we introduce creation

and annihilation operators âk,λ and â†k,λ which satisfy the commutation relations[
âk,λ, â

†
k′,λ′

]
= δ3(k − k′)δλλ′ and [âk,λ, âk′,λ′ ] =

[
â†k,λ, â

†
k′,λ′

]
= 0. If we use them,

operator of vk,λ is written as

v̂k,λ = vkâk,λ + v∗kâ
†
k,λ. (2.68)
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Minimal action principle for (2.67) produces a similar equation as (2.56):

v′′k +

(
k2 − a′′

a

)
= 0, (2.69)

where the term z′′/z in equation (2.56) is replaced by a factor a′′/a = 2a2H2(1 −
(ε/2)) = τ−2(µ2 − (1/4)), where µ = (1 − ε)−1 + (1/2) ' (3/2) + ε. As in the

scalar case, a solution for the scale k inside the horizon is given by applying the

boundary condition limk/aH→∞ vk = eikτ/(
√

2k), which be used as condition for its

general solution. Tensor power spectrum PT could be defined through the quantum

vacuum fluctuations

2∑
λ=1

〈
hk,λ, h

†
k′,λ

〉
:=

2π2

k3
PT δ3 (k− k′) = 2× 4 |vk|2

M2
pla

2
δ3 (k− k′) , (2.70)

where the factor 2 comes from two possible polarization states of hk,λ. Thus, the

tensor power spectrum has an expression outside of the horizon as

PT =
8

M2
pl

22µ−3

(
Γ(µ)

Γ(3/2)

)2

(1− ε)2µ−1

(
H

2π

)2(
k

aH

)3−2µ

, (2.71)

which always can be chosen to be evaluated at k = aH since it is freeze after the

horizon exit. If µ ' 3/2 is satisfied, it leads to the scale dependent expression. The

tensor power spectrum can be expressed as

PT (k) = ∆2
T

(
k

aH

)nT
, ∆2

T := PT (k = aH) =
8

M2
pl

(
H

2π

)2
∣∣∣∣∣
k=aH

, (2.72)

where nT denotes the spectral index of the tensor perturbation and it is defined as

nT :=
d lnPT
d ln k

= 3− 2µ = −2ε. (2.73)

Since ε � 1 is satisfied until end of inflation, it shows that the spectrum of ten-

sor perturbation is almost scale invariant. It is also important to notice that the

amplitude of the tensor perturbation ∆2
T only depends on the value of the Hubble

parameter during inflation which is proportional to the energy scale V 1/4 of infla-

tion. Therefore, a detection of the gravitational wave provides a direct detection of
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the energy scale of inflation.

Ratio of the tensor power spectrum to the scalar power spectrum is known as

the tensor-to-scalar ratio r. This quantity is expressed as

r :=
PT
PR
' 16ε = −8nT . (2.74)

This prediction is only satisfied by the single field inflation model in the slow-

roll approximation treatment. Different models of inflation might bring different

predicted relation. Thus, if the detection of CMB anisotropy does not fulfill this

condition, it does not mean that inflation does not exist. One need only to consider

a different model of inflation which contains more than one field or a different

inflation realization as mentioned in the previous section. The tensor-to-scalar ratio

r, spectral index ns and its running n′s are observables detected through the CMB

anisotropy measurement such as Planck and Bicep2 experiments.

2.4 Lyth bound and η problem

To predict a detectably-large primordial gravitational wave signal, inflationary mod-

els should be very sensitive to ultraviolet physics. This condition is known as the

Lyth bound. It expresses a relation between observational constraints on the tensor

modes and the field variation during inflation. A large tensor-to-scalar ratio given

by recent experiments requires the super-Planckian inflaton displacement [16, 47].

Let consider single field slow-roll inflation caused by the inflaton ϕ. In such a case,

by substituting the slow-roll parameter ε = −Ḣ/H2 to r = 16ε we get a relation

between the tensor-to-scalar ratio and the variation of the inflaton as

r = 8

(
1

Mpl

dϕ

dN

)
, (2.75)

where N is the e-folding number. Integration of this equation from the time of the

horizon exit N∗ to the end of inflation Ne := 0 leads to

∆ϕ

Mpl

= Neff

√
r∗
8
, Neff :=

∫ N∗

0

dN

√
r

8
, (2.76)
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where r∗ denotes the value of the tensor-to-scalar ratio measured in the CMB and

∆ϕ is the corresponding variation of inflaton. In slow-roll inflation, one can find a

relation

d ln r

dN
=
[
ns − 1 +

r

8

]
. (2.77)

Thus, Neff can be evaluated in terms of the observed values r and ns. However,

Neff could be effectively approximated as the number of e-folding before the end

of inflation. Thus, the standard estimation gives Neff < 60. Lyth [16] pointed out

that its lowest bound is obtained as the one that the scales 1 < l . 100 leave the

horizon. As dN = Hdt ' d ln a, a detectable r requires Neff > 0.46, which shows

that the variation of the inflaton during inflation requires

∆ϕ & 4.6

√
r∗
8
Mpl. (2.78)

As an example if we take r = 0.1, ∆ϕ & 0.51Mpl is required. The Lyth bound arises

because large r requires large ε. However, one can obtain a sufficient e-folding

number even for the small field variation by assuming the small ε(ϕ) because of

the relation dN/dϕ = (2ε)−1/2. Therefore, if ε starts having large value initially

and quickly goes to small value afterward, the Lyth bound might be circumvented.

Unfortunately, the slow-roll parameter ε cannot vary arbitrarily in a way as

d
√

2ε

dϕ
= η − 2ε� 1 (2.79)

during inflation [48]. Thus, the Lyth bound could not be evaded by any choice of

the slow-roll inflaton potential, even if ε is not monotonous.

In more general inflation scenarios, such as inflation driven by the kinetic

term, the Lyth bound is also manifest [49]. In such case, the standard slow-roll

parameter and the tensor-to-scalar ratio are given as

ε = − Ḣ

H2
=

XP,X
M2

plH
2
, (2.80)

r = 16csε, (2.81)
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where cs defined by c2
s := dp/dρ =

P,X
P,X+2XP,XX

plays the role of the speed of sound

for perturbations [34]. The standard slow-roll prediction is recovered in the limit

cs = 1. Following previous procedure, the Lyth bound of this inflation scenario

could be written as

∆ϕ

Mpl

=

∫ N∗

0

dN

√
r

8

1

csP,X
. (2.82)

Thus, for a naive bound ∆ϕ
Mpl

= ∆N
√

r
8

1
csP,X

, it requires P,X � 1 to avoid the Lyth

bound for fix cs. This technically leads to X � 1 to guarantee the inflation. As

a result, the model merely moves to the slow-roll inflation class in which the Lyth

bound could not be avoided.

A possible way to evade this Lyth bound is by considering inflation sce-

nario produced by a large number N of inflaton fields [50–52]. By applying the

Pythagorean theorem, each constituent field only needs a short field variation

∆φi ∼ ∆φ/
√
N to realize such large field variation ∆φ required by the Lyth bound.

The other way is by imposing the allowed field trajectory in a small area with a

radius less than Mpl [53–55]. The length of the trajectory in a such scenario is large

enough to evade the Lyth bound.

The reason behind importance of the Lyth bound is related to the UV com-

pletion theory of the inflationary model. If the inflation can be approximately

described as low energy limit of more fundamental theories such as supergravity or

string theory by integrating out high momentum degrees of freedom, the effective

field theory description of the inflation involves an effective potential for the inflaton

[47, 56]

V (ϕ) = V0(ϕ) +
∑
i

ci
Oi(ϕ)

Λδi−4
. (2.83)

where Oi is local operator of dimension δi and Λ a cutoff scale. Once the inflaton

becomes super-Planckian taking Λ = Mpl, nonrenormalizable terms δi > 4 could

not be under control and have significant contributions to the potential. In such

case, flatness of the potential might be ruined and the slow-roll condition could not
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be realized. In the context of effective field theory, considering the operator

Oδ = cV0(ϕ)
(ϕ

Λ

)δ−4

, (2.84)

the correction ∆η to the slow-roll parameter η can be calculated as

∆η ' c(δ − 4)(δ − 5)
(ϕ

Λ

)δ−6

(2.85)

Thus, if we take Λ = Mpl, and ϕ as a trans-Planckian field, then the correction

cannot be neglected for δ ≥ 6 to suffer the violation of η � 1. This condition is

known as η problem.



Chapter 3

Modification of The Radiative

Neutrino Mass Generation Model

3.1 Neutrino masses

Fermion mass term can be introduced in the Lagrangian via so called Higgs mech-

anism. In this mechanism, gauge symmetry of the Lagrangian is hypothetically

broken spontaneously by an existence of non-zero vacuum expectation value (VEV)

of a scalar field named Higgs field. The main consequence of this spontaneous

symmetry breaking is that a Yukawa coupling such as Y ψ̄φ̃ψ will generate fermion

mass term Y vψ̄ψ := mψ̄ψ after Higgs field φ gets vacuum expectation value (VEV)

〈φ〉 := v.

If we impose chirality decomposition ψ = ψL + ψR on the Lagrangian, only

mixed terms remains

−Lmass = mψ̄ψ = m
(
ψ̄LψR + ψ̄RψL

)
. (3.1)

This mass term is called Dirac mass term. In this context, any massive fermion

field need to have both non-zero chiral field components. Neutrinos must therefore

be massless as the standard model particle because they have no right handed

components.

27
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Alternatively, one could also introduce the so-called Majorana mass term,

without needing to introduce the right handed degree of freedom. Majorana fermion

is the one which is its own antifermion, ψc = ψ. This means that Majorana field

should not have charge that is reversed by charge conjugation operator: electric

charge, colour, lepton number and baryon number. Charge conjugation operator

acts on the chiral fields as (ψL)c = (ψc)R and (ψR)c = (ψc)L so that Majorana field

can be expressed in term of one chiral field component as

ψ = ψL + ψR = ψL + (ψc)R = ψL + (ψL)c. (3.2)

This expression helps to develop non-zero mass term as

−L =
1

2
mψ̄cψ + h.c (3.3)

even without the existence of both chiral components as the independent ones.

3.2 Ma’s Radiative neutrino mass model

Radiative seesaw scenario is an alternative way to explain tiny neutrino masses. In

this scenario they are radiatively induced at the one loop level by imposing an exact

Z2 symmetry and introducing additional Z2-odd scalar doublet η and Z2-odd right-

handed neutrino Ni(i = 1, 2, 3) [57]. All of the standard model particle are labeled

by even parity. As a result of this assignment, the right-handed neutrinos only have

Yukawa couplings with the scalar SU(2)L doublet η and Yukawa couplings between

η and standard model fermions are forbidden. It is a reason to call η as an inert

SU(2)L. doublet. Under SU(2)L×U(1)Y ×Z2, the particle contents relevant to the

neutrino mass can be represented as follows [58]:
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Nk
νi νj

η0 η0

φ0 φ0

Figure 3.1: One-loop generation of neutrino mass considered in the radiative
neutrino masses model with an inert doublet [58]

(
νi

li

)
∼ (2,−1/2,+), lci ∼ (1, 1,+), Φ :=

(
φ+

φ0

)
∼ (2, 1/2,+)

Ni ∼ (1, 0,−), η :=

(
η+

η0

)
∼ (2, 1/2,−) (3.4)

If the Z2 symmetry is exact, all of Lagrangian terms need to contain an even

number of new fields. Hence, Yukawa coupling containing the right-handed neu-

trino, the SM Higgs doublet Φ and the left-handed lepton which is responsible to

generate a Dirac mass term between νL and Ni is forbidden. On the other hand,

coupling involving right-handed neutrino, the new scalar doublet η, and the left-

handed lepton is allowed. However, once η0 gets a non zero vacuum expectation

value, the symmetry will be broken. The symmetry breaking pattern for all possible

combination of the VEV’s of φ0 and η0 has been analyzed in [59]. If the VEV of η0

is zero and Z2 is kept as the exact symmetry, there is no decay mode of the lightest

Z2-odd particle and it is stabilized. Thus, it can act as the dark matter as long as

it is electrically neutral [57].

The Invariant Yukawa interactions with Majorana mass term of the model are

summarized as

−LN = −hαiN̄iη
†lα − h∗αil̄αηNi +

Mi

2
N̄iN

c
i +

M∗
i

2
N̄ c
iNi (3.5)
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and the scalar sector potential is given as

Vscalar = m2
1Φ†Φ +m2

2η
†η + λ1(Φ†Φ)2 + λ2(η†η)2

+ λ3(Φ†Φ)(η†η) + λ4(Φ†η)(η†Φ)

+
1

2

[
λ5(Φ†η)2 + λ∗5(Φη†)2

]
. (3.6)

Any bilinear term (Φ†η) is forbidden by the Z2 symmetry so that λ5 can always be

chosen as a real parameter by the field redefinition for η. Under the assumption

that m2
1 < 0 and m2

2 > 0, Higgs Φ obtains the vacuum expectation value v :=√
−m2

1/2λ1 = 〈φ0〉. After the electroweak symmetry breaking due to this VEV,

there remain four spin 0 particles, that is a physical Higgs boson h which resembles

the SM Higgs boson, as well as the CP even one Re(η0) := η0
R, the CP odd one

Im(η0) := η0
I and a pair of charged one η± [60]. The mass of these physical scalars

are given by:

m2
h = 4λ1v

2,

m2
η± = m2

2 + λ3v
2,

m2
η0R

= m2
2 + (λ3 + λ4 + λ5)v2,

m2
η0I

= m2
2 + (λ3 + λ4 − λ5)v2. (3.7)

It is obvious that λ5 controls the mass splitting between η0
R and η0

I and also λ4

controls the mass splitting between the charged state η± and the neutral states

η0
R,I . To ensure that the potential is bounded from below at tree level, the quartic

couplings should satisfy stability condition [11]:

λ1,2 > 0, λ3 > −
√
λ1λ2, (λ3 + λ4 ± λ5) > −

√
λ1λ2. (3.8)

Neutrino mass is generated through the one loop diagram given by Fig 3.1.

Two neutral Higgs fields which appear as external fields do not propagate but

get VEV after the electroweak symmetry breaking. The mass of neutrino due to

this diagram can be calculated as the first order quantum correction of neutrino

propagator involving the exchange of η0
R and η0

I as illustrated by Fig 3.2.
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Nk
νi νj

η0
R(η0

I )

Figure 3.2: Neutrino mass correction in one-loop diagram involving the ex-
change of η0

Applying Feynman rules to the diagram corresponding to the η0
R exchange

gives:

−iΣν
ij(p) =

∫
d4q

(2π)4 (−ihik)
i
(
/q +Mk

)
q2 −M2

k

(−ihkj)
−i

(p− q)2 −m2
η0R

(3.9)

= −
∫

d4q

(2π)4hikhkj
/q +Mk

(q2 −M2
k )
(

(p− q)2 −m2
η0R

) . (3.10)

This integral is logarithmically divergent since the numerator is proportional to

d4q ' q3dq while the denominator is proportional to q4. At this point, we need

to take care of the denominator by using Feynman parametrization to change[
(q2 −M2

k )
(

(p− q)2 −m2
η0R

)]−1

→
∫ 1

0
dx
[
x (q2 −M2

k ) + (1− x)
(

(p− q)2 −m2
η0R

)]−2

and using a regulation procedure to remove divergence in the loop integral. Since

the neutrino masses are obtained as Σν
ij(0), we take p = 0. If we use the definition

q̄ := q − xp and Λ2
k :=

(
M2

k −m2
η0R

)
x + m2

η0R
, the one-loop integral can now be

calculated as

Σν
ij(0) =

∫ 1

0

dx

∫
d4q̄

i(2π)4

Mk

(q̄2 − Λ2
k)

2
= − Mk

16π2

∫ 1

0

dx log
Λ2
k

Λ2
(3.11)

=
Mk

16π2

[
1 +

m2
η0R

M2
k −m2

η0R

ln

(
m2
η0R

M2
k

)
+ ln

(
Λ2

M2
k

)]
(3.12)

where Λ is a cut off. Calculation for the diagram corresponding to the η0
I exchange

has a similar result, with extra minus term coming from the contraction of the field.

Both contributions cancel the logaritmic divergence and yield the neutrino mass
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matrix :

Mν
ij =

hikhkj
16π2

Mk

[
m2
η0R

m2
η0R
−M2

k

ln

(
m2
η0R

M2
k

)
−

m2
η0I

m2
η0I
−M2

k

ln

(
m2
η0I

M2
k

)]
. (3.13)

where summation over index k is applied for the right-handed neutrino generation

while i and j represent the neutrino generation index. If we use the quantities

∆m2 := (m2
η0R
−m2

η0I
)/2 = λ5v

2 and m2
0 := (m2

η0R
+m2

η0I
)/2, the following approximate

relations are obtained

ln
mη0R

M2
k

= ln

(
m2

0 + ∆m2

M2
k

)
' ln

(
m2

0

M2
k

)
+

∆m2

m2
0

, (3.14)

ln
mη0I

M2
k

= ln

(
m2

0 −∆m2

M2
k

)
' ln

(
m2

0

M2
k

)
− ∆m2

m2
0

. (3.15)

If we assume m2
0 � ∆m2, m2

η0R
' m2

η0I
' m2

0 is satisfied and then neutrino mass

equation becomes

Mν
ij =

3∑
k=1

hikhkjMk

8π2

λ5v
2

(m2
0 −M2

k )

[
1− M2

k

(m2
0 −M2

k )
ln

(
m2

0

M2
k

)]
. (3.16)

This equation shows that the smallness of λ5 is a crucial role to explain the smallness

of neutrino masses for the TeV range Mk and m0.

The radiative neutrino mass model with an inert doublet is a promising can-

didate to explain phenomena beyond the Standard Model of particles such as the

neutrino mass and mixing, the existence of dark matter and the baryon number

asymmetry of universe [10]. In this model, baryogenesis could be associated with

neutrino masses through a mechanism that relates the canonical seesaw mechanism

and leptogenesis [61].

If the right-handed Majorana neutrino Ni with large mass Mi is added to the

SM Lagrangian with Yukawa interaction hiαN̄
i
Rl
α
Lφ
† + h.c, neutrino masses can be

generated through the Weinberg dimension-five operator [62],
fαβ
2Λ

(
lαLφ
†) (lβLφ†) +

h.c. In fact in this model
fαβ
2Λ

is given as
fαβ
2Λ

:=
∑

i hiαhiβ/Mi an neutrino masses

are generated when the SM Higgs acquire the VEV 〈φ〉. On the other side, since

Ni decays into lL+ φ̄ or their antiparticles and the lepton number asymmetry could
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be produced enough if neutrino masses Mi ar degenerated finally. This lepton

number asymmetry at the early time of the universe, is converted into present

baryon number asymmetry through sphalerons which cause electroweak vacuum

states transition [63]. This is the famous leptogenesis scenario.

Unfortunately, Yukawa interaction containing the SM Higgs, the right-handed

neutrino and the left-handed lepton doublet is forbidden in the radiative neu-

trino mass model with the inert doublet. However, there is Yukawa couplings

hαiN̄iη
†lα + h.c that may mimic the role of hiαN̄

i
Rl
α
Lφ
† + h.c mentioned before.

Therefore, phenomena beyond the SM related with the neutrino masses and mixing

and the baryon number asymmetry are expected to be explained well by the this

model.

As it have been mentioned before, conservation of Z2 in this model leads to

stability of the lightest component of Z2 odd field. As long as this field is neutral,

it will be a good candidate of dark matter. Thus, there are two possible dark

matter candidate in this model: the lightest neutral component of the inert doublet

η0
R and the lightest right-handed neutrino Ni. If Ni is assumed as the cold dark

matter, only two of three problems beyond the SM can be explain well [10, 64].

In such case, O(1) Yukawa couplings are required to give a consistent explanation

for the small neutrino masses and its relic abundance. On the other hand, such

couplings allow to cause a large CP asymmetry in the decay of the right-handed

neutrino. However, the same Yukawa couplings make the thermal leptogenesis fail

to generate the sufficient lepton number asymmetry which is a seed of the baryon

number asymmetry. Therefore, some extensions is required to explain those three

problem [12]. For example, non-thermal leptogenesis, such as the generation of the

lepton number asymmetry through inflaton decay, may need to be considered to

take the place of the thermal leptogenesis [12]. Since the lepton number-violating

effect could be separated from the DM sector, the reduction of the DM abundance

and the washout of lepton number asymmetry might be reconciled for the same

neutrino Yukawa couplings. In fact, if we choose the lightest neutral component as

DM, those three of the problem beyond the SM could be explain well consistently

even for the new fields with O(1) TeV scale masses [65].
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Nk
νi νj

η η

〈Φ〉 〈Φ〉

ϕa

µaµa

Figure 3.3: One-loop generation of neutrino masses in the present model. The
coupling µa in this diagram is defined as µ1 := µ√

2
and µ2 := iµ√

2

3.3 Extending Ma-model

To explain the smallness of λ5 in the Ma-model, we can consider a scenario in

which this coupling is an effective coupling in low energy regions resulting from

integrating out of a heavy singlet scalar S. In this scenario, the coupling λ5 in the

original model is supposed to be zero. We will explain how a λ5 is derived from the

extended model later. The new singlet scalar S should be a Z2 odd field in order to

couple with the inert doublet scalar η and Higgs doublet scalar Φ. The additional

Lagrangian terms should be added in the Ma-model are

−LS = m̃2
SS
†S +

1

2
m2
SS

2 +
1

2
m2
SS
†2

+ κ1

(
S†S

)2
+ κ2

(
S†S

) (
Φ†Φ

)
+ κ3

(
S†S

) (
η†η
)

− µSη†Φ− µ∗S†Φ†η. (3.17)

Writing the singlet scalar S in its real components as S = 1√
2
(ϕ1 + iϕ2) and sub-

stituting to above equation, we can easily find the masses of these components are

given as m̄2
1 = m̃S + m2

S and m̄2
2 = m̃2

S − m2
S. The potential containing S field

does not develop the vacuum expectation value since Z2 is considered to be an ex-

act symmetry. Moreover, both of these field components masses are non negative,

which requires κ1 should be bounded from below. This requires m̃2
S > m2

S.

Neutrinos still remain massless at tree level such as in the original Ma model

since η has zero vacuum expectation value. Dirac neutrino masses cannot be gener-

ated through Yukawa coupling. However, neutrino masses can be generated through
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diagram given in the Figure 3.3. By applying Feynman rules, the amplitude of this

diagram is found to be

M = hαihβiµ
2
a 〈Φ〉

2 I(p1, p2, p3,M
2
i ,m

2
1,m

2
2,m

2
3)

16π2
, (3.18)

where µa is defined as µ1 := µ/
√

2 and µ2 := iµ/
√

2, respectively. The function

I(p1, p2, p3,M
2
i ,m

2
1,m

2
2,m

2
3) is defined as∫

d4q
(−i)4(/q +Mi)

[q2 −M2
i ] [(q + p1)2 −m2

1] [(q + p1 + p2)2 −m2
2] [(q + p1 + p2 + p3)2 −m2

3]
,

(3.19)

where m2
1 = m2

3 := Mη and m2
2 = m̄2

a, a = 1, 2 and p1, p2, p3 are external momen-

tum of left handed neutrino and Higgs doublets respectively. Mη is mass of the

inert doublet scalar η after the Higgs doublet gets the VEV and it is founded to be

Mη = m2
η + (λ3 + λ4) 〈Φ〉2. The neutrino masses correction given by the amplitude

(3.18) is obtained by putting all of the external momentum to be zero. Further-

more, The /q-dependent part in the I(p1, p2, p3,M
2
i ,m

2
1,m

2
2,m

2
3) will be integrated

to zero because after Feynmann parametrization, the denominator will only depend

on the magnitude of the internal momentum q but not depend on the its direc-

tion. The integral can be identified with the Passarino-Veltman function for a four-

point function with vanishing external momentum I(0, 0, 0, 0,M2
i ,m

2
1,m

2
2,m

2
3) :=

I(M2
i ,m

2
1,m

2
2,m

2
3) [66, 67] with a solution [68, 69] :

I(M2
i ,m

2
1,m

2
2,m

2
3) =

1

M2
i −m2

1

[
C0

(
M2

i ,m
2
2,m

2
3

)
− C0

(
M2

i ,m
2
2,m

2
3

)]
, (3.20)

where C0(m2
a,m

2
b ,m

2
c) is the three-point Passarino-Veltman function with vanishing

external momentum given as

C0(m2
a,m

2
b ,m

2
c) :=

1

(m2
a −m2

b)

[
m2
a

m2
a −m2

c

ln

(
m2
a

m2
c

)
+

m2
b

m2
b −m2

c

ln

(
m2
b

m2
c

)]
. (3.21)
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As a result, we have

I(M2
i ,m

2
1,m

2
2,m

2
3) =

1

M2
i −m2

1

[
M2

i

(M2
i −m2

2)(M2
i −m2

3)
ln

(
M2

i

m2
3

)
− m2

1

(m2
1 −m2

2)(m2
1 −m2

3)
ln

(
m2

1

m2
3

)
+

m2
2(m2

1 −M2
i )

(m2
1 −m2

2)(m2
2 −m2

3)(M2
i −m2

2)
ln

(
m2

2

m2
3

)]
.

(3.22)

After taking a limit m3 → m1, the quantity I(M2
i ,m

2
1,m

2
2) := I(M2

i ,m
2
1,m

2
2,m

2
1) is

written as

I(M2
i ,m

2
1,m

2
2) = − M2

i ln(M2
i )

(M2
i −m2

2)(M2
i −m2

1)2
+

(m4
1 −M2

i m
2
2) ln(m2

1)

(M2
i −m2

1)2(M2
i −m2

2)2

+
m2

2 ln(m2
2)

(m2
1 −m2

2)2(M2
i −m2

2)
− 1

(M2
i −m2

1)(m2
1 −m2

2)
. (3.23)

Notes that the propagator of ϕa in the diagram of Figure 3.3 appears as a result

of contraction between S and S† so that each ϕa, a = 1, 2 contributes to the ampli-

tude in equation (3.18) with a same sign and double the amplitude. The resulting

neutrino mass matrix is written as

(M)αβ =
3∑
i=1

2∑
a=1

hαihβiµ
2
a 〈Φ〉

2

8π2
I(M2

i ,M
2
η , m̄

2
a). (3.24)

This masses matrix is reduced to the neutrino masses matrix of Ma model given

in the equation (3.16). In fact, assuming a condition that m̃S � mS,mη,Mi, the

approximated formula is given by

(M)αβ =
3∑
i=1

hαihβi 〈Φ〉
2

8π2

m2
Sµ

2

m̃4
S

Mi

M2
η −M2

i

[
1 +

M2
i

M2
η −M2

i

ln

(
M2

i

M2
η

)]
, (3.25)

where the factor
m2
Sµ

2

m̃4
S

appears from
∑2

a=1 µ
2
a/m̄

2. Comparing this to equation

(3.16), it is obvious that the coupling constant λ5 for the (η†Φ)2 in the original

model is effectively approximated as the quantity
m2
Sµ

2

m̃4
S

.

We might interpret the original model as the low energy limit of the present
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µa

µa

ϕa

Φ η

η Φ

λ5

Φ η

η Φ

Figure 3.4: λ5 as an effective coupling at energy regions much less than m̃S .

extended model, in which λ5 is an effective coupling derived from the interaction

−µSη†Φ− µ∗S†Φ†η by integrating out S as shown in the Figure 3.4. At tree level

of this extended model, the amplitude of the interaction ηΦ→ ηΦ is given by

M'
[

µ2
1

(q2 − m̄2
1)
− µ2

2

(q2 − m̄2
2)

]
' µ2

[
m2
S

m̄2
1m̄

2
2

]
m̄2

1,m̄
2
2�q2

' µ2m2
S

m̃4
S

, (3.26)

which coincides with λ5 in the original Ma model. Therefore, the corresponding

terms in the energy regions much lower than m̃2
S are

1

2

[
m2
Sµ

2

m̃4
S

(η†Φ)2 +
m2
Sµ
∗2

m̃4
S

(Φ†η)2

]
. (3.27)

Hierarchical masses problem between µ,mS and m̃S now replaces the smallness

problem of λ5 in the Ma-model. It is a key factor to explain the smallness of the

neutrino masses. If we leave the origin of this hierarchy problem to a complete

theory at high energy regions, all the neutrino masses, the DM abundance and the

baryon number asymmetry could be also explained in this extended model at TeV

regions just as discussion given in [12].



Chapter 4

Aspects as The Inflation Model

4.1 The Inflation model

Following the proposal in [53], we consider an inflation scenario working at sub-

Planckian scale by introducing nonrenormalizable terms obeying Z2 symmetry to

the potential for complex scalar field S given in equation (3.17). These terms could

restrict the trajectory of the evolution of S. In that case, even though the radial

motion of S is small, additional angular motion makes its whole trajectory length

sufficiently large to evade the Lyth bound.

As such an example, lets assume that the complex scalar S has Z2 invariant

additional potential as below

V = c1

(
S†S

)n
M2n−4

pl

[
1 + c2

(
S

Mpl

)2m

exp

(
i
S†S

Λ2

)
+ c2

(
S†

Mpl

)2m

exp

(
i
S†S

Λ2

)]
(4.1)

= c1
ϕ2n

2nM2n−4
pl

[
1 + 2c2

(
ϕ√

2Mpl

)2m

cos

(
ϕ2

2Λ2
+ 2mθ

)]
, (4.2)

where Mpl is the reduced Planck mass, and both of n and m are positive integers.

In the second line, we adopt polar coordinate expression for S = 1√
2
ϕeiθ. The most

crucial part in the potential is the exponential term. However, we cannot explain

its origin in this stage. We only expect that it might be effectively induced through

38
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the nonperturbative dynamics in the UV completion of the model. In the Figure

4.1, we present typical shape of the potential when ϕ is varied for a fix θ value.

ϕ/(
√

2Mpl)
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Figure 4.1: Potential shape for n = 2,m = 1, c1 = 1.1791× 10−7, c2 = 1.4 and
Λ/Mpl = 0.05 when θ = 0.

The local minimums of the potential can be obtained by finding the potential

derivative of V = V (ϕ, θ). As the potential depends on two different variables,

its minimums should be minimums for the both variables. Thus, at the potential

minimums, derivatives along θ and ϕ satisfy the following conditions:

∂V

∂θ
= −4mc1c2M

4
plφ sinψ = 0, (4.3)

∂V

∂φ
= 2c1M

4
plφ

n−1

[
n+ 2c2(n+m)φm cosψ − 2c2

M2
pl

Λ2
φm+2 sinψ

]
= 0. (4.4)

Here, we temporally used

φ :=

(
ϕ√

2Mpl

)
, ψ :=

(
φ2

(λ2/M2
pl)

+ 2mθ

)
(4.5)

to shorten and simplify the notation. Simultaneous solutions of above equations

systems are related to conditions φ = 0 or sinψ = 0. The first condition, φ = 0,

obviously describes the global minimum of the potential. On the other hand, by

substituting the second condition sinψ = 0 to equation (4.1), it can be concluded

that local potential minimums can be obtained only by taking cosψ = −1 but not
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cosψ = +1. Thus, local minimums of V are located at

ϕ2

2Λ2
+ 2mθ ' (2j + 1)π (4.6)

where j is an integer. Along this position, ϕ can be considered as a function of θ,

ϕ = ϕ(θ) and the potential can be restricted as

V |min ' V (ϕ) = c1M
4
pl

(
ϕ(θ)√
2Mpl

)2n
[

1− 2c2

(
ϕ(θ)√
2Mpl

)2m
]
. (4.7)

As a consequence of the smallness of the slow roll parameter η during inflation,

inflaton mass should be small enough compared to Hubble parameter H. Therefore,

any field having larger mass then Hubble parameter could not participate as inflaton.

In case of field ϕ, its mass can be obtained from dV (ϕ)2/dϕ2, that is given by

m2
ϕ =

d2V (ϕ)

dϕ2
=
dφ

dϕ

d

dφ

[
dφ

dϕ

dV (ϕ)

dφ

]
= c1M

2
pl

(
ϕ√

2Mpl

)2n−2
[
n(2n− 1)− 2c2(n+m)(2n+ 2m− 1)

(
ϕ√

2Mpl

)2m
]
.

(4.8)

As long as ϕ is in the sub-Planckian domain (ϕ < Mpl) and c2 = O(1), the last line

in the previous equation can be estimated as

mϕ &
[c1

2
n(2n− 1)

]1/2
(

ϕ

Mpl

)n−2

ϕ. (4.9)

On the other hand, the Hubble parameter is slowly changing during the inflation

stage

H '

(
V (ϕ)

3M2
pl

)1/2

'
( c1

3 · 2n
)1/2

(
ϕ

Mpl

)n−1

ϕ. (4.10)

As long as we keep ϕ in the sub-Planckian domain, the mass of ϕ will be much

larger than the Hubble parameter and therefore cannot participate in the inflation
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as inflaton. As the result, even thought the model originally consists of two degree

of freedom, the model effectively behaves as a single field inflation model.

Now we assume that the inflaton a proceeds along the local minimums shown

in equation (4.6). In that case, both of θ and ϕ fields vary its values when inflaton

rolls downward from its initial point. The helical trajectory for the infinitesimal

fields change shows variations given by

dϕ

dθ
= −2mΛ2

(
1

ϕ

)
. (4.11)

The field a along this motion has a field variation satisfying

da =

[
ϕ2 +

(
dϕ

dθ

)2
]1/2

dθ =

[
1 + 4m2

(
Λ

ϕ

)4
]1/2

ϕdθ. (4.12)

Therefore, inflaton a can be expressed as da ' ϕdθ as long as the condition ϕ� Λ

is satisfied. In this case, we can consider a to be a canonically normalized field along

the potential minimums. If we combine both condition ϕ < Mpl and ϕ � Λ, the

assumption to take a as effective inflaton in this scenario is founded to be justified for

Λ� ϕ < Mpl. The eta problem is now transferred into the following in this model:

(i) the condition Λ/Mpl � 1, and (ii) hierarchical structure m̃2
S,m

2
S, κ1Φ2 � H2

required by the domination (4.7) over the potential (4.1) during inflation. These

η problem is remaining as long as the UV completion of the theory is not founded

to fix the exponential terms in the potential (4.1). Meanwhile, the second form

of the present η problem could be relevant with other low energy physics, such as

the neutrino masses which could be elaborated here. Thus, the η problem is now

partially described by neutrino masses generation and physics related with it.

Using da = ϕdθ, the change of the inflaton a from some period to the end of

inflation can be expressed as

ae − a = −
∫ ϕe

ϕ

ϕ(θ)dθ = −
∫ ϕe

ϕ

ϕ

(
dθ

dϕ

)
dϕ =

1

2mΛ2

∫ ϕe

ϕ

ϕ2dϕ

=
1

6mΛ2

[
ϕ3
e − ϕ3

]
, (4.13)
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where ϕe is a value of ϕ at the end of inflation. If we define a canonically normalized

new inflaton as

χ := ae +
ϕ3
e

6mΛ2
− a =

ϕ3

6mΛ2
, (4.14)

it shows that we can promote χ to be super-Planckian field (χ�Mpl) even if ϕ is

taken as a sub-planckian field. Therefore, the problem related to the Lyth bound

can be evaded easily. In terms of this new field, the potential in equation (4.7) can

be expressed as

V (χ) = c1M
4
pl

(
3mΛ2

√
2M3

pl

)2n/3

χ2n/3

1− 2c2

(
3mΛ2

√
2M3

pl

)2m/3

χ2m/3

 (4.15)

Since the leading contribution comes from the first term, our results are close to

those given by the chaotic inflation with the power-low potential V (φ) = Λ4 (φ/Mpl)
p

such as mentioned in [70, 71]. In this type of inflation model, the tensor-to-scalar

ratio r increases with the power p, while the running of spectral index |n′s| de-

creases with the power p. Therefore, it is not easy to satisfy the BICEP2 and

the Planck 2013 data, which give the constraints r < 0.20 (95% confidence) and

n′s = −0.022 ± 0.010 (68% confidence for Planck+WP+highL data combination)

[15, 72]. Unless the Planck and the BICEP2 data can be reconciled without large

n′s, this chaotic inflation is inconsistent with the observation at the 1σ level. Since

favorable results at the 95% confidence level are given for 2 < p < 3, a reasonable

choice in our model is to take n = 3 or n = 4 without including the running of the

spectral index.

4.2 Constraints of slow-roll inflation

Quantities characterizing the inflation need to be calculated to understand the fea-

ture of the inflation. Some of them are the slow-roll parameters η and ε, the e-folding

number N , the spectral index ns, the tensor-to-scalar ratio r, the running of the

spectral index n′s and the power spectrum of the density perturbation PR. In order

to do so, the derivatives of the potential are needed. The first derivative of the
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potential given in the equation (4.7) is

V ′ :=
dV (χ)

dχ
=

(
dϕ

dχ

)
dV (ϕ)

dϕ
= c1M

4
pl

√
2mΛ2

M3
pl

(
ϕ√

2Mpl

)2n−3

B(ϕ), (4.16)

the second derivative is

V ′′ :=
d2V (χ)

dχ2
= c1M

4
pl

m2Λ4

M6
pl

(
ϕ√

2Mpl

)2n−6

C(ϕ), (4.17)

and the third derivative

V ′′′ :=
d3V (χ)

dχ3
= c1M

4
pl

m3Λ6

√
2M9

pl

(
ϕ√

2Mpl

)2n−9

D(ϕ), (4.18)

where we define

A(ϕ) := 1− 2c2

(
ϕ√

2Mpl

)2m

, (4.19)

B(ϕ) := n− 2c2(n+m)

(
ϕ√

2Mpl

)2m

, (4.20)

C(ϕ) := n(2n− 3)− 2c2(n+m)(2n+ 2m− 3)

(
ϕ√

2Mpl

)2m

, (4.21)

D(ϕ) := n(2n− 3)(2n− 6)− 2c2(n+m)(2n+ 2m− 3)(2n+ 2m− 6)

(
ϕ√

2Mpl

)2m

.

(4.22)

Using equation (4.7), (4.16), (4.17) and (4.18), the slow-roll parameters are

now given by

ε :=
M2

pl

2

(
V ′

V

)2

= m2

(
Λ

Mpl

)4(
ϕ√

2Mpl

)−6 [
B(ϕ)

A(ϕ)

]2

, (4.23)

η := M2
pl

(
V ′′

V

)
= m2

(
Λ

Mpl

)4(
ϕ√

2Mpl

)−6 [
C(ϕ)

A(ϕ)

]
, (4.24)
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and

ξ := M4
pl

V ′V ′′′

V 2
= m4

(
Λ

Mpl

)8(
ϕ√

2Mpl

)−12 [
B(ϕ)D(ϕ)

A(ϕ)2

]
. (4.25)

These first two parameters give the condition for the period when the inflation

is occurring. The inflation starts from the period when η � 1 and ε � 1 are

satisfied and then stops at the time when η ' ε ' 1 is realized. For convenience,

we will denote the field value at the end of inflation by subscript letter e, such as

η(ϕe) = η(χe) = 1 from now on.

Using the slow-roll parameters, observational cosmological parameters such as

the scalar spectrum index ns, the tensor-to-scalar perturbation ratio r and the the

running of ns can be represented as

ns ' 1− 6ε+ 2η, (4.26)

r ' 16ε, (4.27)

n′s :=
dn

d ln k
' 16εη − 24ε2 − 2ξ. (4.28)

The power spectra of curvature perturbations on the super-Hubble scales can

be conveniently expanded as [17, 24, 73]

PR(k) ' ∆2
R

(
k

k∗

)(ns−1)+ 1
2
dns
d ln k

ln( k
k∗ )

, ∆2
R :=

V

24π2M4
plε

∣∣∣∣∣
k∗

(4.29)

where ∆2
R is the scalar power spectrum amplitude at k∗ = 0.005 Mpc−1 which

is given about ln (1010∆2
R) = 3.094 ± 0.034 (68% CL, Planck TT, TE, EE+lowP

combination data) [17]. The mode k∗ = a∗H∗ represents the comoving wave number

mode when it is crossing the Hubble radius for the first time. This number fixes

the quantity of (V/ε) such as r = 0.2 with the BICEP2 result, the energy scale of

inflation is V ≈ 7.19 × 10−9M4
pl at horizon exit. The equation (4.29) helps us to
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determine c1 parameter in the potential (4.6) as

c1 = 24π2∆2
R

(
ϕ∗√
2Mpl

)−2n
ε

A(ϕ∗)

∣∣∣∣
k∗

. (4.30)

The e-folding number induced by changing of inflaton from χ at a particular

scale to χe at the end of inflation can be written as

N = − 1

M2
pl

∫ χe

χ

V

V ′
dχ = − 1

M2
pl

∫ ϕe

ϕ

V

V ′

(
dχ

dϕ

)
dϕ

= − 1

nm2

(
Λ

Mpl

)−4 ∫ φe

φ

φ5

(
1− 2c2φ

2m

n− 2c2(n+m)φ2m

)
dφ

= − 1

nm2

(
Λ

Mpl

)−4 ∫ φe

φ

[
φ5 +

2c2m

n

φ2m+5

(1− 2c2(1 + (m/n))φ2m)

]
dφ. (4.31)

Here, we used notation in equation (4.5) to shorten the notation in the second and

the third line. The fist integral is trivial. Hence we only need to focus on the second

integral. One of crucial steps to solve analytically this term is to expand the binomial

function in the denominator factor. It is possible to do as if c2 = O(1),m < n and

φ < 1, and then the factor satisfies |2c2(1 + (m/n))φ2m| < 1.

The binomial function itself corresponds to Hyperbolic function [74, 75] by

relation

(1− x)−α = 2 F1(α, β, β;x) = 1 F0(α;−;x) =
∞∑
n=0

(α)n
n!

xn. (4.32)

Notations 2 F1(a, b; c;x) and 1 F0(a;x) are particular cases for general Hyperbolic

function given by

p Fq(a1, · · · , ap; b1, · · · , bq;x) :=
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)nn!

xn (4.33)

where (w)n := Γ(w+n)
Γ(w)

= w(w+ 1)(w+ 2) · · · (w+n− 1), (w)0 = 1 is a Pochhammer

symbol. This series converges for all x if p ≤ q, for |x|< 1 if p = q + 1 and diverges

for all x 6= 0 if p > q + 1. Therefore, the second integral in the last line of equation

(4.31) converges if the corresponding Hyperbolic function is (q+1) Fq.
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Denoting 2c2(1 + (m/n)) := β, the second integral part in equation (4.31) can

be expanded to be

∫
φ2m+5

(1− βφ2m)α
dφ =

∫
φ2m+5

(
∞∑
j=0

(α)j
j!

(
βφ2m

)j)
dφ

=

(
∞∑
j=0

(α)j
[2m(j + 1) + 6] j!

(
βφ2m

)j)
φ2m+6. (4.34)

When α = 1, factor (α)j and j! eliminate each other. Furthermore, by manipulation

to the factor, we have the relation

1

2m(j + 1) + 6
=

1

6

(
6

2m

) (
6

2m
+ 1
) (

6
2m

+ 2
)
· · ·
(

6
2m

+ j
)(

6
2m

+ 1
) (

6
2m

+ 2
)
· · ·
(

6
2m

+ j
) (

6
2m

+ (j + 1)
)

=
1

2(3 +m)

(
3
m

+ 1
)
j(

3
m

+ 2
)
j

. (4.35)

As the result, equation (4.34) can be expressed as

∫
φ2m+5

(1− βφ2m)α
dφ =

(
1

2(3 +m)

∞∑
j=0

(α)j
(

3
m

+ 1
)
j(

3
m

+ 2
)
j
j!

(
βφ2m

)j)
φ2m+6

=
φ2m+6

2(3 +m)
2 F1

(
α,

3

m
+ 1;

3

m
+ 2; βφ2m

)
. (4.36)

Collecting everything in one peace, we can rewrite the e-folding number in an

expression

N := N(ϕ)−N(ϕe) (4.37)

where N(ϕ) is defined as

N(ϕ) :=
1

6nm2

(
Λ

Mpl

)−4(
ϕ√

2Mpl

)6
[

1 +
6c2m

n(3 +m)

(
ϕ√

2Mpl

)2m

× 2 F1

(
1,

3

m
+ 1;

3

m
+ 2; 2c2

(
1 +

m

n

)( ϕ√
2Mpl

)2m
)]

. (4.38)
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In many cases such as n = 3 and m = 1, the expression of N(χ) might

be approximately given by the first terms since the bracket terms tend to be much

smaller by factor φ2m
2F1(1, a; a+ 1; βφ2m) . Even in that case, the value of e-folding

in the end of inflation N(χe) could not be neglected because χe is not small enough

compared to χ in sufficiently realized inflation. We will show in the next discussion

how the inflation ends even before the condition ε(ϕe) ' 1 is reached. On the

other hand, to produce sufficient inflation, e-folding number N at horizon crossing

is usually taken in the range 50 − 60 to accommodate uncertainty in the various

energy scales connected with inflation in the model [76, 77]. We denote it as N∗

and the corresponding field value as ϕ∗. Practically, all of the slow-roll parameters

and cosmological parameters associated to the observations should be represented

at the k∗ scale.

4.3 Inflaton dynamics

To understand whole processes that the scalar field S will undergo, it is useful to

investigate the time evolution of the fields. Each component field ϕ1,2 of the scalar

field S = 1√
2
(ϕ1 + iϕ2) follows the equation of motions as follows:

ϕ̈i + 3Hϕ̇i = − ∂V
∂ϕi

(i = 1, 2), (4.39)

where the Hubble parameterH of the system is now written asH2 = 1
3M2

pl

(∑
i

1
2
ϕ̇i + V

)
and ∂V

∂ϕi
denotes the partial derivative of potential V (S) in the direction of the field
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component ϕi. For any number of n and m, ∂V
∂ϕi

can be expressed respectively as

∂V

∂ϕ1

=
c1

M2n−4
pl

(
S†S

)n [ nϕ1

(S†S)

+
c2

M2m
pl

{
nϕ1

(
S2m + (S†)2m

)
(S†S)

+
2m
(
S2m−1 + (S†)2m−1

)
√

2
+
iϕ1

(
S2m − (S†)2m

)
Λ2

}

× cos

(
iS†S

Λ2

)
+

c2

M2m
pl

{
nϕ1

(
S2m − (S†)2m

)
(S†S)

+
2m
(
S2m−1 − (S†)2m−1

)
√

2
+
iϕ1

(
S2m + (S†)2m

)
Λ2

}

× sin

(
iS†S

Λ2

)]
, (4.40)

and

∂V

∂ϕ2

=
c1

M2n−4
pl

(
S†S

)n [ nϕ2

(S†S)

+
c2

M2m
pl

{
nϕ2

(
S2m + (S†)2m

)
(S†S)

+
2mi

(
S2m−1 − (S†)2m−1

)
√

2
+
iϕ2

(
S2m − (S†)2m

)
Λ2

}

× cos

(
iS†S

Λ2

)
+

c2

M2m
pl

{
nϕ2

(
S2m − (S†)2m

)
(S†S)

+
2mi

(
S2m−1 + (S†)2m−1

)
√

2
+
iϕ2

(
S2m + (S†)2m

)
Λ2

}

× sin

(
iS†S

Λ2

)]
. (4.41)

Taking a particular case with m = 1, those above equation can be simplified

to be

∂V

∂ϕ1

=
c1

(
S†S

)n
M2n−4

pl

[
nϕ1

(S†S)
+
c2ϕ1

M2
pl

{
n (ϕ2

1 − ϕ2
2)

(S†S)
+ 2− 2ϕ1ϕ2

Λ2

}
cos

(
S†S

Λ2

)
− c2ϕ1

M2
pl

{
2nϕ1ϕ2

(S†S)
+ 2

ϕ2

ϕ1

+
(ϕ2

1 − ϕ2
2)

Λ2

}
sin

(
S†S

Λ2

)]
,

(4.42)



Chapter 4. Aspects as The Inflation Model 49

∂V

∂ϕ2

=
c1

(
S†S

)n
M2n−4

pl

[
nϕ2

(S†S)
+
c2ϕ2

M2
pl

{
n (ϕ2

1 − ϕ2
2)

(S†S)
− 2− 2ϕ1ϕ2

Λ2

}
cos

(
S†S

Λ2

)
− c2ϕ2

M2
pl

{
2nϕ1ϕ2

(S†S)
+ 2

ϕ1

ϕ2

+
(ϕ2

1 − ϕ2
2)

Λ2

}
sin

(
S†S

Λ2

)]
.

(4.43)
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Figure 4.2: Inflaton dynamics for the n = 2,m = 1 case. Other parameters
are fixed as the ones given in the caption of the Figure 4.1. The initial value of
inflaton is fixed at a potential minimum.

Solving the above equations of motion numerically, the inflaton dynamics and

the inflaton evolution are presented in the Figures 4.2 and 4.3. The initial value of

the field could not be selected arbitrarily as it could ruin its dynamics depending

on it. If the initial point of the inflation is located at (ϕ, θ) in the polar coordinate

ϕ2 = ϕ2
1 + ϕ2

2 and θ = arctan(ϕ1/ϕ2) where Va(ϕ, θ) > Vmax is satisfied for the

nearest local maximum Vmax, the kinetic energy of the inflaton could be larger than

the next potential hill when the inflaton reaches there. As the result, the inflaton

could cross over the hill without realizing the slow-roll motion along the angular

direction. The best way is to place the inflaton initial value at potential minimum.
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Figure 4.3: Inflaton evolution corresponds to the fields dynamics given in the
Figure 4.2. Here ε(t) is given. It shows how ε(t) changes dramatically much
before ε = 1 to stop the inflation period.

At a particular point, the motion suddenly falls toward of the center of the

potential and starts the oscillation as illustrated in the Figure 4.2. This point is

considered to the time when the inflation end and it is related to the time when

ε(t) is close to unity but mostly much less than unity. The time dependence of ε is

illustrated in the Figure 4.3 to show how ε is dramatically changing near the turning

point in the Figure 4.2. This turning point can be easily figured out in the Figure 4.3

as the time when the damping of the fields evolution starts. It is characterized by

the rapid decrease of the amplitude and the frequency of the fields. Since the kinetic

energy of the fields becomes larger compared with the local potential barrier which

gradually becomes smaller, the field components are expected to leave the local

minimum and go over the potential toward the global minimum at a certain period,

at least when its kinetic energy is equal to the potential barrier χ̇2/2 ' Vb. If we

apply the slow-roll approximation 3Hχ̇ = −V ′, this period is given at ε = 3Vb(Vb+V )
V 2 .

It is translated to

ϕe√
2Mpl

'
(
m2n

6c2

) 1
2m+6

(
Λ

Mpl

) 2
m+3

, (4.44)
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when the c2 term contribution is neglected. In that case, the contribution of the e-

folding number at the end of inflation N(χe) to the total e-folding number N could

become significant. To confirm this behavior and to determine χe, we estimate it

by using the numerical calculation so that the effect of the c2 term can be fully

understood.

4.4 Inflation parameters and its comparison with

chaotic inflation

When the terms containing c2 are negligible safely, the situation becomes much

simple. The effective potential given in (4.7) has similar form with the power-law

type chaotic inflation. Therefore, the features of are also similar. We list some

inflation parameters for the inflation in comparison with the power-law chaotic

inflation in the table 4.1 [70, 78].

V (ϕ) ε η ξ r ns n′s

Vch
p

4N∗

p−1
2N∗

(p−1)(p−2)
4N2
∗

4p
N∗

1− p+2
2N∗

− (2+p)
2N2
∗

Vappx
n

6(N∗+Ne)
2n−3

6(N∗+Ne)
(2n−3)(2n−6)
62(N∗+Ne)2

8n
3(N∗+Ne)

1− n+3
3(N∗+Ne)

− (3+n)
3(N∗+Ne)2

Table 4.1: Comparison table between power-law chaotic inflation with a po-

tential Vch = α4
(

ϕ
Mpl

)p
and the c2 terms negligible limit in our model with the

approximated potential Vappx = c1M
4
pl

(
ϕ√

2Mpl

)2n
.

The m dependency is explicitly contained in the e-folding (N∗ + Ne) even

though it does not appear in these approximated formulas. There are some inter-

esting features in this limit compared to the power-law chaotic inflation. The first

one is the correspondence between two models appears for p = 2n/3. the next one

is that the e-folding number at the horizon exit N∗ in the power-law chaotic infla-

tion corresponds to (N∗ +Ne). The N∗ is the e-folding number at the horizon exit

and known have favorable value about 50-60 to produce the sufficient inflation and

Ne = N(χe) is the e-folding number at the end of inflation stage which might not

be negligible in the present model. As the result, the parameters such as the tensor-

to-scalar ratio r tends to be smaller and the spectral index ns tends to be higher
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then those in the chaotic inflation, respectively. The last one is the absolute value

of the running of the spectral index n′s tends to be smaller than that in the chaotic

inflation for all n value even if Ne have been included. Planck 2015 confirmed a

smaller tensor-to-scalar ratio and smaller absolute value of running of the spectral

index and a larger spectral index compared to those in BICEP2 [17, 79]. Therefore,

even thought the power-law chaotic inflation with p ≥ 2 has been disfavored by

Planck 2015 at ≥ 3σ, the present model could survive even for the negligible c2

limit. We will show later how n = 3 which corresponds to p = 2 could be within 2σ

region after including c2 terms.

By using relation between scalar power spectrum ∆2
R in the equation (4.29),

the potential (4.7) and the slow-roll parameter ε given in the table 4.1, the parameter

c1 can be approximately written in the limit of negligible c2 as

c1 = 9.5× 10−8 n

N∗ +Ne

(
ϕ∗√
2Mpl

)−2n

. (4.45)

For the example, taking n = 3 and N∗ + Ne = 60, we have c1 ' 1.159 × 10−6 for(
ϕ∗√
2Mpl

)
= 0.40. This approximation is still valid even for c2 = O(1). As we can see,

if c1 is rescaled to x2nc1 by a factor x (> 0), the potential form in the equation (4.1)

can be kept invariant by rescaling the other parameters: as c2 7→ x2mc2,Λ 7→ x−1Λ

and ϕ∗ 7→ x−1ϕ∗. Consequently, larger c2, smaller Λ and smaller ϕ∗ are needed to

compensate a larger c1 value. Otherwise, to compensate a larger c2 value, the larger

c1 , the smaller Λ and smaller ϕ∗ are required. Even though the effect of changing

the c2 value might not be clearly recognized from the equation (4.45), this property

explains the basic features of this model which are represented in the computational

results shown in the next section.

4.5 Constraints from Planck 2013, Bicep2 and

Planck 2015

The Planck 2013, combined with the WMAP large-angle, constrains the scalar

spectral index to be ns = 0.9603± 0.0073 and the scalar power spectrum amplitude
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to be ∆2
R = 2.196+0.051

−0.06 × 10−9. It also and establishes an upper bound on the

tensor-to-scalar ratio as r < 0.11 (95% CL) at the pivot scale k∗ = 0.002 Mpc−1.

An important point of this result is that the scale invariance is confirmed at over

5σ level. Thus, any models predicting subtantial deviation from the nearly scale

invariance and a blue tilted scalar power spectrum, such as a original hybrid model,

are ruled out. Moreover, the level of local non-Gaussianities is constrained by a

bound f loc
NL = 2.7±5.8 that disfavors exotic and complicated dynamical possibilities,

such as inflationary models with non-canonical kinetic energy and multiple fields.

Planck 2013 data thus prefers single field inflation to more complicated possibilities.

Some of them, i.e. exponential potential models, the simplest hybrid inflationary

models, and monomial potential models of degree n ≥ 2, do not provide a good

fit to the data [14]. However, Bicep2 measures rather higher tensor-to-scalar ratio

than that measured by Planck 2013. The bound is given at r = 0.20+0.07
−0.05 without

dust foreground subtraction that disfavors r = 0 at 7.0σ level, or it is given at r =

0.16+0.06
−0.05 if dust foreground subtraction is included [72, 80]. Monomial potential with

power 2 ≤ p ≤ 3 survives under this new constrain [70]. It has been mentioned in the

previous section that the behavior of this inflationary model would be similar and

comparable to it since the leading contribution of the scalar potential responsible

to the inflation takes form of a power-law potential. The existence of c2 term in

our model leads to better predictions than that in the ordinary monomial chaotic

inflation. Here we give more attention to p = 2 which corresponds to n = 3 in

our model to minimize the tension between the results of Planck 2013 and Bicep2.

Predictions given for some parameter sets for n = 3 and m = 1 are presented in the

Table 4.2 and in the Figure 4.4.

c1 c2
Λ
Mpl

ϕ∗√
2Mpl

H∗(GeV) N∗ ns r n′s
×1014

A 1.66× 10−6 0.7 0.04 0.378 0.871 59.0 0.971 0.107 -0.00016
2.04× 10−6 0.7 0.04 0.371 0.921 54.2 0.968 0.119 -0.00022
2.42× 10−6 0.7 0.04 0.366 0.965 49.1 0.965 0.131 -0.00027

B 0.257 6.0 0.002 0.0512 0.945 60.4 0.969 0.124 -0.00046
0.305 6.0 0.002 0.0505 0.986 55.0 0.966 0.136 -0.00054
0.364 6.0 0.002 0.0498 1.030 50.0 0.962 0.149 -0.00064

Table 4.2: Predictions for some typical parameter sets of the model defined for
n = 3 and m = 1.
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The predictions given in the Table 4.2 are fully generated by using numerical

calculation to get solutions of the field evolution equation (4.39). Local minimum

of the potential is applied as the initial point of inflation to get an appropriate

dynamics and thenthe inflation stops at the point where the inflaton starts falling

to the global minimum. As we can estimate the e-folding number by equation (4.31)

along the trajectory of inflaton, ϕ∗ can be decided by N∗ = N(ϕ∗) − N(ϕe). Here

the field value at the end of inflation is denotes as ϕe and we take N∗ = 50 − 60

which is required to generate sufficient inflation stage. H∗ is the Hubble parameter

calculated at ϕ∗ and is proportional to the energy scale during inflation. Other

variables related to the inflation variables, i.e. the tensor-to-scalar ratio r, the

spectral index ns and the running n′s are also estimated at ϕ∗ as well.

Figure 4.4: Predicted values of (ns, r) for several parameter sets
(
c2,

Λ
Mpl

)
given

in the Table 4.2 are plotted here. The dotted line represents the prediction of the
quadratic chaotic inflation model, in which the points corresponding to N∗ = 50
and 60 are represented as crossed lines. The horizontal solid lines and dotted lines
represent the Bicep2 1σ constraints with and without the foreground subtraction,
respectively [72]. The contours given as Figure 4 in Planck Collaboration XXII
[14] are used here. Since the running of the spectral index is negligible, the blue
contour should be compared with the predictions

Table 4.2 shows that sufficiently large N∗ can be realized as long as Λ � ϕ∗

is satisfied, even for sub-Planckian value ϕ∗ < Mpl. The Hubble parameter during

inflation takes the value around 1014 GeV as shown in the Table. It should be noted
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that r and ns favored by the present constraints could be possibly achieved by the

parameters c2 and Λ in rather width ranges in this model. The predicted r and ns

are then plotted in the Figure 4.4 using contours provided by Planck Collaboration

XXII [14]. To present Bicep2 constraint on the tensor-to-scalar ratio, the bounds

are displayed as horizontal lines in the contours. Here we take the contours that are

suitable for negligible running of the spectral index as they were predicted too small

in this model. As a comparison, predictions given by quadratic chaotic inflation are

shown in the figure.

The Figure 4.4 shows that the predictions are somehow shifted from the

quadratic chaotic inflation prediction. Both N∗ = 50 and 60 tend to predict

larger spectral index value and smaller tensor-to-scalar ratio value than those of

the quadratic chaotic inflation. These can be understood from the fact that this

model predicts smaller ε and larger η affected by the presence of the c2 term. Even

for negligible c2 terms, since N(ϕe) has a significant contribution to the e-folding

during inflation as already explained in the previous section, r and ns are predicted

smaller and larger than those in the quadratic chaotic inflation.

n c1 c2
Λ
Mpl

ϕ∗1√
2Mpl

H∗ N∗ ns r n′s
(×1013GeV)

3 1.00 ×10−6 1.5 0.05 0.417 6.528 60.0 0.967 0.070 -0.00047
9.84 ×10−7 1.7 0.05 0.411 5.914 60.0 0.964 0.056 -0.00043
8.62 ×10−7 1.9 0.05 0.406 5.399 60.0 0.959 0.040 -0.00032

2 1.32 ×10−7 1.1 0.05 0.394 7.019 60.0 0.973 0.058 -0.00043
1.76 ×10−7 1.1 0.05 0.384 6.725 50.0 0.968 0.072 -0.00061
1.22 ×10−7 1.6 0.05 0.383 5.931 60.0 0.969 0.039 -0.00040
1.71 ×10−7 1.6 0.05 0.374 5.767 50.0 0.964 0.052 -0.00059
1.03 ×10−7 1.9 0.05 0.374 5.318 60.0 0.963 0.026 -0.00035

1 1.36 ×10−8 0.5 0.05 0.349 5.079 50.0 0.975 0.041 -0.00046
7.45 ×10−9 1.6 0.05 0.333 4.146 60.0 0.970 0.015 -0.00036
1.02 ×10−9 1.6 0.05 0.326 4.102 50.0 0.966 0.019 -0.00052
6.15 ×10−9 1.8 0.05 0.327 3.976 60.0 0.966 0.011 -0.00035
8.77 ×10−9 1.8 0.05 0.320 3.944 50.0 0.962 0.016 -0.00052

Table 4.3: Examples of the predicted values for the spectral index ns and the
tensor-to-scalar ratio r in this scenario with m = 1.
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To complete the discussion, the constraints given by Planck 2015 might be

included. The Planck 2015 mission releases the announcement that the spectral

index of curvature perturbations is measured to be ns = 0.968±0.006 with the tight

constraint of scale dependence dns/d ln k =? 0.003±0.007. The upper bound on the

tensor-to-scalar ratio is r < 0.11(95% CL) measured at pivot scale k∗ = 0.002 Mpc−1

which is consistent with the B-mode polarization constraint r < 0.12(95% CL)

measured at k∗ = 0.05Mpc−1 obtained from a joint analysis of the BICEP2/Keck

Array and Planck data. One of the implication of these bounds is that the inflation

with quadratic potential and natural inflation are now completely disfavored. A

stronger constraint is given by a smaller tensor-to-scalar ratio measured by Planck

2015 than before. Even so, monomial inflation with power p < 2 is found to survive

from the constraint [17]. Due to this finding, we need to consider new parameter

sets given for n ≤ 3 to find new predictions in this model. The examples of predicted

results are shown in the Table 4.3 and the complete predictions are plotted in the

Figure 4.5.

Figure 4.5: Predicted regions in the (ns, r) plane are presented in panel (a)
for n = 3, in panel (b) for n = 2, and in panel (c) for n = 1. Λ is fixed as
Λ = 0.05Mpl in all cases. The values of c1 and ϕ∗ are given in Table 4.3 for
representative values of c2. Contours given in the right panel of Fig. 21 in Planck
2015 results.XIII.[81] are used here. Horizontal black lines r = 0.01 represent a
possible limit detected by LiteBIRD in near future.

Table 4.3 shows numerical examples for the cases n = 1, 2, 3 with a fixed Λ.

In such cases, the first term in the potential differs from each other. For n = 1, the
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first term of the potential is c1M
2
plS
†S which coincides with m̃2

SS
†S and for n = 2 is

given by c1(S†S)2 which coincides with κ1(S†S)2. Due to the assumption that the

inflaton potential is dominant during inflation stage, those terms are assumed to

be prominent compared with others in each case. The values of c1 and ϕ∗ are fixed

by the normalization condition given in the equation (4.29) for each value of c2.

The predicted points are plotted in the (ns, r) plane with the contours taken from

the right panel of Fig. 21 in Planck 2015 results.XIII.[81] as again the predicted

value of the running of the spectral index is negligible in this model. The red and

green circles displayed in figure correspond to N∗ = 50 and 60, respectively. The

predictions are plotted for every 0.1 of c2 starting from c2 = 0.1 on the right-hand

side while Λ is fixed as Λ = 0.05Mpl. We show the boundary values of c2 by the

red and black stars, for which either red or green circles are inside of the region

of 2σ CL and 1σ CL of the latest Planck TT+lowP+ BKP+lensing+ext combined

data for the n = 3 and n = 1, 2 panels, respectively. The predictions within those

interval are favored by the latest Planck data combined with others. The best fit

result is obtained for the n = 1 case. Here, the bound for future CMB detection,

LITEBIRD as an example that is expected to detect the signal of the gravitational

wave with r > 0.01 at more than 10σ [82], is given in the figure.

4.6 Reheating after inflation

Reheating at the end of the inflation period is an important part of the inflation

scenario. At this stage, inflaton energy is transferred to the radiation energy and

reheat the universe after inflation. In terms of equation of motion of the inflaton

field, there is an additional damping term due to the energy loss caused by the

particle production from the inflaton decay besides the energy loss due to the uni-

verse expansion. There is a time that the Hubble parameter decrease to a value

comparable with the decay rate of inflaton. The particle production due to the

inflaton decay becomes effective at such a time. This reheating stage after inflation

corresponds to a certain period when inflaton starts to behave as matter through

the oscillation around the global minimum of the potential.
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The early stage of the reheating may be constituted by two main processes:

preheating due to the parametric resonance through quartic interactions of S with

Φ and η and the perturbative decay due to an interaction term µSη†Φ. The first

constituent may not occur effectively as the fields coupled to ϕ1,2 have large effective

mass so it seems difficult for ϕ1,2 to produce these particles. The perturbative decay

due to µ√
2
ϕ1η

†Φ and iµ√
2
ϕ2η

†Φ takes place to complete energy transfer from the

inflaton to the radiation. The decay width of each process is given by Γϕi = 1
8π
|µ|2
m̄i

where m̄2
1 = m̃2

S +m2
S and m̄2

2 = m̃2
S −m2

S are the mass of ϕ1 and ϕ2, respectively.

As m̃S is assumed much larger than mS, the reheating temperature given from this

perturbative decay can be estimated as [83–85]

TR ' 0.35g−1/4
∗ |µ|

√
Mpl

m̃S

, (4.46)

where here g∗ = 116 denotes the relativistic degree of freedom chosen in this model.

To estimate this temperature, µ and m̃S need to be given qualitatively. These

quantities can be constrained by the neutrino mass generation through equation

(3.25) and condition on the mass of ϕ during inflation given in the equation (4.9).

As potential (4.1) is assumed to dominate the potential during inflation, we have a

condition m̃S � mϕ or

m̃S �
√
c1

(
ϕ∗
Mpl

)n−2

ϕ∗ (4.47)

' 3.1× 10−4

(
n

N∗

)1/2(
Mpl

ϕ∗

)2

ϕ∗, (4.48)

This constraint on m̃S now depends on the typical n taken in the calculation. Taking

n = 3, ϕ∗ ' 0.5Mpl and N∗ = 60 as an example it gives the bound m̃S � 3.4× 1014

GeV. As the result, the reheating temperature can be estimated as

TR ' 1.6× 108

(
|λ5|
10−6

)1/2(
m̃S

mS

)√
m̃S

106 GeV
GeV. (4.49)

If we taking the lightest neutral component of η as dark matter with mass of order

1 TeV, it suggests that |λ5| should be O(10−6) or less [86, 87]. Thus the reheating

temperature would be vary in the range of 105 GeV ≤ TR ≤ 1015 GeV depending
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on the value of m̃S. This order is high enough to produce termal right-handed

neutrinos of O(1) TeV to produce sufficient baryon asymmetry via leptogenesis.



Chapter 5

Summary

An extension of the radiative neutrino masses model by a complex singlet has been

considered to explain the inflation of the universe by keeping favorable features of

the original model, the simultaneous explanation of the small neutrino masses, the

DM abundance and the baryon number asymmetry in the Universe. The complex

singlet not only plays a role in the inflation scenario due to its component but is

also involved in the neutrino mass generation at one loop to explain the smallness

of neutrino masses. By choosing a complex scalar potential that realizes a dynamics

of the inflaton following a spiral-like valley, trans-Planckian field variation can be

realized to generate the sufficient e-foldings even though the relevant field is kept

sub-Planckian. The η problem is now stated in the different way, that is the mass

hierarchy of m̃2
S,m

2
S, κϕ

2 � H2 which is relevant to the neutrino mass and the

scale hierarchy Λ � Mpl which is closely related to the UV completion theory of

the present model. Therefore the η problem is still remaining in this model. The

UV completion of the model is expected to give a solution for it. The origin of the

potential cannot be still discovered at this stage.

The model interestingly behaves like a single field inflation scenario which is

closely related with the power-low chaotic inflation in a limiting case. Therefore, to

make the predictions coincide with the present CMB results, we have mainly elab-

orated the corresponding parameters to the favorable power-law chaotic inflation.

We have given the predictions by solving numerically the field equations for the

60
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component fields of the singlet scalar for more general cases. The spectral index ns

and the tensor-to-scalar ratio r predicted by this model could have favorable values

from the recent CMB observations by choosing the parameter sets in the inflaton

potential. We have shown that the predicted values for them by using the param-

eter sets for n = 1, 2 and m = 1 are favorable even for Planck 2015 observational

constraints.

Furthermore, the rough estimation of the reheating temperature in this model

could be high enough to produce thermal right-handed neutrinos for resonant lep-

togenesis. Therefore, the model seems to have no serious difficulty to explain the

crucial problems beyond the SM including the baryon number asymmetry like the

original model of the radiative neutrino masses model.
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