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ABSTRACT 

 

The dissertation presents a potential use of array MOS gas sensors which driven 

by new temperature modulation technique in a self-made e-nose system to identify 

soils in certain status (i.e. the presence of nutrient addition) by capturing the soil 

gaseous profiles. Soils is a complex mixture that composed mostly of minerals and 

organic materials, water, air, and countless organisms. Many gases, mostly volatile 

organic compounds, are found at soil atmosphere which their type and the 

concentrations produced may be differ because of differences in community 

composition of microbes and material contained. And also the presence of 

particular smell molecules of soil might affect the generated gases and volatiles. 

It is introduced the new technique namely temperature modulation with 

specified detection point (temperature modulation-SDP) which applied to drive the 

array of MOS gas sensor. Basically, it is similar with general temperature 

modulation, yet it also modulates the sensing unit concurrently and in same phase 

with the modulation on the heater unit. The SDP means the output detection 

(acquiring) of MOS gas sensor is put at specified point (i.e. at middle of sensing 

unit modulation). In first investigation, the rectangular (square) modulation was 

successfully designed and it led to response more distinct and sloping at lower 

frequency. It could increase the sensitivity and selectivity either on single or array 

sensors rather than static temperature. By applying selected temperature 

modulation-SDP, The PCA plot showed that it provided more than 60% increment 

of selectivity compared with static temperature in discriminating 3 gases (Toluene, 

Ethanol and Ammonia). 

By using the same gas sensors, the technique was then tested on their sensing 

performance to such a complex mixture, soil gaseous compound. The self-made e-

nose was employed to identify two soils (sandy and loam sand) and the presence 

of nutrient addition at different dose. It consists of (a) 6 MOS gas sensors 
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(TGS2444, TGS2602, TGS825, FISAQ1, FISSB30, and FIS12A) which driven 

and acquired wirelessly to a computer through (b) an interface system based on 

PSoC CY8C28445-24PVXI, and (c) Principal Component Analysis (PCA) and 

Neural Network (NN) as preprocessing and pattern recognition units respectively. 

The soil odors and volatiles were accumulated using a static headspace under both 

termostatting and agitating in certain condition for optimizing the equilibration. 

The soil gaseous profiles were presented in PCA plots and the patterns were trained 

by back-propagation algorithm which employs a log-sigmoid activation function 

and updates the weights using search-then-converge schedule. The results indicate 

that the temperature modulation-SDP in the e-nose system could differentiate 

clearly the soil type and indicate the presence of nutrient addition in soil and their 

level as well since they could response and has different sensitivity according to 

the samples, providing (unique) soil gaseous profiles. An optimum architecture of 

3-layer (3-6-3) NN was obtained to discriminate among the pre-described three 

categorized fertilizer levels (without, normal, and high dose) in soil sample with 

PCA as data preprocessor of sensor outputs. The PCA helps improving the NN 

classification to differ level of compost addition in soil. As an instance on gaseous 

profile of sand soil, the training resulted in the MSE (mean square error) 

respectively 4.20x10-4 and 3.49x10-3 for the with PCA system and without PCA. 

 

Keywords: Soil gases, MOS gas sensor, temperature modulation, specified 

detection point, E-nose application. 
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Chapter 1. Introduction 

 

1.1. Background Overview 

Practical application of precision agriculture aims not only to optimize the crop 

productions and increase the economic takings to farmer consequently, but also able to 

reduce the negative environmental impact due to farming activities. More precise and 

appropriate resources management either temporally and spatially may reduce their under 

or over application, thereby ensuring optimum result for any given unit of land (Lee et al. 

2010). Hence, a rapid and accurate information concerning the spatial variabilities within 

fields is required to achieve the philosophy of precision agriculture (e.g. for specialty 

crops) which one of this variabilities is soil status information which plays important role 

in further precision farming application (Sudduth et al. 1997; Lee et al. 2010). Good 

practice in soil management and land-use will prevent deep degradation of soil quality 

which mainly caused by excessive application of pesticides, herbicides, and commercial 

fertilizer (Doran 2002). The uncontrolled and over use of fertilizer has been cited as a 

source of contamination of surface and groundwater (Vadas et al. 2004). Moreover, an 

arbitrary management practices can influence atmospheric quality through changes in the 

soil’s capacity to produce/consume direct or indirectly important atmospheric gases such 

as ammonia (NH3), carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), 

nitrous oxide (N2O), and methane (CH4) (Li 2000; Mosier 1998). 

Ideally, application rates should be adjusted based on estimates of the requirements for 

optimum production at each location because there is high spatial variability of nutrient 

within individual agricultural fields (Page et al. 2005). Therefore, the ability of instrument 

to be applied in the in-situ measurement is main point to quantify soil variables where 

information on the state of the soil can be in line with immediate responds of the device 

system (Hellebrand et al. 2002). Otherwise, the other possibility is the separation in time 

of sensing and control action by the condition will not changes essentially or the change 

can be calculated accurately. Both are required the sensors in each case, since all actions 

must be based on reliable necessary information. 

Besides some physical environment parameters of soil (such as temperature, water 
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content and pH), the emitted gasses from soil has been investigated and become more 

attracting due to concerning the climate change and other potential analysis, such as 

potential indication or early detection of the soil status related to the use of additional 

nutrients. This is possible since odorous compounds result from decomposition of matter 

(Vass et al. 2008; Scaglia et al. 2011), and some strong evidences which pointed that 

resulted gases and volatile organic compounds (VOCs) in the soil atmosphere in vary 

widely types and relative concentrations (Wheatley et al. 1996; Peñuelas et al. 2014) 

might be produced due to fertilizer adding and microbial activity (De Cesare et al. 2011) 

which influenced by environment conditions (Milchunas et al. 1988; Sherlock et al. 1994; 

Smith et al. 2003). Moreover, also there are known smell molecules in soil, namely 

geosmin and methylisoborneol (Wang & Cane 2008; Mei Wang & Cane 2008; Green et 

al. 1975), which would influence the soil gaseous profile resulted in soil atmosphere. 

The Gas Chromatography/Mass Spectrometry (GC/MS) technique is a well-known 

and established method to identify and quantify accurately the soil gaseous and volatile 

compounds as important soil status in many purposes and applications, including nutrient 

components determination (Smith & Dowdell 1973; Carter & Gregorich 2008). However, 

it is difficult to take the advantages of GC/MS for rapid or in-situ measurement. It 

becomes less favored since the large labor requirements (e.g. sample preparation, mixed 

with an extracting material and skilled operation of the extraction unit), the expense and 

time needed, making inefficient (Rappert & Müller 2005). Therefore it is needed fast and 

reliable sensors and measuring techniques to obtain the soil gaseous profiles.  

In gas sensor technology, some advance and wide inventions of technologies of gas 

sensor are chemo-resistive (Metal Oxide Semiconductor, MOS) sensors, electrochemical 

(Galvanic Fuel Cell) sensors and non-dispersive infrared radiation absorption (NDIR) 

(Aleixandre & Gerboles 2012). Particularly, the established and fabricated in MOS gas 

sensor (such as by Figaro, Inc. and FIS, Inc.) has lead fabricated small size, robust, and 

low cost sensor with various sensitivity and fairly stable to be applied successfully in 

agricultural fields for many purposes (Wilson & Baietto 2009; Berna 2010), including 

soil application (Rincón et al. 2010; Del et al. 2007). Yet, despite their many distinctive 

quality factors, MOS gas sensors also likely to have a drift (Hierlemann & Gutierrez-

Osuna 2008) and poor selectivity (cross-sensitivity) to other gases which might render 

unreliable signal and affect the baseline and the sensitivity of sensor (Bermak et al. 2005; 
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Carlo & Falasconi 2012). The drift is caused from variation of temperature and humidity 

(Meixner & Lampe 1996) which changes the baseline of the sensor signal shifts which 

are potentially resulted from use of static temperature on gas sensor and mounting the 

sensor in chamber. The static temperature, consequently by given static/direct voltage, 

only provides one dimensional response (i.e. the changes in direct resistance) and there is 

no other information about the response reactions. This is inadequate for distinguishing 

between the response to a target and those to other interfering gases (Nakata et al. 2006; 

Huang et al. 2004). Each metal-oxide sensor is primary selective to one certain gas but its 

cross-sensitivity to other gases is not negligible (Wilson & Baietto 2009) and also known 

that the performance of almost all types of SnO2 sensors is sensitive to the temperature of 

operation (Wang et al. 2010). 

As reported by Lee & Reedy (1999), temperature modulation through oscillation of 

heater voltage, also some called dynamic measurement technique, has been most potential 

promising and established technique of temperature modulation than temperature 

transient or pulsed techniques to be applied on MOS gas sensors. Temperature modulation 

alters the kinetic of the sensor through changes in the operational temperature of device. 

The operating modulation voltage, also consequently the operating temperature, of the 

sensor changes periodically either by square (rectangular) or triangular or sine waveform 

(Huang et al. 2004). Lee & Reedy (1999) also reported that since a cyclic temperature 

variation lead different rates of reaction of various analyte gases, it can give a unique 

response for each gas. The response of temperature modulation is more distinct and 

informative than static temperature. By using rectangular waveform, Dutta & Bhuyan 

(2012) has determined the optimal frequency applied for each sensor using theory of 

system identification based on best fit transfer function, pole-zero plot and the overshoot 

percentage. In agricultural application, Huang et al. (2003) applied the rectangular 

temperature modulation to distinguish the presence of two pesticide gases, acephate and 

trichlorphon (binary gas mixture), in the ambient atmosphere.  

In advance, it is successfully developed a new technique based on temperature 

modulation to increase selectivity and sensitivity of MOS gas sensor and named it 

Temperature Modulation-Specified Detection Point (SDP) (Sudarmaji & Kitagawa 2015). 

This technique together with Principle Component Analysis (PCA) provided 64.7% 

higher selectivity than the static temperature modulation on array gas sensors to 
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distinguish 3 gases resulted from each liquid (ammonia, ethanol, and toluene). Thus, this 

technique is highly potential be employed in an application using principle of electronic-

nose (e-nose) which therein widely utilizes a PCA. 

The favorable method which could overcome the disadvantages of using single MOS 

gas sensor, is that called electronic nose (e-nose). The primary advantage of E-noses is 

the presence of an array of sensors coated with differentially and partially specific 

sensitive materials which can interact with single analytes belonging to the same chemical 

class but not highly specific for a single substance, it can also interact with substances 

belonging to other chemical classes (cross-selectivity), despite on a lower extent 

(overlapping responses) (Nanto & Stetter 2003). This technology have been made ever 

since the early 1980s when researchers at the Warwick University (Coventry, England) 

developed sensor arrays for odor detection based on conductivity changes, i.e. initially 

using metal oxide sensors and later exploring the polymer-based sensor (Nagle et al. 

1998),. 

E-nose which mimic the human sense of smell capable to analyze complex mixtures 

of gases and volatiles (odors or aromas) in atmospheres. Typically, a sampling unit 

delivers the odor molecules to a test chamber in which the sensor array is based; the 

interaction between the sensors and the volatile compounds produce a change in the 

sensors response; this change is then interpreted by a pattern recognition system, in order 

to obtain uniquely an olfactory fingerprint of the analyzed sample. To maximize the use 

of e-nose technology, a neural network is installed, which act might like the memory in 

our brain, creating a library of sensor responses, also known as sensor profiles. 

E-nose normally will not get tired nor be sensitized to particular smells and it also does 

not required comfortable or safe working conditions. It can sample the environment 

continuously, or at least frequently, and give a rapid feedback of the results. It is desirable 

even if the accuracy is not as good as that of the corresponding laboratory instrument in 

a controlled circumstance. Normally, the laboratory-based method is laborious and time 

consuming. E-nose also become attractive method and many applied by detecting the 

volatile changes, like the physical properties and quality of fruits and vegetables can be 

evaluated to substitute trained human panelists (Lee et al. 2010). 

In agriculture field, many results give the strong evidences of successful system 

applications based on e-nose principle such as assessment of agriculture products quality 
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(freshness, ripeness, contamination, spoilage), cultivar selection, preservation treatments, 

variety characteristics, plant pathology, and plant identification (Wilson & Baietto 2009). 

Bastos & Magan (2006) applied electronic nose technology to detect and monitor the 

early microbial activity in water as well as for monitoring geosmin production in different 

water types by using normalized divergence data were analyzed using principal 

component analysis (PCA) and discriminant function analysis (DFA), thus help 

preventing off-odors and tastes occurrences. Then in (2007), they employed non-specific 

polymer sensor array to differentiate between soil types, and between soil samples under 

different temperature and water potential conditions. Following the addition of glucose 

or wheat straw into soil, a temporal discrimination between soil volatile fingerprints was 

obtained as response to nutrients, as well as between treated and untreated controls. 

Especially in soil analysis as reported by De Cesare et al. (2011), a relevant and 

successful example of e-nose application on soil cases have been developed in recent 

years such as ammonium detection through ammonia measurement. They themselves 

measured the microbial activity in silty clay loam soil to distinguish different metabolic 

and growth phases of the inoculated bacteria during incubation and to discriminate 

between inoculated and non-inoculated ecosystems. The growth and activity of microbial 

was accelerated by adding nutrient solutions (organic and inorganic C, N, P and S sources) 

into soil which incubated for 23 days.  

By those facts, E-nose technology which employs array of MOS gas sensors driven by 

the advanced temperature modulation technique was used to measure the gases and 

volatiles form conditioned soil sample and environment in order to indicate the soil status 

with different condition due to nutrient addition. It tests the potential of the temperature 

modulation-SDP technique based on the sensitivity and selectivity of sensor responses to 

the influence of soil type and nutrient addition. I tested two soils (sandy loam and sand) 

with the following addition of commercial compost in different dose (without, normal, 

and high). 

 

1.2. Research Objectives 

One of essential aspects on Precision Agriculture is rapid availability of soil status, 

including the information relates to the soil gases and volatiles due to application of 
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additional nutrient in soil. It affects plant growth and contributes to environmental 

changes as well, also can change over time due to its circumstances conditions. It is 

therefore important to early detect and assess changes in soil, in order to support the way 

to optimize and overcome those changes respectively. This research explores 

qualitatively the potential of soil gaseous profiles acquired from an array MOS gas 

sensors rapidly for early information of soil condition since there expected gases and 

volatiles emitted from soil which correlated and effected with soil material contents. 

Based on qualitative soil gaseous analysis, this project aims to examine the potential 

use of MOS gas sensors which driven by temperature modulation-SPD in an e-nose-based 

system for early and rapid indication of soil status relates to soil type and nutrient addition. 

It was tested the sensor responses characterization and ability of the e-nose for that such 

purpose by applying the fit modulation and generating the gaseous profiles in static 

headspace under particular controlled environment condition. Therefore, the objectives 

of this research are as follow: 

a. To design a temperature modulation-SDP technique that can drive a single or array 

gas sensor in e-nose application. 

b. To test the performance of the temperature modulation-SDP on the sensitivity and 

selectivity of MOS gas sensors on different sample of gases; 

c. To build a self-made e-nose system based on MOS gas sensors driven by temperature 

modulation-SDP for capturing the soil gaseous profile and indicating the soil type and 

nutrient addition in different dose. 

 

1.3. Dissertation Organization 

In general, there are two main discussion in this dissertation, firstly a new development 

technique of temperature modulation on MOS gas sensor and secondly its potential 

implementation on agricultural field, especially in soil status due to the presence of 

additional nutrient in order to support precision agriculture eventually. The overall 

research was conducted laboratory based at Micro Electronic Research Laboratory of 

Kanazawa University. 

The dissertation is organized into five chapters. Chapter 1 generally presents the 

logical motivations of this study as to the importance of knowing the soil status relates to 
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the use of additional nutrient that possibly obtained early by analyzing the soil gas profile 

acquired from the gas sensor that run by a particular technique. The term of temperature 

modulation with specified detection point (SDP) is introduced as our first work to drive 

MOS gas sensors in order to increase their selectivity and sensitivity. Chapter 2 provides 

the overview of fundamental literatures related to the aspects of this study. It includes the 

soil smell and potential gases in soil atmosphere, the principle of e-nose technology, and 

e-nose apparatus such as the method of sample handling and measurement in e-nose, 

MOS gas sensors technology for e-nose, and pattern recognition tools in e-nose. Chapter 

3 describes in detail the main technique in this study, The Temperature Modulation-SDP.  

It drives the MOS gas sensors used in an e-nose to differentiate three volatile gases from 

their liquids. It covers the schematic designs and measurement steps, the responses 

resulted, the effect of modulation to circumstance conditions of sensors, and the 

selectivity performance. And, as the purpose of this dissertation, Chapter 4 discusses 

about the test or implementation of the temperature modulation-SDP technique to indicate 

nutrient addition in soil by using self-made e-nose with the same sensors, circuitry and 

measurement principle in Chapter 3. Finally in Chapter 5, I give a summary and some 

scopes of future work for this research which associated with the modulation itself to 

broader type of gas sensor for increase the , and other promising applications in 

soil/agriculture field. 
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Chapter 2. Fundamental Literature Review 

 

2.1. Soil Smell and Potential Gases in Soil Atmosphere 

The smell of soil is due to the smell of two small molecules produced by small 

organisms. These small molecules are known as geosmin and methylisoborneol which 

mostly produced by bacteria belonging to the most genus Streptomyces that involves a 

number of enzymes, one of key enzymes is germacradienol synthase (Wang & Cane 2008; 

Mei Wang & Cane 2008; Green et al. 1975). The smell of these compounds can cause 

reduced quality of drinking water. They also have been found to reduce the quality of fish 

in freshwater aquacultures as the odors penetrate and accumulate in the fish, thereby 

lowering the commercial value. Streptomyces are ubiquitous, gram-positive soil bacteria 

that are known to produce of majority of pharmaceutically useful compounds (Wang & 

Cane 2008). 

The Volatile Organic Compounds (VOC) were the most documented of gases in the 

soil atmosphere to vary widely in type and relative concentrations which strongly 

produced by microbial activity or metabolism, such as fungi, bacteria, and actinomycetes 

(Insam & Seewald 2010; Leff & Fierer 2008; Wheatley et al. 1996; Stahl & Parkin 1996). 

Generally, soil volatiles are identify and quantify traditionally using Gas Chromatography 

(GC) or Mass Spectrometry (MS), but they are effective, reliable and low cost, they can 

be time consuming, especially in time many replicates are necessary (Nagle et al. 1998; 

Insam & Seewald 2010). And, microbial and chemical processes that occur in the soil 

affect global change through their impact upon the concentrations of greenhouse/emission 

gases (e.g., CO2, CH4, N2O, NH3, and O3) in the atmosphere. Soil processes contribute 

highly variable in space and time, about 30% of NOx, 70% of N2O, 20% of NH3 and 30% 

of annual global CH4 emissions to the atmosphere (Mosier 1998).  

Wheatley et al. (1996) analyzed the headspace of silty-clay loam soil at 50% water 

holding capacity using GC. They have identified 35 volatile organic compounds (27 in 

aerobic and 13 in anaerobic soil), with the predominant groups being Sulphur compounds 

(75%), aromatics (15%), ketones (4%), followed by alcohols/ aldehydes and some 

unidentified volatile organic compounds. Their relative concentrations changed when 
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nitrogen sources were added to soil, and the types of volatiles identified also varied when 

incubation conditions became more anaerobic (Wheatley et al. 1996). Yet, there is still 

very little information regarding the impact of key factors such as temperature, water 

potential, nutrients and even pesticides on soil microbial volatile production patterns.  

Similarly, a relevant study by Stahl & Parkin (1996) investigated whether soils (silty 

clay loam) populated by varied microbial communities produced different types and 

concentrations of VOCs. Adding selective nutritional substrates and inhibitors into soil 

they found that the greatest amount of VOCs was produced in soil dominated by 

actinomycetes and bacterial populations. They also found that relating the nature of the 

microbial community to soil VOC emissions is complicated and the terpenes were the 

most common volatiles which commonly produced by plant roots. 

Moreover Insam & Seewald (2010) gave many reported literatures on produced VOCs 

in soil due to microbial activities, in which mostly identified and quantified by GC/MS 

methods. Volatile organic compounds are produced in a high diversity in soils, some of 

them reflecting physiological properties or the presence of certain species. In different 

soils or under varying environmental conditions, the amounts and the type of VOCs 

produced may differ because of differences in community composition or nutrient 

availability. They stated determination of total VOC production or at least of a certain 

fraction results in VOC emission patterns (VOC fingerprints). 

Hydrogen sulfide (H2S) also allows produced by some bacterial actions upon organic 

matter with the aid of the sulfates oxygen contained as an oxidation in low oxygen level 

(like flooded soil) which depends on ambient conditions such as temperature, humidity, 

and the concentration of certain metal ions (Elion 1927; Chou et al. 2014). And, soils may 

absorb amounts of H2S from the air through atmospheric deposition, migration of 

mobilized pore water, or sulfuric material from spills and leaks, then retaining most of it 

in the form of elemental sulfur as sediment (Chou et al. 2014). H2S is also found during 

flooding and water logging of wet land soils, hydrogen sulfide (H2S) is produced as a 

metabolic end product by prokaryotes that oxidize organic compounds using sulfate as a 

terminal electron acceptor (Lamers et al. 2013). 
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2.2. Principle of E-Nose Technology 

The understanding of the process of human olfaction has led the development of e-

nose technology and increased the interest in E-nose based research (a historical research 

perspective of e-nose shown in Fig. 2.1). Firstly, a brief overview of the mechanism 

involved in the human olfaction will provide a clear concept of the principle of e-nose. 

1962 1972 1978 1982

Stereochemical 
theories of 
olfaction 
worked out 

Relationship between 
chemical structures 
of compounds and 
their olfactory 
properties established 

Structure-activity 
relationships in human 
chemoreception 
established

First commercial 
devices using 
conducting-polymer 
sensor arrays 

First development of 
a model e-nose using 
three sensors with 
broad sensitivity 

early 1990s 1990s

Food quality, environment 
and medical science 
applications investigated 
using a wide range of generic 
research-based devices 

2000 onwards

More targeted approaches for the 
design and development of e-nose 
systems for specific problems in 
medical, food quality and 
environmental applications 

 

Fig. 2.1. Historical research of development of e-nose based system (Turner & Magan 

2004). 

The human olfaction system consists of three essential elements: (a) an array of 

olfactory receptors located in the olfactory epithelium at the roof of the nasal cavity 

between the eyes; (b) the olfactory bulb based, above it; and (c) the olfactory cortex, 

portions of the cerebral cortex that receive direct projections from the olfactory bulb 

collectively (Nagle et al. 1998; Patel 2014; Schiffman & Pearce 2003). As shown in Fig. 

2.2, it begins with sniffing when odorant molecules are inhaled through the nostrils and 

enter the nasal cavity, they contact with the array of olfactory neuron, which moves air 

samples that contain molecules of odors to the thin mucus layer lining the olfactory 

epithelium in the upper portion of the nasal cavity. The odor molecules interact with the 

membrane bound receptor proteins of the olfactory receptor cells. Each neuron contains 

specialized receptor proteins bound to its cell membranes, which interact with the odorant 

molecules generating a series of nerve impulses. The number of different membrane-

bound receptor proteins is estimated to be between 100 and 1000, with overlapping 

sensitivity and selectivity (Craven et al. 1996; Nagle et al. 1998). Although each neuron 

appears to express only one type of protein, the number of neurons within the array is 

large (approximately 100 million) and therefore, it responds to a wide range of different 

odorant molecules without being specific towards any particular molecule (Craven et al. 
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1996). Hence our sense of smell is able to recognize and discriminate a wide range of 

odors with high sensitivity and accuracy, even when present at parts per trillion levels 

(Craven et al. 1996). 

Then, those electrical signals feed into the olfactory bulb where they are pre-processed 

in order to reduce noise by compressing the signals and amplifying the output, and 

simplify the neuron output, converting them into the form of a signature (Craven et al. 

1996). This enhances both the sensitivity and selectivity of the olfactory system. Finally, 

the information is sent into the brain. The brain receives a set of simplified nerve impulses 

as patterns of responses and further processes the signals to identify them as particular 

smells. This identification appears to be a learning process, with new smells to be 

recognized and remembered subconsciously in the individual memory in which the brain 

associates the collection of olfactory signals with the odor (Gibson et al. 1997).  

olfactory cortex (brain)

olfactory bulb

olfactory epithelium

mucous

turbinate bones

Olfactory nerve

 

Fig. 2.2. Section through human nose representing some components of the olfactory 

system, adapted from Nagle et al. (1998) and Patel (2014). 

The e-nose mimics the human olfaction system (see the comparison diagram between 

human olfaction and artificial olfaction in Fig. 2.3). Principally, a sampling unit delivers 

the odor molecules to a chamber where the sensor array is placed; the interaction between 

the sensors and the volatile compounds produce a change in the sensors response which 

then being interpreted by a set of pattern recognition system (PARC) which may act like 

the memory in our brain, creating a library of sensor responses (known as sensor profiles) 

(Patel 2014; Gibson et al. 1997; Nagle et al. 1998).  
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Similarly, as olfactory receptors, an e-nose employs an array of gas sensors. The 

compounds/ molecules structure (nature) of the sample are important in determining the 

sensors. This may requires sensors which non-specific and responsive to the shapes or 

structural features of the organic molecules (Gibson et al. 1997). Ideally, it would be 

helpful to define what these structural features were and select or design sensors used 

appropriately. At present, a more empirical approach is necessary, making use of 

available sensor types and attempting to modify sensor designs to meet the requirements 

of the e-nose. In general, the principle of sensing technology used to detect the molecules 

of chemicals is based on the measurement of the variation of electrical, thermal, optical, 

and mass changes of the active material due to the interaction between that and volatile 

compounds, such as Metal Oxide Semiconductors (MOS), Conducting Polymers (CP), 

Chemo-capacitors; MOS Field Effect Transistors (MOSFET), quartz Crystal 

Microbalance (QCM), surface Acoustic Wave (SAW), and SPR (Patel 2014). 

 

Fig. 2.3. Representing components mimics the functional units in human olfactory 

system (Turner & Magan 2004).    

A series of response generated by the detector array is then fed into preprocessor on 

PARC as the olfactory bulb (a structure in the brain located just above the nasal cavity). 

This stage is to reduce the noise by compressing the signals and amplifying the output. 

This enhances both the sensitivity and selectivity of the e-nose system (Craven et al. 1996). 

The PARC system may include (i) the feature extraction step (preprocessing unit), which 

extracts useful information from the sensor responses to mimic the olfactory bulb and (ii) 

classifier or identifier unit, as identification library and detection software that serve as 

the brain to process input data from the sensor array for successive data analysis (Patel 
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2014). At this stage, multivariate statistical analyses and/or artificial neural network 

(ANN) can be employed for classifying samples, based on the pattern of the overall 

response generated by the array (Turner & Magan 2004). 

 

2.3. Sample Handling and Measurement Methods  

Two things that could give significant effect on the e-nose performance are the sample 

handing (generating the sample vapor/odor) and measurement method (distributing and 

measuring the generated vapor/odor to sensor chamber). In principle the sample handling 

and the measurement method are the same. They are based on the movement of dynamism 

of vapor flow in such way inside a chamber. In implementation it may be combined in 

single sample handing and measurement method, eq. static headspace with static 

measurement. When the static system measures the odor/gas sample after the equilibrium 

is reached then it means the system is applying the static headspace in the static 

measurement at once. 

There are two main odor sampling methods: Static Headspace Analysis (SHA) and 

Flow Injection Analysis (FIA) (Craven et al. 1996). In principle, these techniques is 

similar with commonly used method in Gas Chromatography analysis, known as Static 

Headspace (SH) and dynamic Headspace (DH) technique (Kolb & Ettre 2006). And there 

are two measurement methods: the Static System (SS) and the Sample Flow System (SFS). 

The Static Headspace (Fig. 2.4) consists of two steps. First is equilibration, the sample 

(commonly in liquid form) is placed on a sealed and closed container having a gas volume 

above it, and left for a period of time so that the headspace becomes equilibrated/saturated 

with the sample. This vial is then left and termostatted/agitated concurrently (if necessary) 

at a constant temperature to boost the equilibration. Second is sample delivery, this 

headspace is then transferred into the chamber containing the sensor array. It relates the 

measurement method, whether in static system or sample flow system. The SHA is the 

more popular and low-cost method since the principle is very simple. 

On the other hand, the method of Flow Injection Analysis is usually automated and 

employs a carrier gas (e.g. clean air) constantly being pumped though the sensor chamber. 

The ratio of carrier gas and headspace volatiles can be controlled accurately. Nevertheless, 

due to dilution, the magnitude of sensor response to volatiles is much lower when 

compared against that obtained using the SHA technique (Craven et al. 1996). Because 
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the volume of the plumbing tube cannot be ignored, a technique similar to FIA is used to 

sample a few microliters of the liquid precisely. The automated system consists of a 

sample selector, a sample injector, and the measurement system. It selects the samples 

among several candidates, injects the sample liquid and measures the sensor responses 

after equilibrium. Since it takes time to measure the steady-state response due to the slow 

evaporation of the sample liquid, the automation is quite indispensable if many data need 

to be systematically measured. It seems that the mechanism of FIA is closely similar with 

the method of sample flow system (Fig. 2.6). 

(a)

TH

SC

line of mesurement

     (b) 

sample transfer 

TH

SC

line of mesurement

 

Fig. 2.4. Principles of static headspace when (a) equilibration and (b) sample delivery. 

SC=sample container, TH=termostatting, adapted from Nakamoto (2003). 

As comparator, the DH method in Gas Chromatography, known as Purge and Trap 

method (Fig. 2.5), employs an absorbent agent to trap and contain the gases/volatiles 

resulted from absorption which then thermally desorbed and transferred to sensors. 

Thermal desorption from such a tube is the critical step, especially if combined with 

capillary columns for GC separation. There are three problems here: (a) the water 

existence, due to a lot of water also trapped vapor during adsorption, particularly from an 

aqueous sample; (b) time elapsed, due to the slow desorption; and (c) the flow problem, 

due to gas flow during desorption, which needed high purge flow to be used directly as 

carrier gas for capillary columns (Nakamoto 2003). 

Moreover, the chamber of headspace has to be made of material with small adsorption 

coefficient to avoid gas reduction onto the internal wall. The whole chamber can be 

immersed in a temperature-controlled bath, thus the headspace can be kept at the same 

temperature and equilibrium relative humidity. 

In the measurement method of static system (Fig. 2.6), there is no vapor flow around 

the sensor, and measurements are usually made on the steady-state responses of the 

sensors exposed to vapor at a fixed concentration and at a constant temperature.. The 

small volume of sample (gas or liquid) is injected into a chamber having a volume of 



16 

 

capacity, and is evaporated. Manual injection of the sample liquid by the syringe is the 

basic method, however it is possible to automate this procedure. While the sample flow 

system, also called dynamic chamber measurement (Barnes et al. 2006; Breuninger et al. 

2012; Pape et al. 2008), the sensors are placed in the vapor flow, which allows the rapid 

exchange of vapor and hence many samples can be measured within a short time. The 

static system and sample flow system are closed units (Nakamoto 2003). Mostly the 

sample flow system measures the liquid sample. 

purging gas

carrier gas

Heater OFF

Heater ON

to sensors

(a)
(b)

sparging 
vessel

adsorption trap

 

Fig. 2.5. Principle of Purge and Trap method in GC, (a) the adsorption of volatiles from 

the sample and (b) the desorption from the adsorption by back-flushing of the heated 

trapped volatiles, adapted from Nakamoto (2003).  

 

Measurement 
unit

Sensors

evaporation

Sample injected 

(gas/liquid)

Temperature-controlled bath
 

sensors

carrier gas

liquid sample

valves

inlet outlet

headspace
rubber

 

 (a) (b) 

Fig. 2.6. Principle of (a) the static system and (b) the sampling of sample flow system, 

adapted from Nakamoto (2003). 
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2.4. MOS Gas Sensors Technology for E-Nose 

A MOS (Metal Oxide Semiconductor) gas sensor, which categorized as a chemo-

resistive sensor, basically is formed from tin dioxide which sintered at high temperature 

to be transformed into a semiconductor. Hence, the material is very porous so that gases 

can easily pass through (Barsan et al. 2007). It works based on change of the resistance 

of a thin film upon adsorption of the gas molecules on the surface of a semiconductor. An 

its advance development leads manufacture of small size, simple, and compact MOS with 

various sensitivity (Wilson & Baietto 2009; Berna 2010). It is known as the simplest of 

gas sensors, and are widely used to make arrays for odor measurements (Nanto & Stetter 

2003; Wilson & Baietto 2009). And, the MOS gas sensor is classified according to the 

conductance condition due to presence of gas, as n-type (conductance increases, e.g., 

SnO2, ZnO, and In2O3) or p-type conductance decreases, e.g., Cr2O3 and CuO. This 

classification is related to the (surface) conductivity type of the oxides, which is 

determined by the nature of the dominant charge carriers at the surface, that is, electrons 

or holes.  

In general the working principle is that in air at high temperatures between 150℃ and 

400℃ typically, oxygen is adsorbed on the surface of the metal oxides by trapping 

electrons from the bulk with the overall effect of increasing the resistance of the sensor 

(for n -type materials), or decreasing it (for p -type materials) (Nanto & Stetter 2003; 

Barsan et al. 2007).  

The n-type semiconductors, especially SnO2, are more suited and widely utilized as 

sensitive layer than p-type. There are two significant intrinsic properties of semiconductor 

that could be considered for base substrate in MOS gas sensor construction. They are the 

speed mobility of carrier (electrons/holes) and the chemical and thermal stability under 

operating conductions. The carrier mobility determines a proportionality constant of the 

change of the conductivity when a number of carriers changes due to gas–solid 

interactions. By having a high mobility of electron (160 cm2/V.s) and the most stable 

chemical and thermal stability oxide among the n-type oxides lead to SnO2 being so 

important as a base semiconductor for gas sensors (Yamazoe et al. 2003). While on the 

opposite, the mobility of positive holes (p-type oxide) is usually much less (e.g. TiO2 has 

only 0.4 cm2/V.s), thus TiO2 is not preferable be employed to gas sensor, but instead as a 
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sensitive material for automotive air/fuel ratio sensors (Yamazoe et al. 2003). 

The element of MOS gas sensor typically comprises of 5 main units as shown in Fig. 

2.7, i.e. a Sensitive layer deposited over a Substrate provided with Electrodes in particular 

configuration for the measurement of the electrical characteristics. The device is generally 

heated by its own Heater; this one is separated from the sensing layer and the electrodes 

by an Electrical insulating layer (Barsan et al. 2007; Patel 2014). And, there are two basic 

configuration to construct MOS gas sensor (Fig. 2.8) that are commercially available 

(Yamazoe et al. 2003; Nanto & Stetter 2003). 

sensitive layer

substrate

isolated 
heating element

electrodes

resistance
 

Fig. 2.7. Basic elements of MOS gas sensor, adapted from Patel (2014). 

electrodes
substrate

sensitive 
layer

sensitive layer

electrodes

substrateheater

 
 (a) (b)  

Fig. 2.8. The basic construction of (a) the sintering-type and (b) thin-film type of the 

MOS gas sensors, adapted from Yamazoe et al. (2003). 

The most widely used semiconducting material as a gas sensor is SnO2 doped with 

small amounts of impurities and catalytic metal additives. By changing the choice of 

impurity and catalyst (known as sensitizer) and operating conditions such as temperature, 

many types of gas sensors using SnO2 have been developed. The gas selectivity depends 

on the kind and amount of catalyst. The type and amount of catalytic additives and 

concentration ranges of gas sensors using MOSs, have been reported by Yamazoe et al. 



19 

 

(2003), are listed in Table 2.1. However, mostly the MOS gas sensors provide relatively 

poor selectivity for gases and also behave responsive to other kinds of combustible gases. 

Table 2.1. Doped additive materials in semiconductor oxide-based gas sensors  

(Yamazoe et al. 2003)  

Base Oxide Additives Sensitizer Target Concentration range 

SnO2 Ag (3 wt%) 

 

H2, C3H8 100–5000 ppm 

WO3 Pd (0.3–1 wt%) NO2 10–800 ppm 

 

WO3 Au (0.8 wt%) 

Pt (0.4 wt%) 

NH3 0.5–50 ppm 

0.5–50 ppm 

TiO2 Ru (0.5 wt%) (CH3)3N 300 ppm 

WO3 Rh (0.4 wt%) 

 

2–100 ppm 

WO3 Ru (0.004 wt%) NO 10–200 ppm 

SnO2 ZnO (3 at%) H2S, CH3SH 10 ppb–10 ppm 

SnO2 CuO (5 wt%) H2S 1–50 ppm 

SnO2 La2O3 (5 wt%) C2H5OH 100–1000 ppm 

SnO2 S (1 at%)+(Pd 1 wt%) CH2FCF3 (R-134a) 5–3000 ppm 

In2O3 CeO2 (3 at%) 

Fe2O3 (3 at%) 

O3 0.05–5 ppm 

0.008–10 ppm 

Pd–SnO2–Sb SiO2 coating H2 100 ppm 

SnO2 0.5Pt–Al2O3 coating C3H8 5000 ppm 

In2O3 Rb2CO3 (5 wt%) CO 200–4000 ppm 

In2O3 Au (0.04 wt%)–Co3O4 

(0.5 wt%) 

CO 200–2000 ppm 

Fe2O3 Pr6O11 (5 wt%) CH3SSCH3 5–50 ppm 

ZnO MoO3 (5 wt%) CH3COCH3 

WO3 (5 wt%) 

2–50 ppm 

ZnO Er2O3 (5 wt%) C5H11CHO 

Gd2O3 (5 wt%) 

1–20 ppm 

Bi2O3–MoO3 Bi/Mo=1.0 C3H6 20–8000 ppm 

The mechanism of MOS gas sensor could be understood by phenomenological and 

spectroscopic techniques, and the ionosorption is widely accepted mechanism approach 

in phenomenological technique (Barsan et al. 2007). It is agreed that the key agent in the 

mechanism of the semiconductor to response a reducing gas involves the concentration 

of adsorbed oxygen species such as O2
−,  O2−, and O−  (Barsan et al. 2007; Puzzovio 

2008). They depend on the working temperature (described on Eq. 2.1), i.e. in molecular 

form (O2
−) at below 150℃ and atomic ( O2−, and O−) ions which more dominant at above 

150℃, and O− is reckoned as the most reactive species when presence of reducing gases 
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while the O2− is disregarded since such a high charge on the ion can give instability 

(Barsan et al. 2007; Puzzovio 2008).  

The model of ionosorption process, adopted from Barsan et al.,(2007) amd Puzzovio 

(2008), 

𝛽

2
O2(𝑔𝑎𝑠) + αe−(𝑠𝑟𝑓)  Oβ

−𝛼(𝑠𝑟𝑓), as general equation Eq. 2.1 

when operates in low temperature, O2(𝑔𝑎𝑠) + e−(𝑠𝑟𝑓)  O2
−(𝑎𝑑𝑠) Eq. 2.2 

when operates in high temperature, 
1

2
O2(𝑔𝑎𝑠) + e−(𝑠𝑟𝑓)  O−(𝑎𝑑𝑠), or Eq. 2.3 

O2(𝑔𝑎𝑠) + 2e−(𝑠𝑟𝑓)  2O−(𝑎𝑑𝑠), or 

O2
−(𝑎𝑑𝑠) + e−(𝑠𝑟𝑓) O2

2−(𝑎𝑑𝑠) 2O−(𝑎𝑑𝑠) 
Eq. 2.4 

And the model for a semiconductor gas sensor responses to composition of the gaseous 

mixture on high operating temperature is shown in Eq. 2.5 to 2.7 as reported by Nakata, 

Hashimoto, & Okunishi (2002) and Nakata et al. (2006).  

𝑆 + αe−(𝑠𝑟𝑓) + 1/2O2(𝑔𝑎𝑠) +   Oα−(𝑎𝑑𝑠), Eq. 2.5 

Oα−(𝑎𝑑𝑠) + 𝑔𝑥 →  𝑔𝑥Oα−(𝑎𝑑𝑠), Eq. 2.6 

𝑔𝑥Oα−(𝑎𝑑𝑠) → 𝑔𝑥𝑂 + αe−(𝑠𝑟𝑓) + 𝑆 Eq. 2.7 

where, where S defines a surface adsorption site, e− is a free electron, (,=1 or 2) is an 

ion absorbed oxygen, O(sub) is an oxygen gas atom activated by sensor heating, gx is a 

sample gas x in the bulk phase or, gx Oad
m− is gx adsorbed on the oxidized sensor surface. 

The schema of the ionosorption also could be depicted in structural and band model as 

shown in Fig. 2.9, exemplified with reducing gas CO. The presence of adsorbed oxygen 

ions leads to a band bending and the formation of a depletion layer (called space-charge 

layer) at the surface of tin oxide and to a high resistance. On the other words, by 

withdrawing the electron from the semiconductor surface, adsorbed oxygen gives rise up 

Schottky potential barriers at grain boundaries, and thus reduce the conductance of the 

sensor surface. When gas sensors exposure to CO, CO is oxidized by O– and released 

electrons to the bulk materials. Together with the decrease of the number of surface O–, 

the thickness of space-charge layer decreases (denoted by Λair). Thus, the Schottky 

potential barrier (denoted by eVsurface) between two grains is lowered and it would be 

easy for electrons to conduct in sensing layers through different grains. The temperature 
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dependence of this process arises in part from the differing stabilities of the surface 

oxygen species over different temperature ranges. 

 (I) 

 (II) 

Fig. 2.9. (I) Schematic depiction of ionosorption in structural and band model for 

atmospheric O2 interaction and CO gas sensing by SnO2 where (a) with or (b) without 

CO existence (Wang et al. 2010), while (II) is the simplified model (Puzzovio 2008). 

 

2.5. Pattern Recognition Tools in E-Nose (PARC) 

Electronic nose employs a suitable and powerful kind of multivariate data analysis as 

pattern recognition to meet goal in determining the classification of the samples. It may 

function as data reduction, pattern classification, or clustering. Fig. 2.10 shows a 

summary of the available methods for the analysis of e-nose data, where MDS stand for 

(Multidimensional scaling), PCA (principal components analysis), SOM (self organizing 

maps), ICA (independent component analysis), CA (Cluster analysis), LDA (linear 

discriminate analysis), PLS (partial least squares), FSS (feature subset selection), PCR 

(principal component regression), MLR (multiple linear regression), CCR (canonical 

correlation regression), MLP (multilayer perception), RBF (radial basis function), PNN 

(probabilistic neural network), K-NN (K nearest neighbors), SVM (support vector 
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machines), ART (adaptive resonance theory), GA (genetic algorithm), HC (hierarchical 

clustering). In this project, the classification methods used were Principal Components 

Analysis (PCA) as preprocessing unit to display pattern of sensors responses and obtain 

more significant data in new little dimension, and Multi-Layer Perceptron Neural 

Network (MLPNN) as a supervised classifier. 

Multivariate Analysis

Dimensional reduction Classifiers Clustering

Neural Sets OthersUnsupervised Supervised Regression
- K-means

- HC

- SOM

- K-NN

- SVM

- ART

- GA

- FUZZY

- MLP

- RBF

- PNN

- PCR

- MLR

- CCR

- LDA

- PLS

- FSS

- MDS

- PCA

- SOM

- ICA

- CA

 

Fig. 2.10. Scheme of classification of multivariate analysis used in e-nose application 

(Patel 2014). 

The PCA is a linear unsupervised method that has been widely used by various 

researchers to display the response of an EN to simple and complex odors. The PCA able 

to make a new projection of large dimension into few important Principal Components 

(PCs) which projects a dataset to a new coordinate system by determining the 

eigenvectors and eigenvalues of a matrix. It involves a calculation of a covariance matrix 

of a dataset to minimize the redundancy and maximize the variance (Hines et al. 2003; 

Patel 2014). The first two or three uncorrelated PCs normally hold most significant of 

variation present (over 90%) in all variables (Shurmer & Gardner 1992; Gardner 1991; 

Gardner et al. 2000). PCA is in the core a dimensionality reduction method for correlated 

data, such that a two-or three-dimensional plot able to represent an n-dimensional data. 

In the same degree order, each eigenvector associated with its eigenvalue determines the 

direction of its principle component (Hines et al. 2003), which means the eigenvector 

associated with the largest eigenvalue leads the direction of the first PC and the 

eigenvector associated with the second largest eigenvalue determines the second PC’s. 

Artificial Neural Network, mimics the cognitive processes of the human brain, 
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contains interconnected data processing algorithms that work in parallel and becomes the 

well-known and most evolved PARC includes for commercial software packages of 

electronic noses (Jamal et al. 2010). Recently, NNs have been widely used in wide 

application for odor recognition by using various NN algorithms paradigm and many 

evidences given by researchers that the three-layered networks have adopted this 

topology for implementing MLPs and provide sufficient computational degrees to solve 

any problem of classification (Hines et al. 2003; Jamal et al. 2010). 

In a network, the architecture elements, known as Multi-Layer Perceptron (MLP), are 

organized in a regular form of three distinct groups of neurons: input, hidden, and output 

layers with 2 weight layers relate between input to hidden layer and hidden to output layer 

as shown in Fig. 2.11. MLP, as a three-layered feedforward Back-Propagation (BP) 

trained network, is the most popular architecture of neurons in classification to be applied 

to e-nose (Hines et al. 2003). The performances of the BP and BP with momentum 

algorithms in descending the weight space are highly dependent upon a suitable selection 

for learning rate and momentum factor (Fig. 2.12). They are generally adapted in each 

learning step (epoch) using global learning parameters. And among other accelerating 

methods for updating weight and biases, the search-then-converge-schedule (Eq. 2.8) is 

the most simple and popular method for adapting and accelerating the learning. Typically 

learning rate () starts with a large value and gradually decreases it as the learning 

proceeds (t) that similar with simulated annealing. The constant of search time (T) of this 

schedule is a new free parameter that determined by trial and error. 

β(t) =
β(0)

(1 + t T⁄ )
 Eq. 2.8 

. 

(a)(b)

(c)

 

Fig. 2.11. Descent in weight space for (a) small learning rate, (b) large learning rate, and 

(c) large learning rate with momentum (Du & Swamy 2014). 

 



24 

 

X2

X1

Xi

Z2

Z1

Zj

Y2

Y1

Yk

V11 W11

V12

Vi1

Vi2

Vij

W12

W1k

W21

W22

W2k

Wj1

Wj2

Wjk

Input Layer (i) Hidden Layer (j) Output Layer (k)

V1j

V21

V22

V2j

 

Fig. 2.12. The architecture of neural network with single hidden layer, adopted from Du 

& Swamy (2014). 
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Chapter 3. Temperature Modulation with Specified 

Detection Point on Array MOS Gas Sensors 

   

3.1. Introduction 

Temperature modulation through oscillation of heater voltage on Metal-Oxide 

Semiconductor (MOS) gas sensor, also called dynamic measurement (Liu et al. 2007; Sun 

et al. 2004), has become most potential and established technique to be applied on MOS 

gas sensors than static temperature since it provides more information from a single 

sensor than static measurement (Sun et al. 2004). It also means that cyclic variation of 

temperature gives a unique signature for each gas, differ type of modulation showed a 

slight difference signal response and amplitude (Huang et al. 2004; Ortega et al. 2001). 

Temperature modulation alters the kinetic of the sensor through changes in the operational 

temperature of device through applying modulated voltage on heater unit of MOS gas 

sensor. The operating modulation voltage, also consequently the operating temperature, 

of the sensor changes periodically either by square (rectangular) or triangular or sine 

waveform (Huang et al. 2004). 

By using rectangular waveform, Dutta & Bhuyan (2012) has determined the optimal 

frequency applied for each sensor using theory of system identification based on best fit 

transfer function, pole-zero plot and the overshoot percentage. And, It is also reported the 

use of rectangular modulation to detect and distinguish the presence of two pesticide gases, 

a binary gas mixture (acephate and trichlorphon), in the ambient atmosphere (Huang et 

al. 2003). 

This section presents an improved technique of temperature modulation on MOS gas 

sensor as an alternative attempt to increase selectivity and sensitivity as well, particularly 

for e-nose application. The technique implements rectangular heating Temperature 

Modulation with Specified Detection Point (Temperature Modulation-SDP). The 

principle is similar with general temperature modulation (Fig. 3.1.B), yet besides a 

modulation on Heater Unit (VH), it also modulates the Sensing Unit (VC) concurrently 

and in same phase with VH (Fig. 3.1.C). The SDP means detection (acquiring) of MOS 

gas sensor output is put at specified point which associated to its temperature modulation 

on its heater. In this study, a rectangular temperature modulation-SDP is generated and 
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configured using Timer block in PSoC (Programmable System on Chip) CY8C28445-

24PVXI. A single switching circuit is employed to drive either single or multi (array) 

sensors with similar type and characteristic. This technique allows to get the advantages 

of temperature modulation by only acquiring the change of resistance value (not the whole 

response). It suits to be implemented in a single chip (like a hybrid device, PSoC) by 

concomitantly generating modulation signal and acquiring the output at a constant point 

as well inside the chip. Generally it has a low rate of data transfer when used to acquire 

multi sensors and send them to outer device (computer), depended on time consuming of 

sequential process on multiplexing and digital conversion. It is also easy to construct the 

modulation since availability of required blocks to meet the desired modulation. 

A.
( - )

RH RS

Static 
VC

Vo

R1

Static 
VH

     B.

RH RS

R1

( - )

- rectangular

- sinusoidal

- triangular, etc
Vo

Static 
VC

Modulated 
VH

 

C.

RH RS

R1

( - )

Specified detection 
point on Vo

Modulated 
VC

Modulated 
VH

 

Fig. 3.1. Schematic-based comparison of typical working mode of MOS gas sensor: A. 

static temperature modulation, B. temperature modulation, and C. temperature 

modulation with specified detection point, where VH=voltage of heater, VC=voltage of 

sensing element, and Vo=voltage of output. 

 

3.2. Design of Rectangular Temperature Modulation-SDP. 

The temperature modulation-SDP design is based on required modulation which 
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applied on TGS 2444. As shown in Fig. 3.2.(a), TGS-2444 requires application of a 250 

ms heating cycle (SVH) which comprised by 4.8 volt (high state) applied to the heater for 

the first 14 ms, then followed by 0 (low state) volt pulse for the remaining 236 ms. The 

SVC cycle consists of low state applied for 2 ms at first, then by high state for 5ms and 

followed by low state for remaining 243 ms. For achieving optimal sensing, detection is 

measured after the center of SVH pulse (Figaro Engineering Inc. 2011). 

In my design (Fig. 3.2.(b)), compared with TGS-2444 detection time, on signal 

detection (SVC), an additional time after detection point is put so that detection point is in 

center of SVC to ensure the acquisition system (PSOC based) have adequate time to 

acquire the sensor amplitude. The SVC is positioned on midpoint 75% of "on/high" state 

of temperature modulation (SVH) whereas the detection point is laid on center of SVC pulse. 

Detection Point

SVH

SVC

250 ms

14 ms

5 ms

7 ms

  

Detection Point

75% Middle  of 

SVH duty cycle 

SVH

SVC

 

 (a) (b) 

Fig. 3.2. The signal of (a) required modulation of TGS 2444 and (b) the designed 

temperature modulation-SDP. 

Common temperature modulation-SDP (Fig. 3.3) is constructed that can be applied on 

array MOS gas sensor which has similar type and characteristic which employs the FET 

(Field Effect Transistor)-based switching circuit. It modulates and drives the array of TGS 

Sensors (manufactured by Figaro Engineering Inc.) and FIS sensors (manufactured by 

FIS Inc.) respectively since there is slight difference pin configuration on them. Both 

TGSs and FISs are configured in voltage divider as standard method for measuring 

resistance changes (Gutierrez-Osuna et al. 2003). 

I configured the rectangular modulation signal for MOS gas sensors (TGSs and FISs) 

using PSOC CY8C28445-24PVXI (Programmable System on Chip). The PSoC is also 

configured to acquire array sensors and transmit data to computer wirelessly as well by 

employing Timer (signal to get data), Multiplexer, ADCs, and UART blocks. I employed 

internal main oscillator (IMO) in PSoC CY8C28445-24PVXI which is set at 5V/24 MHz 

(Vcc/SysClk) to supply 12 MHz for CPU clock. Clock signal of IMO contains the jitter 
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around 200-300ps (Cypress 2010). However, in this research the timing error of detection 

point is negligible. 
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 (a) (b) 

Fig. 3.3. Schematic of temperature modulation-SDP for array (a) TGS sensor and (b) 

FIS sensor with VH is heater voltage, VC is sensing circuit voltage, SVH is modulation 

signal for VH, and SVC is modulation signal for VC. 

 

3.3. Experimental Design. 

I tested 6 commercial MOS gas sensors (TGS-2444, TGS-2602, TGS-825, FIS-12A, 

FIS-30SB, and FIS-AQ1) and used 3 environment sensors (KE-25, LM35 and HSM30G). 

The diagram of PSOC-based system is shown in Fig. 3.4. The acquisition system 

transmits all data wirelessly through Radio Frequency using XBee serial communication 

(IEEE 802.15.4) Digi International Inc. I designed two temperature modulation-SDP 

timing generators by Timer8 block to provide fixed modulation and adjustable 

modulation that is set from acquisition software in Personal Computer (PC). Fixed 

modulation is only for TGS-2444 which recommended on is 4 Hz 5.6% of the temperature 

modulation (Figaro Engineering Inc. 2011), while adjustable modulation is provided for 

modulation on array of TGSs and FISs except TGS-2444. 

Measurement and setting were adjusted and monitored automatically through 

developed software which built using Visual Studio VB Net 2012 that expanded from our 

previous work (Sudarmaji et al. 2013). It is functioned to monitor the initial conditioning 

of chamber oxygen level, to set the modulation signal, and to acquire output of all sensors. 
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The dynamic chamber measurement of system is shown in Fig. 3.5. The arrow represents 

the gas pipes and direction of flow. For analyte gas, the flow is helped by small air pump. 
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Fig. 3.4. Diagram block of system based on PSOC CY8C28445-24PVXI with pins 

configuration. 
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Fig. 3.5. Diagram of sample flow system (dynamic chamber) measurement to measure 3 

various liquids (ammonia, ethanol, and toluene). 

Initially, all MOS gas sensors are inactive (the voltage of heater and sensing element 

are on off mode). Then, oxygen concentration in chamber is measured and increased the 

concentration when under 21% by flowing oxygen into chamber constantly up to 

minimum recommended level of 21% (Figaro Engineering Inc. 2005). Both flow 

controller (Kofloc RK200/RK400) are tuned on rate of 0.4 liter per minute (0.67 cm3/s). 
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After that, the gas sensors are activated and driven by certain modulation that chosen the 

frequency and duty cycle which set from PC. Then, the pump is turned on and waits the 

initial conditioning time of MOS sensors for 2 minutes plus certain steady time (15 or 30 

minutes) for selectivity performance analysis. Next step is measuring the baseline for 1 

minute, continued with injecting the analyte solution, and then measuring the analyte gas 

for 6 minutes. The hypodermic (Bolo-silicate hard glass) syringe 1 ml was used to inject 

the volume of solution.  

Finally, the purging chamber is done for 10 minutes using two fans on cover of sensor 

and solution chamber. The (acquisition) software is connected to Microsoft Excel to store 

and process data, such as: (a) create file, read and write data, (b) create and show graph, 

and (c) determine average value of each sensor for each measurement mode (baseline and 

analyte sample measurement). The acquisition software creates automatically 2 

worksheets to store 2 mode measurement at once cycle measurement. 

I observed on 3 frequencies (0.25 Hz, 1 Hz, and 4 Hz) with 3 duty cycles (25%, 50%, 

and 75%) of temperature modulation-SDP and no modulation as comparator. No 

modulation means MOSs were driven using traditional technique, a static temperature. I 

therefore observed 10 modulations. Initial response and selectivity evaluation of array 

sensor was performed and visualized using statistical tool and Principal Component 

Analysis (PCA) to distinguish 3 analyte gases (Ammonia, Ethanol, and Toluene). The 

analyte concentration (in gas phase) was prepared in 5000 ppm that resulted from 1 ml 

injection of prepared solution.  

The method of preparing accurate analyte in gas phase for volatile solution in air is 

described and applied by Chutia & Bhuyan (2012) and Uyanik & Tinkiliç (1999). By 

using Eq. 3.1, the necessary amount of analyte liquid in distilled water is calculated as 

prepared solution for once measurement. The liquid was then injected 1 ml of it into 

solution container to produce that gas concentration in total volume including (11x8x6) 

cm sensor chamber (528 ml), gas sample chamber (1800 ml), and piping (24 ml). As an 

example, It is calculated to be 0.344 ml of 99.5% liquid ethanol (molecular weight 46.07 

g/mol and density 0.79 g/ml) added to 12 ml distilled water at laboratory pressure (1 atm) 

and temperature (293 oK) to produce 5000 ppm ethanol gas in volume 2352 ml. Table 1 

shows the properties of analyte liquid used and calculation result of prepared solution. 

MOS gas sensors are presented by its resistance (Rs) and sensitivity as defined Eq. 3.2 
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(Huang et al. 2003). The sensitivity is just the opposite of the relative based equation of 

baseline manipulation technique which able to eliminate the effect of multiplicative drift 

and provide a dimensionless response (Gutierrez-Osuna et al. 2003). 

vS =
MA.  Cppm .  P .  V

CAW .  D .  R .  T
 . vP . 10−6 Eq. 3.1 

where Cppm denotes analyte gas concentration, MA is molecular weight (g/mol), P is 

laboratory pressure (atm) which assumed = 1 atm, V is volume of total chamber (m3 or 

uL), R is ideal gas constant (L atm/mol/ oK), T is laboratory temperature (oK), CAW is 

Catalyst Altered Water (liquid concentration in %), D is solution density (g/ml), vP is 

volume of prepared solution = 12 ml, and vS is volume of solution (ml). 

S =
R0

Rg
 Eq. 3.2 

where S defines sensitivity, R0 is sensor resistance of air and Rg is sensor resistance of 

analyte gas exposure. 

Table 3.1. Properties of analyte liquids and their calculated portion in prepared solution. 

Analyte Liquid Density 

(g/ml) 

Mol. weight 

(g/mol) 

CAW 

(%) 

vs
*) 

(ml) 

Toluene C6H5CH3 0.87 92.14 99 0.628 

Ethanol C2H5OH 0.79 46.07 99.5 0.344 

Ammonia NH3 0.90 17.03 28 0.397 
*) in 12 ml prepared distilled-water 

 

3.4. Results and Discussion. 

3.4.1. The Modulation and Sensor Response under Modulation. 

All modulations applied on MOS gas sensor have been checked with oscilloscope 

Tektronix TDS 2024B (exemplified in Fig. 3.6) and they met the desired modulation as 

shown in Fig. 3.2(b). However, Fig. 3.6 only shows responses of three modulations, 

although ten modulations were generated and observed in the measurement in order to 

avoid cluttering in the graph. The measured frequency of VOH was 0.2510 Hz and high 

state of VOC is laid in middle 75% of high of VOH. The acquiring of all MOS (in array) 

begins at middle of VOH and takes 0.08s to complete it. The high state of VOH of TGS and 

FIS were measured about 4.98 and 0.95 volt respectively and the VOC of both TGS and 

FIS were 4.98 volt. 
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25% 50% 75%

FIS

TGS

 

Fig. 3.6. Captured signal on MOS gas sensors under applied modulation of 0.25 Hz with 

duty cycle 25%, 50% and 75%, where: VOH (top)= 2V/div of FIS; VOH (top)= 2V/div of 

TGS; VOC (middle) =5V/div; Time of detection Point (below) =5V/div; Time-Div= 1s. 

Fig. 3.7 shows MOS gas sensor's original responses (amplitude (v) vs. time (s)), which 

taken and compiled from digital output of the oscilloscope, to observe gases under each 

rectangular modulation. The oscilloscope probes were pointed directly at pin of MOS's 

sensing elements. In Fig. 3.7(a), it seen that TGS2444 works on 4Hz modulation and 

responses sensitively to only ammonia gas since give similar response when sensed the 

air, ethanol gas, or toluene gas, but ammonia gas. As typical work of MOS gas sensor, 

the presence of ammonia gas leads the sensing layer's resistance of TGS2444 decreases 

depending on its concentration in the air. 

Then, shown in Fig. 3.7(b)-(d), the responses of five sensors (TGS2602, TGS825, 

FISAQ1, FISSB30 and FIS12A) appear to differ in amplitude due to different types of 

gases and to differ in pattern caused the applied modulation on the sensors which serves 

as a signature of concerned gas. Temperature modulation leads to the generate response 

patterns, which may be characteristic of the species being detected. The figures show that 

even though the captured response was only at high state of modulated sensing element 

circuit as resulted from modulated heater, it remains provided significant characteristic 

feature to distinguish among ammonia, toluene, ethanol and clean air (no gas). 

An important information of TGS2444 published by Figaro (manufacturer of TGS 

series) which contributes to performance of MOS gas sensors is application of modulated 

voltage of sensing element (VOC). Applying the VOC, which is in phase with the 

modulation of VH, may lead to prevent sensor from possible migration of heater materials 

into the sensing material which could causes long term drift of sensing material's 

resistance to higher values. It means that a pulsed-VC giving less force to drive migration 
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than a constant VC, rendering negligible possibility of migration, particularly under high 

humidity and temperature operation (Figaro Engineering Inc. 2011). 

  
(a)            (b) 

  

(c)  (d) 

Fig. 3.7. Response of (a) TGS 2444, and the others (TGS2602, TGS830, FISAQ1, 

FISSB30 and FIS12A) operated on (b) modulation 0.25 Hz, (c) modulation 1 Hz, and 

(d) modulation 4 Hz to air (no gas), ammonia, ethanol, and toluene gas. 

It also seen in Fig. 3.7 (b)-(d) that as the lower frequency, the response waveform of 

the sensors becomes more sloping and distinct, notably the FISs. It is apparent that all 

MOS gas sensors, both TGSs and FISs, are more selective to differ gases at lower 

frequency. It is because sensor operates near (to meet) a quasi-isothermal behavior at 

multiple temperatures and, therefore, existing the equilibrium condition between 

adsorbed oxygen and volatile chemical compound of analyte gas (Chutia & Bhuyan 2014). 

Contrarily, at higher frequency sensor behaves non isothermal operation, therefore the 

information content is no longer in the shape of the dynamic signal but rather closely in 
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static (DC offset) mode, especially on TGS-825 and TGS-2602. 

Primarily, the work of modulated temperature is supposed to alter the kinetics of both 

adsorption and reaction process at the surface of sensor while detecting reducing or 

oxidizing species in the presence of atmospheric oxygen. The well-known and accepted 

mechanism itself so-called ionosorption model. As described in Puzzovio (2008). The 

interaction between the surface of MOS and atmospheric oxygen causes the oxygen 

adsorption in form species of molecular (O2
−) and atomic (O− and O2−) ions, where the 

atomic ions are more dominant at above 150 oC, and O− is reckoned as the most reactive 

species when presence of reducing gases. The reactions of oxygen adsorption can be 

described by as Eq. 2.1 to Eq. 2.4.  

In case of n-type semiconductor, e.g. SnO2, the chemisorbed oxygen, which mainly as 

O−, binds off electronic carriers and leads to the formation of a depletion layer at the 

surface. The electrons are drawn from ionized donors via the conduction band, so the 

charge carrier density at the interface between the oxidized layer and semiconductor is 

reduced and a (Schottky) potential barrier is created at grain boundaries. When the surface 

charge increases, the adsorption of further oxygen is hindered. The adsorption rate slows 

down because the charge is transferred to the adsorbate over that surface barrier, and the 

coverage saturates at a rather low value. At the junctions between the grains, the depletion 

layer and associated potential barrier cause high resistance contacts. Any presence of 

reducing gases will release the chemisorbed oxygen, lessen the surface oxygen 

concentration, and thus decrease the resistance.  

As seen in Fig. 3.7, I perceive that MOS responses under a rectangular modulation 

mode were correlated to the different reaction kinetics of the interacting gases at its 

surface. In this way the reaction with the reducing and oxidizing gases was dramatically 

influenced, e.g. at higher temperatures (high voltage of VS) the response to gases such as 

ammonia, ethanol, and toluene exhibited their characteristic wave shape due to the 

reaction with certain oxygen species. The equations of Schottky barrier potential and 

Arrhenius in Nakata & Kashima (2010) show that conductance of semiconductor and rate 

constants respectively are depended on temperature, where the temperature of gas sensor 

surface is controlled by varying the voltage applied to its heater (Lee & Reedy 1999).  
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3.4.2. Environmental Circumstances and Initial Response. 

KE-25, LM35DZ, and HSM20G was used to measure oxygen level in chamber, 

ambient temperature, and temperature and humidity in chamber respectively. The 

working ambient temperature during experiments was at 18 to 22℃ and the oxygen 

concentration in the chamber was kept constant at round 21.8% (not changed by operation 

of sensors, as shown in Fig. 3.8). As assumed, it is also seen clearly that higher frequency 

and duty cycle of applied modulation in 30 minutes operation lead the increment of 

temperature significantly and humidity inside the chamber.  

 

Fig. 3.8. Change of chamber environment (temperature, relative humidity, and oxygen 

concentration) after 30 minutes initial action. 

The presence of minimum required ambient oxygen is essential to the sensor’s 

operation which mean oxygen plays an important complementary role to reducing gases 

and its concentration effected to detection of combustible or reducing gas which mediated 

by reaction with adsorbed oxygen on the sensor surface (Clifford & D.T. Tuma 1982). 

The behavior of steady-state conductance of MOS with temperature is greatly influenced 

by ambient oxygen concentration (Clifford & D T Tuma 1982) and the reduced oxygen 

pressure will lead the decrement of the sensor’s resistance . Moreover, they also reported 

that the dynamic response of metal oxide gas sensor shows complex kinetics 

characterized by time constants which range, depends on ambient conditions. The long-

term drift of the TGS resistance resulted from the diffusion of a native non-stoichiometric 

defect, an oxygen vacancy, evoked by changes in temperature or ambient oxygen pressure. 

I tested initial action for 30 minutes on each temperature modulation with specified 

detection point by flowing natural air on measurement system. At a minute of initial 
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action, the resistance of TGSs was very high, i.e. 90 k of TGS 2602 and 130 k of TGS 

825, then in second afterward dropped sharply which then toward its steady value in about 

10 seconds. Other side, typically FISs have same responses. Yet, they have lower initial 

resistance, i.e. 20 k of AQ1, 2.6 k of SB30 and 25 k of 12A, then gradually dropped 

in longer time (about 30 seconds) toward their steady value in first minute. 

However, after a minute, as shown in Fig. 3.9, the steady state of both TGSs and FISs 

were slightly and gradually changed (mostly increased but FISAQ1 on all modulations 

with duty cycle of 25% were decreased) along with elapsed time during 30 minutes. 

Therefore, the baseline resistance was different to each temperature modulation. I found 

that higher frequency and duty cycle resulted in higher base-resistance. These increasing 

phenomena are potentially caused by heater temperature operation on MOS gas sensor 

and cumulative rising temperature in chamber. Typical curve of working heater 

temperature vs. resistance is shown in Fig. 3.10 where the responses increase and reach 

their maximums at a certain temperature, and then decreased rapidly with increasing the 

temperature (Malyshev & Pislyakov 2008). It is assumed that gas sensors with different 

compositions have similar shapes. 

By using Eq. 3.3 in Zakrzewski et al. (2003) to determine working heater temperature 

from running voltage on heater and by calculating the effective voltage (Veff, depend on 

its duty cycle) of modulated voltage operated on MOS gas sensors, I obtained that the 

effective working temperature of TGSs resulted from duty cycle modulation 25%, 50%, 

and 75% are 69 ℃, 197 ℃, and 325 ℃ respectively. Hence, it is clear that when a sensor 

is operated in the modulation mode using its recommended voltage Vs (e.g. 5 V of TGS 

and 0.9 V of FIS), the response (Rs) tends to increase in higher frequency of operating 

modulation. Also from Fig. 3.9, I noticed that it takes more than a minute for MOS to 

reach its steady state condition. Overall, it seem takes minimum 10 minutes of initial 

action as base-resistance prior the measurement. It is called the quasi-steady state at each 

temperature modulation-SDP. 

TH = 102.83 ∗ VH − 58.79, Eq. 3.3 

where TH (℃) is the working heater temperature, VH (Volt) is the running voltage on 

heater. 
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Fig. 3.9. Initial action responses of MOS sensors Resistance during 30 minutes after 

ready state conditioning (1 minute) of each MOS gas sensors: (1)=TGS-2602, (2)=TGS-

825, (3)=FIS-12A, (4)=FIS-AQ1, and (5)=FIS-SB30 on modulation frequency: 0.25Hz 

(dotted), 1Hz (dashed) and 4Hz (solid). All modulation were on 50% duty cycle. 

 

 
Fig. 3.10. The resistance responses of the SnO2 sensor on 200 ppm H2 pulses at various 

operating temperatures (Malyshev & Pislyakov 2008). 

 

3.4.3. Selectivity Evaluation. 

Test of Principal Component Analysis (PCA) was performed to evaluate selectivity 

performance in identifying the ammonia, ethanol, and toluene on each modulation. PCA 

is commonly used in electronic nose as feature extraction tool to test distinguish 

(selectivity) performance and a powerful linear classification technique that is usually 

employed in correlation with cluster analysis and visualization the difference in 

similarities or differences among the treatments (Gardner 1991; Hines et al. 2003). The 

large dimension of interrelated variables are reduces into few important principal 

components. The first two or three uncorrelated components hold most significant of 
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variation present in all variables and widely used in various application (Haddi et al. 2014; 

Shurmer & Gardner 1992; Gardner et al. 2000). 

I observed 2 durations of quasi-steady state (i.e. 15 minutes and 30 minutes) prior the 

measurement and used each sensitivity value of MOS gas sensors to represent variables 

in PCA. Here, I only utilized 5 MOS gas sensors except TGS2444 in order to avoid 

ambiguous results since it is only sensitive to ammonia. The first three Principal 

Components (PC1, PC2, and PC3) are used, as at most together they usually contained 

over 90% of the variance within the data sets (Shurmer & Gardner 1992). Then, the 

Euclidean norm was determined as significant features to assess the fittest modulation 

which has highest selectivity to gas samples. Selectivity refers to characteristics that 

determine whether a sensor can respond selectively to a group of samples or even 

specifically to a single sample which can be indicated by how far the difference (distance) 

among responses on samples. Therefore, besides the PCA test on same modulation for 

array sensors, it is also performed PCA test on selected temperature modulation-SDP 

(shown in Table 3.2) of each MOS gas sensor based on the largest distance of sensitivity 

value among sample gases.  

The variation value of sensitivity are shown in Fig. 3.11. Generally, Fig. 3.11 shows 

that most of sensors have highest sensitivity on ethanol gas and individually MOS gas 

sensor with its respectively modulation could discriminate among gases, and seemingly 

the modulation with duty cycle 75% leads higher selectivity on each frequency 

modulation. However, It also reveals that either on 15 minutes or 30 minutes quasi-steady 

state, individually TGS825 and FIS SB30 seem perform better selectivity (indicated by 

longer distance among sensitivity point) to differ ammonia, toluene and ethanol when not 

applied the modulation than applied by temperature modulation-SDP. 

Table 3.2. Selected temperature modulation-SDP of MOS gas sensors based on their 

sensitivities for 15 minutes and 30 minutes quasi-steady state prior 

measurement. 

Sensor 
Selected Modulation 

15 m 30 m 

TGS2602 1 Hz 75% 0.25Hz 75% 

TGS825 1 Hz 75% 4Hz 75% 

FISAQ1 0.25hz 75% 0.25Hz 75% 

FISSB30 0.25hz 75% 0.25Hz 75% 

FIS12A 0.25hz 50% 0.25Hz 25% 
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Fig. 3.11. Sensitivity variation of each MOS gas sensors and modulation upon exposure 

to various gases after (a) 15 minutes and (b) 30 minutes quasi-steady state 

Table 3.2 implies that FISs individually performed best selectivity under temperature 

modulation-SDP at 0.25 Hz 75% of both 15 minutes and 30 minutes quasi-steady state to 

differ ammonia, toluene and ethanol, while TGS 2602 and TGS825 tend more varied. On 

array gas sensor which commonly used in e-nose application, the selected temperature 

modulation-SDP on each MOS gas sensor and measurement after 30 minutes quasi-

steady state carried out better selectivity rather than single modulation on all gas sensors, 

as shown in Fig. 3.13. Moreover, compared to static (without modulation) mode (shown 

in Table 3.3 and Fig. 3.12), the selected modulation and 30 minutes quasi-steady state 

give highest increment of selectivity, up to 64.7%. 

(a) 

(b) 
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Table 3.3. Euclidean distance between Principal Component score of no modulation vs. 

selected modulation of 15 minutes and 30 minutes quasi-steady state. 

Euclidean distance 
15 minutes 30 minutes 

w/o mod w/ mod w/o mod w/ mod 

Ammonia-Ethanol 6.005 8.103 3.630 7.50 

Ethanol-Toluene 3.730 3.822 4.777 5.118 

Ammonia-Toluene 8.558 10.198 6.176 11.408 

Average 6.097 7.374 4.861 8.007 

Increment 20.9% 64.7% 

 

        
Ammonia

(w/ mod)

Ethanol Toluene
(wo/ mod)

 

Fig. 3.12. Visualization of PCA plot of selected temperature modulation-SDP Vs 

without Modulation using 3 major PCs. 

 

Fig. 3.13. Comparison of selectivity performance of array sensors among temperature 

modulation-SDP to distinguish three gases based on distance of Principal Component's 

score after 15 minutes and 30 minutes quasi-steady state. 

However, Table 3.3 also shows that the Euclidean distance between Ammonia and 

Ethanol of 30 minutes quasi-steady state is lower than 15 minutes quasi-steady state. This 
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is strongly caused of two things: the higher increment of humidity (the presence water 

content) in sensor chamber, and the high solubility of Ethanol and Ammonia samples. 

The operation of MOS gas sensor (especially when placed in a chamber) leads the 

increment of humidity inside the chamber (see Fig. 3.8) due to the working of heater on 

MOS gas sensor under the given modulation. Naturally, the longer operation (longer 

quasi-steady state) consequently will rise the higher increment of temperature and 

humidity. It means there more water content in air inside the chamber.  

And, since the ethanol and ammonia have high solubility in water (Table 3.4), there 

will be more dissolved (bonded) sample gases in water vapor when much water contained 

in the air which can reduce the response and its sensitivity consequently. The solubility is 

determined by the Henry’s Law constant (Sharpe 1964; Sander 1999; Sander 2015). Table 

2 shows that the sequence of solubility among samples is Ethanol > Ammonia > Toluene 

(Sander 2015). That is why the selectivity of array MOS gas sensors, shown in the 

Euclidean distance, is less when sensing the Ethanol and Ammonia using 30 minutes 

quasi-steady state than 15 minutes quasi-steady state. 

Therefore it may deduce that the longer quasi-steady state leads the higher humidity 

(water content) in sensor chamber and causes less sensitive/selectivity of MOS on high 

solubility sample. It seem that the long quasi-steady state is not suitable for the sample 

with high solubility (Henry’s Law constant). Yet, the temperature modulation itself still 

may provide the higher selectivity even in long quasi-steady state, as seen in the 

comparison between no Mod and Mod in Table 3.3. 

Table 3.4. Solubility, determined by Henry’s Law constant, among Ammonia, Ethanol, 

and Toluene. (Sander 2015) 

Sample Henry’s Law constant (
𝑚𝑜𝑙

𝑚3𝑃𝑎
) 

Ethanol C2H5OH 1.1 – 2.3  

Ammonia NH3 1.0x10-1 – 7.7x10-1  

Toluene C6H5CH3 1.7x10-4 – 2.8x10-3 

 

 



42 

 

 

 

 

 

 

 

 

This page is intentionally left blank



43 

 

Chapter 4. Potential Use of Temperature Modulation-

SDP on MOS Gas Sensors in Self-made E-Nose to 

Indicate Additional Nutrient in Soil. 

   

4.1. Introduction 

This chapter presents a performance test of the temperature modulation-SDP 

(Sudarmaji & Kitagawa 2015) to response a such complex compound in varies conditions, 

i.e. to identify soils and in various condition due to nutrient addition by capturing soil 

gaseous profiles using a self-made e-nose system. Soils, a complex mixture, are 

composed mostly of minerals and organic materials, water, air, and countless organisms 

(Carson et al. 2015; Soil Science Society of America 2010). Some evidences pointed that 

many gases and volatile organic compounds (VOCs) are found in the soil atmosphere in 

vary widely types and relative concentrations(De Cesare et al. 2011; Insam & Seewald 

2010; Tassi et al. 2015; Peñuelas et al. 2014) that produced due to microbial activity (De 

Cesare et al. 2011) which influenced by environment conditions (Milchunas et al. 1988; 

Sherlock et al. 1994; Smith et al. 2003). Soil also known has a unique smell that can be 

sensed with human olfaction system. The smell molecules of soil are known as Geosmin 

and Methylisoborneol which mostly produced by bacteria belonging to the most genus 

Streptomyces that involves a number of enzymes (Wang & Cane 2008; Mei Wang & Cane 

2008; Green et al. 1975). The existence and content of smell molecules and organic 

substances in different soil type and the composition of volatile substances of nutrient 

addition might result in a unique olfactory fingerprint, emitted from vaporized 

decomposition of organic matters and chemical reactions among others in static 

headspace at the certain conditions. 

Accordingly, based on soil gaseous profiles (also called fingerprints) of the sensor 

responses corresponding to the samples, this paper aims to determine qualitatively the 

potential use of array MOS gas sensors which driven by temperature modulation-SDP. It 

drives the MOS gas sensors on certain driving modulation in self-made e-nose system to 

differ the soil type and indicate the presence/level of nutrient addition in soil on controlled 

environment condition. 

In agriculture field, many results give the strong evidences of successful system 
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applications based on e-nose principle such as assessment of agriculture products quality 

(freshness, ripeness, contamination, spoilage), cultivar selection, preservation treatments, 

variety characteristics, plant pathology, and plant identification (Wilson & Baietto 2009). 

Particularly in soil analysis, though there were still few explorers, as reported by De 

Cesare et al. (2011), some relevant and successful examples of e-nose application on soil 

cases have been developed in recent years such as ammonium detection through ammonia 

measurement. They themselves measured the microbial activity in silty clay loam soil to 

distinguish different metabolic and growth phases of the inoculated bacteria during 

incubation and to discriminate between inoculated and non-inoculated ecosystems. The 

growth and activity of microbial was boosted by adding nutrient solutions into soil which 

incubated for 23 days. 

The usage of an array of sensors in e-nose, where each commonly unspecific for single 

analyzed but also interact with substances belonging to other chemical classes (cross-

selectivity) (Nanto & Stetter 2003), are altogether to provide a unique profile (also called 

fingerprint) for certain analyzed sample. This advantage of e-nose might be applied in 

situ measurement instead of the conventional method, namely The Gas 

Chromatography/Mass Spectrometry (GC/MS) which is well-known to separate, identify 

and quantify accurately the soil gaseous and volatile compounds (Smith & Dowdell 1973; 

Carter & Gregorich 2008) but required large labor space, and high expense and much 

time needed (Rappert & Müller 2005). 

 

4.2. Experimental Materials and Methods 

4.2.1. The Self-made Electronic-Nose 

A system based on the principle of electronic-nose (Fig. 4.1) was built to capture and 

analyze the soil gaseous profiles. It mainly consisted of three components, (i) sensing 

element, consisted of 6 TGSs gas sensor (Table 4.1) which driven by a technique, 

temperature modulation with specified detection point to sense the soil's VOC, and 2 

environment sensors (LM35 and HSM30G) to monitor the ambient temperature and 

temperature and humidity in sensor chamber, (ii) PSoC CY8C28445-24PVXI-based 

system, as interface system (data acquisition and front-end-like) for sensors, and (iii) data 

preprocessing (Principal Component Analysis, PCA) and pattern recognition tool (Neural 
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Network, NN) developed under Visual Studio 2012 to analyze the profiles of the array 

sensor responses corresponding to the soil samples. 

3 TGSs and 

3 FISs

PSoC
CY8C28445-

24PVXI
PCA NN

Preprocessor

(Olfactory bulb)

Soil type 

and 

fertilizer 

dose?
Pattern Recognation

(Olfactory Cortex)

Sensing

(Olfactory Receptor)

Interface

(Olfactory Nerve)
 

Fig. 4.1. Measurement diagram of soil vapor fingerprint based on e-nose principle. 

The 6 MOS gas sensors used and the design of temperature modulation with specified 

detection point are exactly same with the previous work (Chapter 3). The sensors are 

designed by their manufacturers to sense the volatile compounds and expected to sense 

the soil volatiles, they are specified to detect a particular volatiles in low concentration 

range. In this study, the 0.25 Hz; 75% of temperature modulation-SDP was applied to 

drive both array of TGS and FIS gas sensors, except on TGS-2444 which driven at 4 Hz 

5.6% as recommended by FIGARO Engineering Inc. (2011). This modulation setting 

(0.25 Hz; 75%) gave the highest selectivity performance on most of both TGS and FIS 

gas sensors used to distinguish among ammonia, toluene, and ethanol (Sudarmaji & 

Kitagawa 2015). Also similarly, for the setup and configuration of the PSoC CY8C28445-

24PVXI (shown in Fig. 3.4) which acts as a core of the interface system which mainly 

functioned to acquire all sensors output, to communicate with computer wirelessly, and 

to generate desired modulation signals. It connects wirelessly through Radio Frequency 

using XBee (IEEE 802.15.4) serial communication interfaced by a developed program 

under Visual Basic.Net 2012. 

Table 4.1. MOS gas sensors used and typical gas target *). 

No Sensor Gas Target Working Range 

1 TGS2444 Ammonia 1-100ppm 

2 TGS2602 Air Contaminant 1-30 ppm of EtOH 

3 TGS825 Hydrogen Sulfide 5-100 ppm 

4 FIS12A Methane 300-7,000 ppm 

5 FIS30SB Alcohol 1-100 ppm 

6 FISAQ1 VOC (air quality) 10-10,000 ppm 
*) based on product datasheet from Figaro Engineering Inc. and FIS Inc. 

I applied 2 (two) famous and powerful data processing tools which commonly used in 

E-Nose to imitate the work of an olfactory bulb and olfactory cortex in mammalian nose 
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system (Turner & Magan 2004), i.e. PCA and NN respectively. They are built using Visual 

Studio VB Net 2012 and compared their results using PCA and NN function in Matlab 

7.12.0 (R2011a). The PCA software is constructed by utilizing PCA routine in open-

source Accord.NET Framework 2.10. 

The NN with a single hidden layer and an appropriate hidden layer activation function 

are capable of accurate approximation to an arbitrary function and its derivatives (Hornik 

et al. 1989; Hornik et al. 1990). The Neural Network was developed based on 

Backpropagation (BP) learning method in Multi-Layer Perceptron Neural Network 

(MLPNN) architecture by employing a log-sigmoid activation function. Basically the BP 

algorithm is a generalization of the delta rule (Least-Mean Squares algorithm), also called 

the generalized delta rule (Rumelhart et al. 1986; Du & Swamy 2014). It uses a gradient 

search technique to minimize a cost function equivalent to the Mean Square Error (MSE) 

between actual network outputs and the desired (target) output. The BP propagates the 

MSE to backward through the network and the weights (and biases) are then adjusted by 

a gradient descent based algorithm. Thus, a closed-loop control system is established in 

network. BP algorithm might be applied in many layers of MLP.  

 

4.2.2. Soil Preparation and Treatment. 

The soils (sandy loam and sand soil) were derived from the top 15 cm and land without 

prior soil management. Sandy clay loam soil was taken from land around Kanazawa 

University (36°32'46.3380"N, 136°42'11.5452"E), while sand soil was taken from around 

coastal area of Uchinada Beach (36°38'39.19"N, 136°37'37.88"E), a sand hill on Sea of 

Japan, which is located about 17 km from Kanazawa University. The collected soil 

samples were crushed and sieved manually at <2 mm after plant derbies, turfs, and gravels 

were carefully removed.  

As soil treatments, I added commercial fermentation compost, produced by Wakayama 

Organic Productive Union, into soil as organic nutrient addition. In the specifications, it 

contains Nitrogen 2.54/ Phosphoric acid 0.56/ Potash 0.56/ Humus acid 17.1/ Carbon-

nitrogen ratio 9.6/ number of actinomycetes 21 million per gram/ pH 6.8. The composts 

were put at average and high doses as recommended in practical application, i.e. 20 and 

30 ton ha-1 DM (Dry Matter) respectively (Haber et al. 2010). Thus, I added fertilizer at 

rate 0, 15, and 22.5 mg/g soil sample corresponding nearly to 0, 20, and 30 ton ha-1 DM 
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respectively by considering that it is generally assumed that in 1 ha soil area, 15 cm deep, 

contains 2Mkg despite bulk density of soil varies considerably (King 1911; Conklin 2014).  

The soil and compost samples were put into LLDPE (Linear low-density polyethylene) 

plastic bag and sealed with paraffin. Then, it was stored them in refrigerator at 50.5℃ 

to inactivate microbial activity in soil. This temperature is known as biologic zero 

temperature, which recognized that most microbes in soil become relatively inactive at 

temperature below 5℃ (Malone & Williams 2010; Rabenhorst 2005). Prior being used, 

the samples were air-dried up to room temperature. 

 

4.2.3. Soil Gaseous Sampling and Headspace Condition. 

The critical stage in e-nose measurement is gas sampling, i.e. to collect and provide 

sufficient concentration of volatile compound that represent the condition of 

sample/analytical substance to be detected by sensors used. I applied a Static Headspace 

(SH) technique (Fig. 4.2), commonly used in GC, to acquire the soil gaseous profiles. It 

is simple, low-cost, and more flexible in adapting to varying sample properties because 

the headspace is directly transported to the measuring chamber, guaranteeing sample 

integrity. In SH, sample is placed in a closed vial and remains closed to reach equilibrium 

state. Simply, it needs to determine mostly only the physical parameters (i.e., time and 

temperature) to achieve the necessary state of equilibrium (Kolb & Ettre 2006). 

Sample

Headspace

inlet outlet

VS

VG

Sealed cap

 

Fig. 4.2. Static headspace design for saturated soil samples. 

The samples in SH is prepared into solution since soil might contains many soluble 

substances in water. In case the solid sample is able to be dissolved in water, the 

determination can be simplified using the solution approach. Solution has bigger diffusion 

coefficient than solid, thus it takes shorter diffusion and consequently equilibration times, 

where time of diffusion depends on the diameter and thickness of particles, and the 

shortest equilibration times are also found with liquid samples of low viscosity (e.g., 

aqueous solutions) (Kolb & Ettre 2006).  
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Moreover, the water content of soil samples is conditioned into saturation state (i.e. 

slightly above 100% of wet based water content) by adding the ultra-pure water and 

specified the phase ratio of SH into 1.5. And the mass of soil sample is determined using 

Eq. 4.1 to define the mass of pure water and compost addition, where ms expresses mass 

of soil (g), Vv is volume of headspace vial (ml), s is bulk density of soil (sandy loam = 

1.44 g/ml and sand = 1.51 g/ml) (Yu et al. 1993), w is density of pure water =0.998 g/ml, 

 (VG/VS) is phase ratio in SH, and wc is water content (in fractional number). Table 4.2 

resumes the properties of parameters used and calculation results. 

ms =
Vv x ρs x ρw

(β + 1) x (ρw + wc x ρs)
 Eq. 4.1 

The headspace equilibration in SH is optimized by both agitating (i.e. stirring) and 

termostatting concurrently for all samples on the same phase ratio. Termostatting may 

lead to reduce the equilibration time since the diffusion coefficient is proportional to the 

absolute temperature, and continuous agitation of the sample during the equilibrating is 

the better and recommended way to speed up equilibration time, especially for of non-

polar VOCs in aqueous solutions (Kolb & Ettre 2006). I set 30 minutes, 60℃, and 200 

rpm of equilibration time, temperature, and stirring frequency respectively. Those values 

(except stirring frequency) gave the optimum responses to analyze of fumigants 1,3-

dichloropropene (1,3-D) and methyl isothiocyanate (MITC) in Soil and Water Samples 

using Gas Chromatography Methods. (Gan et al. 1998). Moreover, others results also 

showed that temperature and time of equilibration improved the sensitivity and optimized 

the equilibration (Yilmazcan et al. 2013; Wu et al. 1998; Lebrun et al. 2008). However, 

generally the optimized parameters of equilibration for headspace analysis should be 

selected depending on the compound studied and chemical class. 

The Corning PC-4200D is utilized to heat and stir the sample in the headspace vial and 

used 90 ml glass container with sealed cap as headspace vial which is put inside the 500 

ml open beaker filled with 100 ml water (Fig. 4.3). It aims to maintain the equilibrium 

relative humidity the same as the soil sample (Bastos & Magan 2007). And, the soil 

gaseous sampling in static headspace was conducted inside a room with controlled-

temperature. By those ways, all soil samples were under the same treatments and 

environmental conditions when produced patterns of soil gaseous compounds that to be 
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captured and studied due to the soil type and nutrient addition. In practical use, I set the 

temperature regulator of Corning at 110℃ to maintain the water temperature in beaker at 

601℃, where at this point the surface temperature of ceramic was at 871℃. 

Alcohol thermometer

Magnetic 
bar

Water

Soil 
sample

Stir

Off
+-

RPM oC

Heat

Off
+-

 

Fig. 4.3. Headspace conditioning with heating and stirring using The Corning PC-420D 

in SH sampling, the layout of Corning modified from (Corning Inc. 2007). 

Table 4.2. Properties of samples of soil, fertilizer, water, and static headspace condition.  

Properties of SH Value 

Volume of SH Vial 90 ml 

Bulk density of sandy loam soil 1.44 g/ml 

Bulk density of sand soil 1.52 g/ml 

Phase ratio 1.5 

Water content 1 

Density of pure water 0.998 g/ml 

Equilibration temperature 60℃ 

Equilibration time 30 minutes 

Mass of sandy loam soil 21.22 g 

- mass of compost adding at 20 ton/ha 0.318 g 

- mass of compost adding at 30 ton/ha 0.477 g 

Mass of sand soil 21.63 g 

- mass of compost adding at 20 ton/ha 0.324 g 

- mass of compost adding at 30 ton/ha 0.287 g 

  

4.2.4. Measurement Procedures. 

The measurement of soil gaseous profiles are performed using close measurement 

method by switching between the reference gas (filtered air with silica gel) as baseline 

(R0) and the soil gaseous profiles as analyte (Rg). The gas is delivered by utilizing a pump 

which located at the side of the system as usually used in many transferring an analyte of 

the headspace gas directly into a sensor chamber. The flow direction and rate of gas are 

controlled by 3-way valve and The Koflok mass flow controller (MFC) respectively in 

which the 3-way valves were switched manually and the MFCs are adjusted at 0.3 liter 
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per minute. As shown in Fig. 4.4 the reference gas flows through point a (valve 1), point 

c (valve-2), and point e (valve-3), while the analyte gas flows through point b (valve-1), 

point d (valve-2), and point e (valve-3). The purging of sensor chamber is in open 

measurement mode by disconnecting the hose of inlet pump from valve-2, directing the 

valve-3 to point f, and turning on the purge pump. 

The PSOC based unit as interface, controlled by computer, generates a temperature 

modulation signal to activate/drive or deactivate MOS gas sensor and received a set of 

digital data to be analyzed. The temperature modulation is on 0.25 Hz; 75% duty cycle to 

drive all MOS gas sensors. This frequency resulted in the higher selectivity to 

differentiate among ammonia, toluene and ethanol (Sudarmaji & Kitagawa 2015). As 

initial action at first time turning on, the system turned on operating in reference 

measurement mode for one hour to allow the MOS gas sensors reach stabilized. The gas 

sensors are expressed in resistance and the profiles is defined by its Sensitivity (Eq. 3.2) 

(Huang et al. 2003; Arshak et al. 2004). 

MOS array sensor

gas 
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heater 

and stirrer purge pump
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Fig. 4.4. Experimental setup to capture the soil gaseous compounds using static 

headspace extraction in sample flow system (close) measurement. 

The R0 is measured after 30 minutes of quasi-steady state time for MOS gas sensor 

(concurrently with the time of termostatting) and then the Rg is measured right after the 

3-way valve are switched. The measurement cycle timing of the R0 phase, Rg phase, and 

purging phase are set on 1 minute, 1 minute, and 5 minutes (including the flush time of 

gas hoses) respectively. Therefore, the total cycle time per sample was 37 min. The 

sampling period of both R0 and Rg measurement are 2 seconds, obtained respectively 30 

data of R0 and Rg per measurement cycle. I tested 2 types of soil with 3 compost adding 

levels and each sample/treatment was replicated five replicates. Concisely, the 
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measurement steps from soil preparation until identification could be shown in Fig. 4.5. 

Taking and 
conditioning 
soil sample
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after Ro

PARC using 
PCA and NN

 

Fig. 4.5. Measurement steps to indicate the nutrient level based on soil gaseous profiles. 

 

4.3. Results and Discussion. 

4.3.1. Initial Measurement. 

Initially, I observed Rg for 5 minutes after R0 measurement, as shown in Fig. 4.6, to 

know the response of each sensor and obtain the best starting measurement time for Rg 

measurement since it was assumed the gas distribution is not spread evenly. It shows that 

most sensor has similar response (except TGS2602 and TGS2444) to the flow and 

distribution of gas produced in the headspace, but reaches a different stability time. 

Particularly on TGS2444, even though it seem most distinct (more ripples) among the 

others, yet it still shows its typical response. When it is expressed in ppm (part per million) 

using graphical calibration in its datasheet (Figaro Engineering Inc. 2011), the values lie 

around 2 ppm. While the resistance of TGS2620 suddenly dropped then toward its 

stability response. 

  

Fig. 4.6. The response of TGSs and FISs to soil samples (sandy loam soil and sand soil) 

without compost addition under 0.25 Hz; 75% modulation in 5 minutes. 



52 

 

Significantly, it seem that overall sensors reached a stable state after 150 s (2.5 

minutes) which strongly indicate they sensing stably the flow of gas that have been spread 

evenly in the close measurement system. Therefore I took this time be the starting point 

of Rg measurement. 

 

4.3.2. Sensor Responses and soil gaseous profiles. 

A MOS gas sensor driven by temperature modulation will behave a unique 

characteristic response depends on the given modulation signal and amplitude (Huang et 

al. 2004; Ortega et al. 2001; Sun et al. 2004; Chutia & Bhuyan 2012). Temperature 

modulation leads to generate a pattern, which may be a characteristic of the species being 

detected. In our previous work, lower frequency of DC square/rectangular modulation 

provided more slope and distinct shape, and selected modulation gave higher sensitivity 

than static temperature, and in our extended design of temperature modulation, the 

specified detection point ensures a same measurement points at each output shape (Fig. 

4.7). Moreover, the modulation on sensing element RS associated (in same phase) with 

temperature modulation may lead to prevent sensor from possible migration of heater 

materials into the sensing material which could causes long term drift of sensing 

material's resistance to higher values (Figaro Engineering Inc. 2011). It means that a 

pulsed-SVC would be giving less force to drive migration than a constant voltage, 

rendering negligible possibility of migration, particularly under high humidity and 

temperature operation. This benefit contributes to performance of MOS gas sensors when 

operates in such application with increasing in humidity and temperature as like in this 

work. 

  

Fig. 4.7. 0.25 Hz; 75% Modulation signals of TGS and FIS, orange: SVH, blue: SVC, and 

purple: time of detection point, captured by Oscilloscope Tektronix TDS 2024B: 5V/div 

except for SVH of FIS at 2V/div (Sudarmaji & Kitagawa 2015). 

Detection point 

TGS 

FIS 
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I found that during all measurement the temperature in sensor chamber was slightly 

increased (2℃) while the humidity was increased higher (7%) during R0 and Rg 

measurement (Table 4.3), which strongly due to the heat and water vapor respectively 

produced during termostatting in SH. The ambient temperature in controlled-temperature 

room during all measurement was 20.5℃0.4. Water molecules, present in the humid air, 

electronically interact with the effective surface of the sensing element upon 

chemisorption and cause changes in Rg.  

Table 4.3. Sensor chamber circumstances during R0 and Rg measurement. 

Measurement 
Temperature (℃) Humidity (%) 

R0 Rg R0 Rg 

Sandy loam 39.9 41.4 24.0 31.2 

Sand 35.8 37.7 23.8 30.6 

Overall 37.8 39.6 23.9 30.9 

I also found that the Ro had slightly variations as shown in Fig. 4.8. These drift seem 

to be an inevitable thing in oxide type sensor since its mechanism operation was depends 

on the heater temperature and the sensing layer strongly effected by temperature changes 

around sensor as well. The heater power lead a variation of the ambient temperature 

causes fluctuations in the operating temperature. This alters both the population of the 

charge carriers within the grains of the oxide semiconductor and the average thermal 

energy of the carriers which are to overcome the potential barriers established at the grain 

boundaries (Wang et al. 2010). So that it seem that almost all MOS gas sensors to be 

replicate dependent since varied over time (Knobloch et al. 2009). However the drift tends 

to smaller than static temperature operation when operated in a chamber. 

 

Fig. 4.8. Variation of baseline resistance expressed in standard deviation from mean 

value during measurement. 
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Individual soil gaseous profiles on each soil type shown in Fig. 4.9. It reveals that the 

array of gas sensors were able to sense the soil gases and/or volatiles resulted from 

different samples, and as well indicates that the method of the optimized SH seem suitable 

to provide/accumulate the concentration sufficiently. Those individual responses indicate 

that the technique of temperature modulation-SDP led the sensors to sense differently the 

amounts and types of soil gaseous compounds produced and released inside the SH 

atmosphere which corresponded to the soil type and doses of nutrient addition.  

Moreover, As shown in Fig. 4.9, for most of the MOS gas sensors but TGS2602 the 

Sensitivity to the nutrient addition (20T/Ha and 30T/Ha) was higher than without nutrient 

addition whether for the same soil type or between sandy loam and sand. Sandy loam soil 

usually have more holding capacity of water and nutrient, along with lower bulk density 

than sand soil, thus lead to have more organic matter content (Amador & Atoyan 2012; 

Chaudhari et al. 2013) and microorganism (Hamarashid et al. 2010). In addition, the use 

of a flow system (usually employing a pump) in sample detection causes cooling of the 

sensor surface, reducing the high increment of temperature and humidity inside such a 

sensor chamber (heat dissipation) (Figaro Engineering Inc. 2005), thus also influences its 

response. 

 

Fig. 4.9. Individual Sensitivity of sensor, average of 5 replicates, to 3 level of compost 

adding in different soil, 1:TGS2444, 2:TGS2602, 3: TGS825, 4: FISAQ1, 5: FISSB30, 

and 6: FIS12A. 

The chart also shows that the highest concentration during the headspace process was 

hydrogen sulfide (H2S). It highly indicated there much acid sulfate materials in soil 

samples. This gas is produced by some bacterial actions upon organic matter with the aid 
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of the sulfates oxygen contained as an oxidation in low oxygen level (like flooded soil) 

which depends on ambient conditions such as temperature, humidity, and the 

concentration of certain metal ions (Elion 1927; Chou et al. 2014). And, soils may absorb 

amounts of H2S from the air through atmospheric deposition, migration of mobilized pore 

water, or sulfuric material from spills and leaks, then retaining most of it in the form of 

elemental sulfur as sediment (Chou et al. 2014). The result also shows that the sandy loam 

soil provided higher concentration than sand soil since it contained higher organic matter.   

However, It is also observed that there was an overlapping response in differing level 

of compost addition (Fig. 4.10), especially between in dose 20T/ha and 30T/ha, in which 

this phenomena also shown in the other sensors. However, it may be reduced by new 

dimension projecting using PCA as commonly used in E-nose. 

 

Fig. 4.10. Experiment result of TGS 825 responses to compost dose (Ton/Ha) in sandy 

loam and sand soil for 5 replicates. 

 

4.3.3. Soil Discrimination under different nutrient addition. 

The PCA was applied to plot the soil gaseous profiles and shows the selectivity of 

MOS gas sensors used to discriminate the soil type various dose of nutrient addition. It 

offers an advantage that the classification of unknowns is processed much faster through 

reducing detection time since it projects of large origin dimensional data into new and 

lower dimensional subspace (Hines et al. 2003).  

Fig. 4.12(a) shows the PCA plot of discrimination of two soils, both without addition 

of compost. It shows a distinct zone of patterns volatile production between sandy loam 
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soil and sand soil, where the principal component (PC)-1 accounts higher differentiation 

of cluster than PC-2. PC-1 and PC-2 cumulatively account for 78.32% of the variance 

within the data set (Table 4.4). 

 

Fig. 4.11. PCA plot between sandy loam and sand soil in without compost addition. 

While generally Fig. 4.12 show that the PCA plots by PC-1 and PC-2, which account 

about 64% and 83% cumulatively of the variance in the input variables, allow to 

discriminate distinctly type of soil and to differ between soil condition whether with or 

without compost (nutrient) addition as indicated by separately blue zone, even when 

differentiating irrespective of soil type. It was only for sandy loam soil (Fig. 4.12(a)) the 

level of compost were able to be classified clearly into three groups as predefined 

previously while for sand soil (shown red and yellow zone in Fig. 4.12(b)) there were 

miss-identification between soil with dose 20T/Ha and to 30T/Ha. Fig. 4.12(c) shows 

there no clear classification (black zone) when identifying soil with dose 20T/Ha and to 

30T/Ha irrespective of soil type. Overall Fig. 4.12 shows that the highest level of 

differentiation was found along PC-1 on clusters between of the soil with nutrient addition 

and without nutrient addition, whereas that between addition of 20T/Ha and 30T/Ha were 

placed in mainly along PC-2. 

Finally, I determined the performance of NN as decision unit of e-nose to classify the 

level of nutrient addition in soil based on indicator the error (MSE) achieved resulted 

from the training process. I employed three principal components (PCs) as new dimension 

to distinguish between headspace volatiles released from soil samples and as the input of 
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neural network since they represent more than 90% of divergence samples data (Table 

4.4). I designed the architecture of MLPNN that comprises 3 layer (single hidden layer). 

All the weights in the network are updated using the global adapted learning parameter  

which updated by search-then-converge schedule. It is a simple and non-adaptive 

annealing schedule. Typically, it starts with a large  and gradually decreases it as the 

learning proceeds which the process of adapting  is similar to that in simulated annealing 

(Du & Swamy 2014). The characteristic time of this schedule is a new free parameter that 

must be determined by trial and error the search time constant. The algorithm escapes 

from a shallow local minimum in early training and converges into a deeper, possibly 

global minimum. 

 

Fig. 4.12. PCA plot between sandy loam and sand soil both without compost addition, 

and soil gaseous pattern projection mapped in 2 PCs for each soil sample to differ the 

level of compost addition of (b) sand, (c) sandy loam, (d) irrespective of soil type. 
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Table 4.4. Cumulative proportion of 3 PCs resulted from 6 sensors used.   

PC 
cumulative PCs proportion 

SL* S* SL+S* Soil diff* 

PC1 64.27% 75.61% 66.53% 52.69% 

PC2 86.34% 88.96% 80.69% 78.32% 

PC3 93.73% 93.73% 89.18% 90.38% 

* SL=Sandy Loam; S=Sand; Soil diff= between sandy loam and sand soil. 

In learning, I took the learning parameters of BP as follow: maximum epoch is 104, 

error target is 10-5, initial learning rate is 0.8 and the constant of search time in search-

then-converge annealing learning rate is 700. Our NN software keeps the results (MSE in 

each epoch, achieved final weights and biases, and outputs) in excel format. 

I determined the optimum number of neuron in hidden layer by Singular Value 

Decomposition (SVD) analysis of its output in each training dataset (Santos et al. 2010; 

Tamura 1997). By input from 3 PCs and considering resulted SVD value, I choose 6 

neuron in hidden layer to differ among the pre-described three categorized fertilizer levels 

in soil sample, thus the neuron number architecture of MLPNN is 3-6-3 of respectively 

input, hidden, and output layer. It also meets the general suggestion by Hecht-Nielsen 

(1987) in (Nakamura et al. 1994) that it should less than 2n + 1 the number of hidden 

neurons, where n is the number of inputs. A small number of hidden neurons does not 

lead complex input-output reactions modelling in network. I also trained the NN by input 

directly from sensors output (without preprocessing/PCA) with the same hidden layer (6-

6-3 NN architecture). The achieved MSE of training results (Table 4.5) show that PCA 

helps improving the NN classification to differ level of compost addition in soil. The all 

application of trained data shows successful recognitions to indicate level of nutrient 

addition in soil as well.  

Table 4.5. MSE achieved by 6 neuron of hidden layer to discriminate 3 level of compost 

addition in soil. 

Soil type MSE of with PCA MSE of without PCA 

Sand 4.204e-04 3.490e-03 

Sandy Loam 1.226e-04 5.024e-04 

Regardless of type 2.678e-03 4.080e-03 
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Chapter 5. Conclusion. 

 

5.1. Conclusions. 

This dissertation has presented an application of new technique (temperature 

modulation-SDP) on MOS gas sensor in such non-parametric biological system to 

distinguish the soil type and indicate the different dose of nutrient addition in soil. The 

conclusions obtained from this study are as follow: 

1. A new technique to enhance the sensitivity of MOS gas sensor, called the temperature 

modulation-SDP (Specified Detection Point), has been successfully developed using 

a common switching circuit employing FET (Field Effect Transistor) to drive a single 

or array of MOSs, where in this study I use a rectangular (square) modulation signal 

generated by PSoC CY8C28445-24PVXI. The response shapes of MOS gas sensor 

due to temperature modulation-SDP seem in accordance with the modulation given, 

where each modulation provides a particular response and at lower frequency has 

more sloping and distinct characteristic. In first test to discriminate 3 gases (Toluene, 

Ethanol and Ammonia), it led higher selectivity on 75% duty cycle of modulation on 

each tested frequency modulation (0.25 Hz, 1 Hz, and 4 Hz) and most gas sensors 

especially the FISs performed highest selectivity under 0.25 Hz modulation. And, the 

PCA plot indicated that selected temperature modulation-SDP for array sensor leads 

the increment of selectivity up to 64.7 % compared with static temperature mode in 

distinction of those gases.  

2. The self-made measurement system based on e-nose principle has been developed to 

get the soil gaseous profiles that comprises of:  

a. 6 MOS (3 TGS and 3 FIS) gas sensors, driven with temperature modulation-SDP, 

and 3 environment sensors. 

b. The PSoC CY8C28445-24PVXI as a hearth of wireless interface and acquisition 

system for the measurement system. 

c. The Patten recognition (PARC) tools consist of Principal Component Analysis 

(PCA) as preprocessor and Multi-Layer Perceptron Neural Network (MLPNN) 

as recognition/identifier unit. 



60 

 

The soil gaseous was generated in a static headspace with 60℃ termostatting and 

200 rpm stirring to optimize and measured upon a sample flow system (dynamic 

chamber) measurement.    

3. It is strongly suggested to determine the starting time of analyte (Rg) measurement 

since different stable state of MOS gas sensor response. I found, it took about 150 

seconds (2.5 minutes) for most gas sensors used reach stable response state to 

measure soil gaseous profile in our sample flow system measurement. 

4. It was found that the highest concentration of soil gaseous compound in the static 

headspace was hydrogen sulfide, indicated with highest Sensitivity of TGS-825 which 

specially designed to sense more sensitively the hydrogen sulfide. 

5. The 6 selected commercial MOS gas sensor applied in e-nose system were promising 

for use in the indicating the presence of additional nutrients in soil and their dose as 

well since they could response and provided the (unique) soil gaseous profiles resulted 

from a static headspace in certain condition. 

6. The PCA helps improving the NN classification to differ level of compost addition in 

soil and the discrimination results of PCA and NN are closely in accordance, as in this 

study was found that PCA discriminates clearly between sandy loam and sand soil, 

and could distinguish between soil condition whether with or without compost 

(nutrient) addition.  

7. The optimum architecture of MLPNN with single hidden layer was 3-6-3 with PCA 

as prior data preprocessor. The first three principal components account oven 90% 

cumulatively of the variance in the 6 MOS gas sensors input. This architecture may 

give better identification while distinguishing the soil type or the dose of nutrient in 

soil, even with irrespective the type of soil. By backpropagation learning algorithm, 

it resulted a successful identification as shown by the MSE achieved (e.g. The MSE 

was 1.226x10-4 when learning at maximum epoch is 104 for the nutrient level in sandy 

loam soil). 
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5.2. Future Works. 

This technique, temperature modulation-SDP, can be applied in any MOS gas sensor 

since principally a MOS gas sensor consists of heater and sensing element. It was also 

proved that temperature modulation provides more unique and distinct response, and 

could increase the selectivity and sensitivity. Hence, this e-nose (i.e. measurement 

system) could be implemented for in-situ measurement of soil atmosphere and 

environmental applications, and its possibility for correlation to macro nutrient or others 

specific parameters related to soil fertility and comparison to conventional methods. 

However in this study, by PCA analysis the 6 MOS gas sensor used still indicated a 

cross-grouping to differ between the soil with nutrient adding in normal dose (20T/Ha) 

and high dose (30T/Ha). Therefore it needs further observation on the modulation itself 

or usage of other MOS gas sensors, mainly those high response to hydrogen sulfide, air 

contaminant, and alcohol (the hydroxyl functional group –OH) group or other organic 

compound group which indicated had high response in this research results. On the 

pattern recognition side, besides PCA and MLPNN, many other advance of multivariate 

statistical analysis, whether for dimensional reduction, classification, or clustering, are 

also reliable to treat the data sets produced by the MOS gas sensor in e-nose system to 

obtain best result.  

And, other promising applications are the soil toxicity detection due to excessive 

usage of fertilizer and pesticide, and/or monitoring the pesticide bioremediation program. 

The process of remediating of contaminated soils involves inducing airflow in the 

subsurface with an applied vacuum, and thus enhancing the in situ volatilization of 

contaminants. The process itself takes advantage of the volatility of the contaminants to 

allow mass transfer from adsorbed, dissolved, and free phases in the soil to the vapor 

phase, where it is removed under vacuum and treated above ground. Depending on the 

applications and the type of sample to be analyzed, the choice of sensor array can be 

crucial for the good performance of the system. 
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Appendix A. Interface Display of Software. 

1. Interface of acquisition for setting of modulation and acquiring of sensors.  

 

 

2. Interface of PCA software 
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3. Interface of Neural Network software 
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Appendix B. Design of PSoC CY8C28445-24PVXI. 

 

A. Usage of Analog and Digital blocks on PSoC CY8C28445-24PVXI. 
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B. Pin configuration on PSoC CY8C28445-24PVXI 
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C. General flowchart of PSoC CY8C28445-24PVXI firmware. 
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Appendix C. Experimental documentation. 

 

Weighting the compost for nutrient addition at normal dose 

 

Weighting the compost for nutrient addition at high dose. 
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Controlled air/gas flow at 0.3 liter per minute. 
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Capturing soil gaseous profile using termostatting and stirring on static headspace under controlled circumstance. 

 

 


