Highly Enantioselective 1，3－Dipolar Cycloaddition of Azomethine Imine s and an Application to a Formal Total Synthesis of Manzacidin C

メタデータ	言語：eng
	出版者：
	公開日：2017－10－05
	キーワード（Ja）：
	キーワード（En）：
	作成者：
	メールアドレス： 所属：
hRL	http：／／hdl．handle．net／2297／48042

This work is licensed under a Creative Commons
Attribution－NonCommercial－ShareAlike 3.0
International License．

Formal Total Synthesis of Manzacidin C
 Based on Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Imines

Thu Minh Thi Tong, Takahiro Soeta, Takuya Suga, Keisuke Kawamoto, Yoshihito Hayashi, and Yutaka Ukaji*

Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192
E-mail: ukaji@staff.kanazawa-u.ac.jp

ABSTRACT: An enantioselective formal total synthesis of (+)-manzacidin C is described. A key feature of the synthesis is the construction of two chiral centers via the asymmetric 1,3-dipolar cycloaddition of an azomethine imine to methallyl alcohol by the use of (S, S)-DIPT as a chiral auxiliary.

INTRODUCTION

Manzacidins A, B, and C are structurally unique bromopyrrole alkaloids isolated as bioactive constituents of the Okinawan sponge, Hymeniacidon sp., collected at the Manza beach of Okinawa island in Japan. ${ }^{1}$ The significant amount of synthetic interest in the manzacidins stems from the intriguing structural features of their 1,3-diamine skeletons with a quaternary stereocenter and a desire to obtain significant amounts for more comprehensive pharmacological studies. ${ }^{2,3}$ Manzacidins A and C have a 2,4-diamino-5-hydroxypentanoic acid skeleton that possesses a nitrogen-containing quaternary carbon center at the 4-position. In order to construct such a carbon skeleton, several
attempts have been made. Ofune and Shinada were the first to conquer the synthesis of manzacidins A and C via the Strecker reaction. ${ }^{4}$ Ichikawa recently reported their synthesis via [3,3]-sigmatropic rearrangement of an allylic cyanate. ${ }^{5}$ Asymmetric [3+2] cycloaddition is an efficient pathway to construct such a skeleton in an optically active form. Maruoka and Sibi independently employed asymmetric 1,3-dipolar cycloaddition of a diazoester, and Leighton reported the enantioselective establishment of two stereocenters via acylhydrazone-alkene [3+2] cycloaddition. ${ }^{6-8}$

Stereoselective construction of 1,3-diamine skeletons is still a challenging task and asymmetric 1,3dipolar cycloaddition of azomethine imines is generally a useful and effective tool to construct such a chiral backbone directly. ${ }^{9}$ Recently, we developed the asymmetric 1,3-dipolar cycloaddition of azomethine imines to allylic and homoallylic alcohols, utilizing either stoichiometric or catalytic amounts of diisopropyl (R, R)-tartrate $[(R, R)$-DIPT] to furnish trans-pyrazolidines with excellent regio-, diastereo-, and enantioselectivities. ${ }^{10}$ If our method could be applied to the cycloaddition of methallyl alcohol (2-methyl-2-propen-1-ol) (2), the (S, S)-2,4-diamino-2-methylbutan-1-ol unit B could be constructed by the use of (S, S)-DIPT through the cycloadduct 3a as shown in Scheme 1. Furthermore, if phenyl-substituted azomethine imine 1a could be used, the oxidation of the phenyl ring moiety might provide a ready route to the carboxylic acid functionality as shown in \mathbf{A}. In this approach, the removal of the C 3 unit on the pyrazolidine ring in $\mathbf{3 a}$ is another challenge in synthesizing manzacidin C. Herein we report the formal total synthesis of manzacidin C based on asymmetric 1,3-dipolar cycloaddition of the azomethine imine utilizing (S, S)-DIPT as a chiral auxiliary. In addition, the C3 unit on nitrogens of the obtained cycloadduct could be removed through $\mathrm{N}-\mathrm{N}$ bond cleavage followed by a retro-Michael addition reaction.

Scheme 1. Retrosynthetic Analysis of Manzacidin C

RESULTS AND DISCUSSION

First, we examined the asymmetric 1,3-dipolar cycloaddition of phenyl-substituted azomethine imine possessing pyrazolidinone skeleton 1a to methallyl alcohol (2) according to the previously reported procedure. ${ }^{10}$ A mixture of methallyl alcohol (2) (1.0 equiv) and (R, R)-DIPT (1.0 equiv) in MeCN was treated with MeMgBr (3.0 equiv), followed by the addition of MeCN solution of azomethine imine 1a (1.0 equiv) at $0{ }^{\circ} \mathrm{C}$, and then the reaction mixture was heated at $80^{\circ} \mathrm{C}$ (eq. 1). In the present case of sterically demanding methallyl alcohol (2), cycloaddition proceeded rather slowly. After 5 d , the corresponding pyrazolidine 3a was obtained as a single diastereomer in 48\% yield. The optical purity of the product was high at 90% ee. However, the chemical and optical yields fluctuated.

By the screening of conditions such as the halogen ion in Grignard reagents, solvents (MeCN or EtCN), and the addition order of the reagents, we determined the optimal procedure of adding the Grignard reagent last to the mixture of the azomethine imine 1a, methallyl alcohol (2), and chiral DIPT in MeCN. The cycloaddition afforded the pyrazolidine 3a in almost 60% yield with a constantly excellent enantioselectivity of 95% ee (Table 1, Entry 1). ${ }^{11,12}$

The 1,3-dipolar cycloaddition of several azomethine imines $\mathbf{1 b}-\mathbf{1 e}$ to methallyl alcohol (2) was subsequently investigated by the improved procedure. Although the chemical yields were moderate, the aryl-substituted azomethine imines $\mathbf{1 b}$ and $\mathbf{1 c}$ afforded the corresponding cycloadducts $\mathbf{3 b}$ and $\mathbf{3 c}$ with high enantioselectivities and complete regio- and diastereoselectivities in each case (Entries 2 and 3). The cycloaddition of the cyclohexyl-substituted and t-butyl-substituted azomethine imines $\mathbf{2 d}$ and $\mathbf{2 e}$ also afforded the cycloadducts $\mathbf{3 d}$ and $\mathbf{3 e}$ with high enantioselectivities (Entries 4 and 5).

Table 1. Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Imines to Methallyl Alcohol

		 (R, R)-DIPT	$\xrightarrow[\substack{\mathrm{MeCN} \\ 0^{\circ} \mathrm{C}}]{\substack{\mathrm{MeMgBr} \\(3.0 \mathrm{equiv})}} \xrightarrow{{ }^{\circ} \mathrm{C}}$	
Entry	R		Yield/\%	ee/ $/ \%^{a}$
1^{b}	Ph	a	59	95
2	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	b	45	91
3	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	c	51	91
4	c-Hex	d	64	85
5	t-Bu	e	56	88

${ }^{a}$ Enantioselectivities were determined by HPLC analysis (Daicel CHIRALPAK IA).
${ }^{b}(S, S)$-DIPT was used instead of (R, R)-DIPT and (S, S)-isomer of $\mathbf{3}$ was selectively obtained.

Recrystallization of the cycloadduct 3a obtained by the use of (S, S)-DIPT enhanced the optical purity of the cycloadduct $\mathbf{3 a}$ up to 99.4% ee. ${ }^{11}$ The enantiomerically rich $\mathbf{3 a}$ was treated with (S)-1phenylethyl isocyanate in the presence of a catalytic amount of 4-(N, N-dimethylamino) pyridine (DMAP) to give the corresponding carbamate $\mathbf{4 a}$ (quant.) (Scheme 2). Recrystallization from AcOEt gave diastereomerically pure $\mathbf{4 a}$. The absolute stereochemistry of the pyrazolidine skeleton in $\mathbf{4 a}$ was determined to be S, S by X-ray crystallographic analysis of its single crystal. Furthermore, the cycloadduct $3 \mathbf{e}(83 \%$ ee) obtained by the use of (R, R)-DIPT was also converted to the corresponding carbamate $\mathbf{4 e}(72 \%)$. The absolute configurations of the pyrazolidine skeleton in $\mathbf{4 e}$ was unambiguously confirmed to be R, R by single-crystal X-ray diffraction analysis of the diastereomerically pure $\mathbf{4 e}$ obtained by its recrystallization from AcOEt. The absolute configurations putatively assigned to the other products $\mathbf{3 b}-\mathbf{3 d}$ by the use of (R, R)-DIPT were R, R.

Scheme 2. Determination of Absolute Stereochemistry of 3a and 3e (ORTEPs of 4a and 4e were

The precise mechanism of the present 1,3-dipolar cycloaddition is not yet clear. We have proposed the following transition state model, in which the carbonyl oxygen of azomethine imine $\mathbf{1}$ coordinates to the magnesium salt of (R, R)-DIPT as shown in Figure 1. The nitrogen connected with carbonyl group attacks to disubstituted C2-carbon of methallyl alcohol $2\left(\mathrm{R}^{\prime}=\mathrm{CH}_{3}\right.$) from $r e$-face, which might be rather interrupted than the addition to monosubstituted C2-carbon of prop-2-en-1-ol ($\mathrm{R}^{\prime}=$ H).

Figure 1. Proposed Transition State Model

With suitable conditions for the asymmetric 1,3-dipolar addition of azomethine imines to methallyl alcohol in hand, we turned our attention to the total synthesis of manzacidin C. One of the major challenges in synthesizing manzacidin C is the removal of the three-carbon bridge on the pyrazolidine ring. Although many asymmetric 1,3-dipolar cycloadditions of azomethine imines possessing pyrazolidinone moieties to olefins have been reported, the conversion of the produced fused pyrazolidines to acyclic 1,3-diamine derivatives has not yet been achieved to the best of our knowledge. ${ }^{13}$ We envisaged that retro-Michael addition of the amino group from the propanamide moiety of the pyrazolidinone ring could proceed before or after cleavage of the $\mathrm{N}-\mathrm{N}$ bond.

After intensive examination, we decided to cleave the $\mathrm{N}-\mathrm{N}$ bond first. Thus, the pyrazolidine $\mathbf{3 a}$ was converted to the corresponding t-butyldimethylsilyl (TBS) ether 5 (Scheme 3). Subsequent reduction with $\mathrm{Na} / \mathrm{NH}_{3}$ took place smoothly, cleaving the $\mathrm{N}-\mathrm{N}$ bond to give $\mathbf{6}$ in 76% yield. ${ }^{14}$ Stepwise Boc protection of the resulting amine and amide moieties was performed to afford the corresponding Boc-protected 8-membered azalactam derivative 8 in 95% yield. Although ring-opening of the N Boc azalactam 8 by the treatment with phenyl- or ethyl Grignard reagents did not proceed, ${ }^{15 \mathrm{a}}$ a selective nucleophilic attack on the ring carbonyl group by a small nucleophile, a hydroxy anion, was achieved by the use of LiOH to afford the N-substituted ω-amino acid. ${ }^{15 \mathrm{~b}}$ The produced carboxylic acid was converted to the corresponding methyl ester $\mathbf{9}$ by diazomethane in good yield.

Next, retro-Michael addition of the carbamate moiety in 9 was examined (Scheme 4). However, the desired elimination product $\mathbf{1 0}$ was not obtained by the use of several bases $\left(\mathrm{NaH},{ }^{16 \mathrm{a}} t\right.$-BuOK, ${ }^{16 \mathrm{~b}}$ etc.). The failure of the retro-Michael reaction strategy led us to examine an alternative method for removal of the C 3 unit. Thus, we planned to introduce a double bond at the α, β-position of the ester and execute an oxidative cleavage. The electrophilic introduction of sulfide moiety commenced by treatment with dimethyl disufide under basic conditions. ${ }^{17}$ In this reaction, the desired α-sulfenated product 11 was again not obtained. To our surprise, an unpredicted urea product $\mathbf{1 2}$ without the propanoate moiety on nitrogen was instead isolated in 25% yield. From the ${ }^{1} \mathrm{H}$ NMR analyses of the byproducts whose structures were not determined yet, one of the byproducts contained the methyl
propanoate moiety, which might be produced via Michael addition of the generated urea anion \mathbf{C} to the released methyl acrylate (Scheme 5). In addition, the production of $\mathbf{1 2}$ was not reproducible. Actually by monitoring the reaction by TLC, the urea, once formed, was consumed to form byproducts if the reaction was kept at $25^{\circ} \mathrm{C}$ for a prolonged time. We hypothesized that addition of a thiolate anion could trap methyl acrylate as a Michael donor to avoid the undesired recombination of the anion \mathbf{C} with methyl acrylate. The β-elimination reaction from $\mathbf{9}$ was again examined by the addition of $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SH}$. The urea 12 was obtained in improved yield (Table 2, Entry 1); however, the starting material $\mathbf{9}$ was still recovered. The production of β-thiopropanoate $\mathbf{1 3}\left(\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$ was confirmed by the analyses of ${ }^{1} \mathrm{H}$ NMR spectra of the byproducts. ${ }^{18}$ When LiHMDS was added to the reaction mixture on three occasions in the presence of 3 equiv of the thiol, the reaction was well-controlled to give the urea 12 in 65% yield (Entry 3).

Scheme 4. Examination of Retro-Michael Addition Reaction from 9

Scheme 5. Proposed Pathway from 9 to 12

Table 2. Retro-Michael Addition Reaction from 9

Entry	m	n	t / h	$\mathrm{Yield} / \%$
1	1.5	2.5	16	40^{a}
2	1.5	3.0^{b}	19	45
3	3.0	5.5^{c}	24	2

${ }^{a}$ Starting compound 9 was recovered in 14% yield.
${ }^{b}$ LiHMDS was added in twice of 2.3 equiv and 0.7 equiv, respectively.
${ }^{c}$ LiHMDS was added in three parts of 3.0 equiv, 1.5 equiv, and 1.0 equiv, respectively: See experimental section.

The regiochemistry of the Boc group in $\mathbf{1 2}$ was confirmed by its transformation to $\mathbf{1 4}$ (eq. 2). The chemical shift of the benzylic proton in $\mathbf{1 4}$ was scarcely shifted from that of $\mathbf{1 2}$, which suggests that the Boc group in $\mathbf{1 2}$ existed on the benzylic amine moiety.

The remaining main task for the synthesis of manzacidin C was oxidation of the phenyl group into a carboxylic acid (Scheme 6). When the urea $\mathbf{1 2}$ was subjected to conc. HCl under reflux conditions,
the hydrolysis proceeded to give a 1,3-diamine hydrochloride 15. ${ }^{19}$ Boc protection of the resulting 1,3-diamine moiety gave $\mathbf{1 6}$ in 73% yield in 2 steps from 12. Acetylation of the remaining hydroxyl group afforded 17. $\mathrm{RuCl}_{3} / \mathrm{NaIO}_{4}$ oxidation of the phenyl group in 17 was performed to give the corresponding carboxylic acid $\mathbf{1 8} .^{20}$ Finally, without further purification, $\mathbf{1 8}$ was subjected to saponification followed by acidic workup with an aqueous solution of KHSO_{4} to afford lactone 19 in 46% yield. All spectroscopic data of synthetic 19 were identical to those reported in the literature. ${ }^{4,5}$ The synthesis of manzacidin C in three steps from the lactone intermediate $\mathbf{1 9}$ through $\mathbf{2 0}$ has been reported by Ohfune and Shinada. ${ }^{4}$ Thus, a formal total synthesis of manzacidin C has been accomplished.

Scheme 6. Oxidative Cleavage of Phenyl Ring and Transformation to Lactone 19

CONCLUSION

In conclusion, we accomplished the formal total synthesis of manzacidin C . Through the asymmetric 1,3-dipolar cycloaddition of the azomethine imine possessing a pyrazolidinone skeleton, the stereochemistry of two chiral centers could be built in a single step. Within the present synthesis, the C 3 unit on the formed pyrazolidine ring could be removed through $\mathrm{N}-\mathrm{N}$ bond cleavage followed by a retro-Michael addition reaction.

EXPERIMENTAL SECTION

General Method. ${ }^{1}$ H NMR spectra were recorded on a 400 MHz NMR spectrometer. Chemical shifts δ are reported in ppm using TMS as an internal standard. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet), coupling constant (J) and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 100 MHz NMR spectrometer. The chemical shifts are reported relative to $\mathrm{CDCl}_{3}(\delta=77.0 \mathrm{ppm})$. The wavenumbers of maximum absorption peaks in IR spectra are presented in cm^{-1}. All of the melting points were measured with a micro melting point apparatus. The specific optical rotations were recorded on a polarimeter. HRMS (EI, FAB, and DART) spectra were measured with quadrupole and TOF mass spectrometers. Dehydrated solvents were purchased for the reactions and used without further desiccation.

(5S,7S)-7-(Hydroxymethyl)-7-methyl-5-phenyltetrahydropyrazolo[1,2-a]pyrazol-1(5H)-one

(3a): A MeCN (3.0 mL) solution of methallyl alcohol (2) ($0.362 \mathrm{~g}, 5.0 \mathrm{mmol}$) and $\mathrm{MeCN}(57 \mathrm{~mL}$) were consecutively added to a mixture of (S, S)-DIPT ($1.175 \mathrm{~g}, 5.0 \mathrm{mmol}$) and azomethine imine 1a $(0.874 \mathrm{~g}, 5.0 \mathrm{mmol})$ under an argon atmosphere. Then the mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and methylmagnesium bromide (16.5 mL of 0.91 M solution in THF, 15.0 mmol) was slowly added. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h , at rt for 1 h and then 7 d at $80^{\circ} \mathrm{C}$. The reaction was quenched by the addition of a sat. aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was subsequently extracted with CHCl_{3}. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $/ \mathrm{AcOEt}=1 / 1$ to $0: 1$, then $\mathrm{AcOEt} / \mathrm{MeOH}=20 / 1$ to $10 / 1$) to give the corresponding pyrazolidine $\mathbf{3 a}$ as a solid $(0.727 \mathrm{~g}, 59 \%)$. $R_{\mathrm{f}}=0.5(\mathrm{AcOEt} / \mathrm{MeOH}=5 / 1) . \mathrm{Mp} 111-112{ }^{\circ} \mathrm{C} \cdot[\alpha]^{25}{ }_{\mathrm{D}}-15(c 0.31, \mathrm{EtOH})$. The ee was determined to be 95% by HPLC (Daicel CHIRALPAK IA, hexane/EtOH $=20 / 1,0.75 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, major 61 min and minor 49 min). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.60(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{dd}, J=12.8,10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=12.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.90-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.44(\mathrm{~m}, 1 \mathrm{H})$, $3.55(\mathrm{dd}, J=10.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, 11.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.38(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.3,36.6,50.1,51.0,62.3$, $68.8,70.5,127.0,128.2,128.7,137.4,164.3$. IR (KBr): 3381, 3240, 2970, 2832, 1669, 1644, 1456, 1432, 1414, 1249, 1187, 1158, 1136, 1063, 1050, $774,702 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 68.27; H, 7.37; N, 11.37. Found: C, 68.19; H, 7.49; N, 11.38.

In a similar manner, pyrazolidines $\mathbf{3 b}-\mathbf{3 e}$ were obtained from azomethine imines $\mathbf{1 b} \mathbf{- 1 e}$.
(5R,7R)-7-(Hydroxymethyl)-7-methyl-5-(p-tolyl)tetrahydropyrazolo[1,2-a]pyrazol-1(5H)-one (3b): Starting from azomethine imine 1b ($391 \mathrm{mg}, 2.08 \mathrm{mmol}$) by the use of (R, R)-DIPT (487 mg , $2.08 \mathrm{mmol})$, 3b ($244 \mathrm{mg}, 45 \%$) was obtained as a solid. $R_{\mathrm{f}}=0.6(\mathrm{AcOEt} / \mathrm{MeOH}=10 / 1) . \mathrm{Mp} 134-$ $136{ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}+21(c 0.50, \mathrm{EtOH})$. The ee was determined to be 91% by HPLC (Daicel CHIRALPAK IA, hexane/isopropanol $=40 / 1,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, major 72 min and minor 90 min). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.60(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{dd}, J=13.3,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.44$ (dd, $J=13.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=15.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=8.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~m}$, 1 H), 3.41 (dd, $J=8.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.48(\mathrm{dd}, J=10.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.31 (brs, 1 H), 7.17 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.1,22.5,33.6,50.2,51.1,62.5,69.3,70.5,127.1,129.5,134.3,138.1$, 164.5. IR (KBr): 3264, 2975, 2910, 2850, 1663, 1518, 1413, 1151, 1086, 1051, $821 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 69.20; H, 7.74; N, 10.76. Found: C, $69.07 ; \mathrm{H}, 7.80 ; \mathrm{N}, 10.75$.

(5R,7R)-5-(4-chlorophenyl)-7-(hydroxymethyl)-7-methyltetrahydropyrazolo[1,2-a]pyrazol-

$\mathbf{1}(\mathbf{5 H})$-one (3c): Starting from azomethine imine $\mathbf{1 c}(426 \mathrm{mg}, 2.04 \mathrm{mmol})$ by the use of (R, R)-DIPT ($479 \mathrm{mg}, 2.04 \mathrm{mmol}), \mathbf{3 c}(292 \mathrm{mg}, 51 \%)$ was obtained as a solid. $R_{\mathrm{f}}=0.4(\mathrm{AcOEt} / \mathrm{MeOH}=10 / 1)$. Mp 107-109 ${ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}+29(c 0.76$, EtOH). The ee was determined to be 91% by HPLC (Daicel CHIRALPAK IA, hexane $/ \mathrm{EtOH}=20 / 1,0.75 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, major 78 min and minor 104 min). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.59(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{dd}, J=12.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=12.8$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.91-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=9.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=$ $10.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (brs, 1H), 7.29-7.35 (m, 4 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.5,36.6,50.3,51.0,62.4,68.8,69.8,128.4,129.0$, 134.0, 136.0, 164.4. IR (KBr): 3264, 2975, 2910, 2850, 1663, 1518, 1413, 1151, 1086, 1051, 821 cm^{-1}. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}\left[\mathrm{M}^{+}\right]$280.0979, found: 280.0976.
(5R,7R)-5-Cyclohexyl-7-(hydroxymethyl)-7-methyltetrahydropyrazolo[1,2-a]pyrazol-1(5H)one (3d): Starting from azomethine imine 1d ($567 \mathrm{mg}, 3.15 \mathrm{mmol}$) by the use of (R, R)-DIPT (737 $\mathrm{mg}, 3.15 \mathrm{mmol})$, 3d (497 mg, 63\%) was obtained as an oil. $R_{\mathrm{f}}=0.4(\mathrm{AcOEt} / \mathrm{MeOH}=10 / 1) .[\alpha]^{25}{ }_{\mathrm{D}}$ -31 (c 0.47, EtOH). The ee was determined to be 85% by HPLC (Daicel CHIRALPAK IA, hexane $/ \mathrm{EtOH}=20 / 1,0.75 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, major 43 min and minor 49 min). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.92-1.03(\mathrm{~m}, 2 \mathrm{H}), 1.10-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.80(\mathrm{~m}$,
$5 \mathrm{H}), 1.94(\mathrm{dd}, J=12.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=12.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=$ $14.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ (td, $J=8.2,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (ddd, $J=14.6,12.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (d, J $=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=9.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=22.1,25.9,26.0,26.2,28.6,30.5,36.6,40.5,44.0,53.7,61.3,69.2,71.6$, 163.4. IR (neat): $3373,2924,2855,1656,1447,1440,1348,1267,1188,1159,1063,892,754 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (DART) calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{\dagger}\right]$ 253.19160, found: 253.19150.
(5R,7R)-5-(t-Butyl)-7-(hydroxymethyl)-7-methyltetrahydropyrazolo[1,2-a]pyrazol-1(5H)-one (3e): Starting from azomethine imine $\mathbf{1 e}(106 \mathrm{mg}, 0.69 \mathrm{mmol})$ by the use of (R, R)-DIPT $(161 \mathrm{mg}$, $0.69 \mathrm{mmol}), 3 \mathrm{e}(87 \mathrm{mg}, 56 \%)$ was obtained as a solid. $R_{\mathrm{f}}=0.6(\mathrm{AcOEt} / \mathrm{MeOH}=10 / 1) . \mathrm{Mp} 55-$ $56{ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}-52(c 0.45, \mathrm{EtOH})$. The ee was determined to be 88% by HPLC (Daicel CHIRALPAK IA, hexane/EtOH $=30 / 1,0.75 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, major 42 min and minor 54 min). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=0.94(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{dd}, J=13.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dd}$, $J=13.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=8.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=15.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{td}, J=$ $8.2,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{ddd}, J=15.1,13.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=$ $9.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.7$, 26.8, 32.4, 36.9, 42.5, 55.2, 60.6, 69.0, 75.4, 163.1. IR (KBr): 3380, 2961, 2870, 1658, 1442, 1366, 1244, 1189, 1158, 1130, 1092, 1064, 964, 909, 822, $732 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ $\left[\mathrm{M}^{+}\right]$226.1681, found: 226.1684.
((1S,3S)-1-Methyl-7-oxo-3-phenylhexahydropyrazolo[1,2-a]pyrazol-1-yl)methyl phenylethyl)carbamate (4a): Recrystallization of 3a (95% ee) from $\mathrm{EtOH} / \mathrm{hexane}$ gave an enantiomerically enriched 3a (99.4% ee). A mixture of the recrystallized $\mathbf{3 a}$ ($32 \mathrm{mg}, 0.13 \mathrm{mmol}$), ((S) -1-phenylethyl isocyanate ($42 \mathrm{mg}, 0.29 \mathrm{mmol}$), and a catalytic amount of N, N-dimethylpyridin-4amine (DMAP) in toluene (1 mL) was stirred at rt for 5 d under an argon atmosphere. The mixture was concentrated under reduced pressure. The residue was purified by TLC on SiO_{2} (hexane/AcOEt $=1 / 1$) to afford the carbamate $\mathbf{4 a}\left(51 \mathrm{mg}\right.$, quant.). $R_{\mathrm{f}}=0.5$ (AcOEt). Recrystallization from AcOEt gave the diastereomerically pure 4a. Crystal data: $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}, F W=393.48$, monoclinic, $P 2_{1}$ (\#4), $a=9.5902(2), b=9.9373(3), c=10.7178(3) \AA, \beta=95.5090(10)^{\circ}, V=1016.70(5) \AA^{3}, Z=2, D_{\text {calcd }}$ $=1.285 \mathrm{~g} \mathrm{~cm}^{-3}, R=0.0250\left(R_{\mathrm{w}}=0.0660\right)$ for 3643 reflections with $\mathrm{I}>3.00 \sigma(\mathrm{I})$ and 265 variable parameters. CCDC 1518209 (4a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif. Mp 172-173 ${ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}-44$ (c 0.26, EtOH). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.29-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{t}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.76(\mathrm{~m}, 3 \mathrm{H})$, $2.82-2.95(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.57(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.91(\mathrm{~m}, 1 \mathrm{H}), 5.18$ (brs, 1H), 7.13-7.34 (m, 10H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=22.3,22.5,37.2,50.3,50.7,51.4,59.0,65.5,69.4,125.2,126.0,127.0,127.4,128.1$, 128.6, 137.3, 143.1, 155.2, 163.2. IR (KBr): 3550, 3411, 3240, 2987, 2939, 1717, 1662, 1617, 1540, 1422, 1374, 1302, 1243, 1155, 1111, 1077, 1058, 762, $703 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 70.21; H, 6.92; N, 10.68. Found: C, 70.06; H, 6.98; N, 10.55.
((1R,3R)-3-(tert-butyl)-1-methyl-7-oxohexahydropyrazolo[1,2-a]pyrazol-1-yl)methyl ((S)-1phenylethyl)carbamate (4e): A mixture of the $\mathbf{3 e}(83 \% \mathrm{ee}, 78 \mathrm{mg}, 0.34 \mathrm{mmol})$ obtained by another cycloaddition using (R, R)-DIPT, (S)-1-phenylethyl isocyanate ($80 \mathrm{mg}, 0.54 \mathrm{mmol}$), and a catalytic amount of DMAP in toluene (1 mL) was stirred at rt for 4 d under an argon atmosphere. The mixture was concentrated under reduced pressure. The residue was purified by TLC on SiO_{2} (AcOEt only) to afford the carbamate $4 \mathbf{e}(93 \mathrm{mg}, 72 \%) . R_{\mathrm{f}}=0.7$ (AcOEt). Recrystallization from AcOEt gave the diastereomerically pure 4 e . Crystal data: $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{3}, F W=373.49$, orthorhombic, $P 2_{1} 2_{1}$ 2 (\#19), $a=7.5338(2), b=15.4969(4), c=17.6570(5) \AA, V=2061.46(10) \AA^{3}, Z=4, D_{\text {calcd }}=$ $1.203 \mathrm{~g} \mathrm{~cm}^{-3}, R=0.0301\left(R_{\mathrm{w}}=0.0778\right)$ for 3901 reflections with $\mathrm{I}>3.00 \sigma(\mathrm{I})$ and 248 variable parameters. CCDC $1524360(4 \mathbf{e})$ contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Mp 183-184 ${ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}-29$ (c 0.31, EtOH). In ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, two isomers of $\mathbf{4 e}$, which might be derived from restricted nitrogen-carbonyl carbon bond $[\underline{\mathrm{N}}-\underline{\mathrm{C}}(=\mathrm{O})]$ rotation, were observed in the ratio of $3 / 1$. Major isomer: $\delta=0.85(\mathrm{~s}, 9 \mathrm{H}), 1.36-$ $1.39(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.86-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{dd}, J=15.1$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=14.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=8.2,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.87(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18-7.35 (m, 5H). Selected data of minor isomer; $1.36(\mathrm{~s}, 3 \mathrm{H}), 5.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ Major isomer: $\delta=22.3,26.9,31.8,37.2,42.8,49.6,50.6,54.9,57.7,65.1$, $74.2,125.81,127.2,128.6,144.6,156.9,162.8$. Selected data of minor isomer; 23.2, 125.76, 126.8, 128.4, 143.5, 155.2. IR (KBr): 3276, 2961, 1716, 1673, 1627, 1533, 1442, 1366, 1240, 1077, 1063, 910, 766, $705 \mathrm{~cm}^{-1}$. HRMS (TOF) calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$374.2444, found: 374.2447.
(5S,7S)-7-(((t-Butyldimethylsilyl)oxy)methyl)-7-methyl-5-phenyltetrahydropyrazolo[1,2-
a]pyrazol-1(5H)-one (5): The recrystallized 3a ($3.0 \mathrm{~g}, 12 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL}$) and DMAP ($278 \mathrm{mg}, 2.3 \mathrm{mmol}$), triethylamine ($8.5 \mathrm{~mL}, 60 \mathrm{mmol}$), t-butyldimethylsilyl chloride (9.18 $\mathrm{g}, 60 \mathrm{mmol}$) were successively added and stirred at rt under a nitrogen atmosphere. After 24 h , cool water with ice was added and the mixture was allowed to stir for an additional 1 h . The reaction mixture was then extracted with CHCl_{3}, and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $/ \mathrm{AcOEt}=2 / 1$ to $1 / 10$) to give 5 as a solid $(4.2 \mathrm{~g}, 96 \%) . R_{\mathrm{f}}=0.6$ (hexane $\left./ \mathrm{EtOAc}=1 / 1\right) . \mathrm{Mp}$ $129-130{ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}-28(c 0.33, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.117(\mathrm{~s}, 3 \mathrm{H}), 0.120(\mathrm{~s}$, $3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{dd}, J=12.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=15.2,8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.66-2.71 (m, 1H), $2.74(\mathrm{dd}, J=12.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{ddd}, J=15.2,13.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{t}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=11.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27-7.38 (m, 5H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.6,-5.3,18.2,22.1,25.9,37.2,50.8,51.4$, 60.8, 64.8, 69.7, 127.1, 128.0, 128.6, 138.1, 162.9. IR (KBr): 2950, 2928, 2857, 1676, 1494, 1463, 1430, 1414, 1254, 1103, 1003, 870, 853, 775, 727, $703 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}$, 66.62; H, 8.95; N, 7.77. Found: C, 66.41; H, 9.12; N, 7.79.
(6S,8S)-8-(((t-Butyldimethylsilyl)oxy)methyl)-8-methyl-6-phenyl-1,5-diazocan-2-one (6): To liquid ammonia (200 mL) under a nitrogen atmosphere was added a THF (5 mL) solution of $5(3.0 \mathrm{~g}$, $8.32 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. Then sodium metal $(0.57 \mathrm{~g}, 25.0 \mathrm{mmol})$ was slowly added in small species until the color of solution turned to dark blue. ${ }^{14}$ After stirring 1 h at $-78{ }^{\circ} \mathrm{C}$, the reaction mixture was warmed to $-33^{\circ} \mathrm{C}$ and stirred for an additional 2 h . The reaction was quenched by the addition of solid $\mathrm{NH}_{4} \mathrm{Cl}$ and liquid ammonia was distilled off. The residue was partitioned with CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$ and the mixture was subsequently extracted with CHCl_{3}. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $/ \mathrm{AcOEt}=1 / 10$ to $1 / 20$, then $\mathrm{AcOEt} / \mathrm{MeOH}=20 / 1$ to $\left.10 / 1\right)$ to give 6 as an oil $(2.2 \mathrm{~g}, 76 \%) . R_{\mathrm{f}}=0.6(\mathrm{AcOEt} / \mathrm{MeOH}=5 / 1) .[\alpha]_{\mathrm{D}}^{25}+19(c 0.75, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.15(\mathrm{~s}, 6 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=15.6,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{dd}, J=15.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{ddd}, J=13.3,10.1,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.24 (ddd, $J=13.3,10.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ (ddd, 13.3, 5.9, 4.61 H), $3.40(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ $(\mathrm{d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=9.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.45(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.51,-5.46,18.3,25.8,27.0,37.8,45.1,45.5,55.8,58.6,70.3,126.2,127.1$, 128.8, 145.7, 175.3. IR (neat): 3368, 3062, 2960, 2928, 2857, 1652, 1471, 1255, 1200, 1103, 839, $778,701 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}^{+}\right] 362.2390$, found: 362.2378 .
t-Butyl (2S,4S)- 4-(((t-butyldimethylsilyl)oxy)methyl)-4-methyl-6-oxo-2-phenyl-1,5-diazocane-1-carboxylate (7): To a dioxane/water ($4 / 1,20 \mathrm{~mL}$) solution of $6(4.0 \mathrm{~g}, 11 \mathrm{mmol})$ and diisopropylethylamine ($5.7 \mathrm{~mL}, 33 \mathrm{mmol}$), di- t-butyl dicarbonate ($4.82 \mathrm{~g}, 22 \mathrm{mmol}$) was slowly added and the reaction mixture was at rt for 24 h under a nitrogen atmosphere. The reaction mixture was then concentrated under reduced pressure. The residue was partitioned with CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$ and subsequently extracted with CHCl_{3}. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $/ \mathrm{AcOEt}=1 / 5$ to $1 / 20$) to give 7 as a solid $(4.85 \mathrm{~g}, 95 \%) . R_{\mathrm{f}}=0.6$ (hexane $/ \mathrm{AcOEt}=1 / 2$). Mp $107-109{ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}+4\left(c 0.32\right.$, EtOH). In ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, two isomers of 7, which might be derived from restricted nitrogen-carbonyl carbon bond $[\underline{N}-\underline{C}(=O)]$ rotation, were observed in the ratio of $2 / 1 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: Major isomer: $\delta=0.10(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.99-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=12.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=16.0$, $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.88-3.01(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.03-4.16(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.83(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{brs}, 1 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 5 \mathrm{H})$. Selected data of minor isomer; $0.13(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Major isomer: $\delta=-5.57$, $5.54,18.2,25.80,28.0,28.2,36.5,37.0,51.6,55.6,55.8,69.4,80.6,126.5,127.3,128.5,140.7$, 156.9, 171.8. Selected data of minor isomer; $-5.46,-5.44,18.3,25.78,37.5,80.3$. IR (KBr): 3440, 2955, 2930, 2857, 1689, 1666, 1473, 1414, 1473, 1414, 1365, 1249, 1218, 1162, 1118, 1048, 837, $779,742,698 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 64.89 ; \mathrm{H}, 9.15 ; \mathrm{N}, 6.05$. Found: C, 64.66; H, 9.39; N, 6.06.

Di-t-butyl(2S,4R)-2-(((t-butyldimethylsilyl)oxy)methyl)-2-methyl-8-oxo-4-phenyl-1,5-

diazocane-1,5-dicarboxylate (8): To a toluene (30 mL) solution of 7 ($3.88 \mathrm{~g}, 8.38 \mathrm{mmol}$), DMAP $(1.23 \mathrm{~g}, 10 \mathrm{mmol})$ and di-t-butyl dicarbonate $(9.14 \mathrm{~g}, 42 \mathrm{mmol})$ were added under an argon atmosphere and the reaction mixture was refluxed for 24 h . Solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ $\mathrm{AcOEt}=5 / 1$ to $\left.2 / 1\right)$ to give 8 as an oil (4.69 g , quant.). $R_{\mathrm{f}}=0.4$ (hexane/EtOAc $=5 / 1$). $[\alpha]^{25}{ }_{\mathrm{D}}-128(c 0.31, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): In ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, two isomers of $\mathbf{8}$, which might be derived
from restricted nitrogen-carbonyl carbon bond $[\underline{N}-\underline{C}(=O)]$ rotation, were observed in the ratio of 2/1. Major isomer: $\delta=0.112(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.826(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.52(\mathrm{~s}$, $9 H), 1.85-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=16.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.96(\mathrm{~m}, 1 \mathrm{H})$, 3.43 (td, $J=12.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.80(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.57(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.32(\mathrm{~m}, 5 \mathrm{H})$. Selected data of minor isomer; $0.106(\mathrm{~s}, 3 \mathrm{H})$, $0.13(\mathrm{~s}, 3 \mathrm{H}), 0.831(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 3.32(\mathrm{ddd}, J=12.8,11.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43$ (ddd, $J=14.6,4.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dd}, J=$ $12.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ Major isomer: $\delta=-5.3,-5.0,17.9,25.1,25.7$, $27.9,28.5,35.4,41.1,53.5,61.8,66.2,80.5,80.9,81.7,126.2,127.1,128.4,141.3,151.6,154.6$, 183.6. Selected data of minor isomer; $-5.6,-5.4,18.0,24.4,25.8,28.1,28.4,35.0,42.1,51.9,61.6$, 65.7, 79.8, 81.6, 126.6, 127.0, 128.3, 141.2, 152.1, 155.1, 183.7. IR (KBr): 2976, 2960, 2857, 1741, 1712, 1690, 1462, 1406, 1366, 1320, 1254, 1167, 1070, 975, 903, 839, 775, $699 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd for $\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 563.3516$, found: 563.3515.

Methyl3-((t-butoxycarbonyl)((1S,3S)-3-((t-butoxycarbonyl)amino)-4-((t-
butyldimethylsilyl)oxy)-3-methyl-1-phenylbutyl)amino)propanoate (9): To a THF (10 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ solution of $\mathbf{8}(335 \mathrm{mg}, 0.60 \mathrm{mmol})$, lithium hydroxide ($214 \mathrm{mg}, 8.93 \mathrm{mmol}$) was added and the reaction mixture was heated at $65^{\circ} \mathrm{C}$ for $24 \mathrm{~h} .{ }^{15 \mathrm{~b}}$ The reaction was quenched by the addition of a sat. aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was subsequently extracted with CHCl_{3}. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude carboxylic acid as an oil. The resulting carboxylic acid was dissolved in AcOEt and $\mathrm{Et}_{2} \mathrm{O}$. Subsequently, an $\mathrm{Et}_{2} \mathrm{O}$ solution of diazomethane was added dropwise until the yellow color of the diazomethane solution persisted during several minutes. The solution was then kept under fume hood until solvent was completely evaporated. The residue was then purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $/ \mathrm{AcOEt}=5 / 1$ to $\left.2 / 1\right)$ to give $\mathbf{9}$ as an oil ($313 \mathrm{mg}, 88 \%, 2$ steps). $R_{\mathrm{f}}=$ 0.7 (hexane/AcOEt $=2 / 1) .[\alpha]^{25}{ }_{\mathrm{D}}-46(c 0.41, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.03(\mathrm{~s}$, $3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{br} \mathrm{s}, 9 \mathrm{H}), 1.60-1.72(\mathrm{~m}, 1 \mathrm{H}), 2.10-$ $2.52(\mathrm{~m}, 3 \mathrm{H}), 3.12-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.73$ $(\mathrm{m}, 1 \mathrm{H}), 4.50-4.73(\mathrm{~m}, 1 \mathrm{H}), 5.50($ brs, 1 H$), 7.17-7.33(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $-5.5,-5.4,18.2,22.3,25.8,28.4,28.5,33.9,35.0,39.4,51.4,53.9,55.9,67.3,78.7,80.0,127.4$, 127.7, 128.5, 141.5, 154.5, 155.2, 172.0. IR (neat): 3437, 2980, 2954, 2857, 1741 1720, 1691,

1497, 1462, 1408, 1366, 1253, 1168, 1105, 837, 777, $702 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd for $\mathrm{C}_{31} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 595.3779$, found: 595.3773.
t-Butyl(4S,6S)-4-(((t-butyldimethylsilyl)oxy)methyl)-4-methyl-2-oxo-6-phenyltetrahydropyrimidine-1(2H)-carboxylate (12): To a THF (3 mL) solution of hexamethyldisilazane ($210 \mathrm{mg}, 1.30 \mathrm{mmol}$) was added n-butyllithium ($1.30 \mathrm{mmol}, 0.81 \mathrm{~mL}$ of 1.6 M solution in n-hexane) at $-78^{\circ} \mathrm{C}$ under an argon atmosphere and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h to give the first portion of LiHMDS (1.30 mmol). Then a THF (3 mL) solution of p $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SH}(162 \mathrm{mg}, 1.30 \mathrm{mmol})$ was added and the mixture was stirred for 15 min . A THF (3 mL) solution of $9(259 \mathrm{mg}, 0.43 \mathrm{mmol})$ to the mixture and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and at $25^{\circ} \mathrm{C}$ for 2 h . After that the reaction was cooled to $-78^{\circ} \mathrm{C}$ and stirred for 10 min , the second portion of LiHMDS (0.65 mmol), prepared from hexamethyldisilazane ($106 \mathrm{mg}, 0.65 \mathrm{mmol}$) and $n-$ butylithium ($0.65 \mathrm{mmol}, 0.41 \mathrm{~mL}$ of 1.6 M solution in n-hexane) in THF (3 mL), was added and stirred for additional 15 min at $-78^{\circ} \mathrm{C}$. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 2 h . Next the reaction was again cooled to $-78{ }^{\circ} \mathrm{C}$ and the third portion of LiHMDS (0.43 mmol), prepared from hexamethyldisilazane ($70 \mathrm{mg}, 0.43 \mathrm{mmol}$) and n-butyllithium ($0.43 \mathrm{mmol}, 0.27 \mathrm{~mL}$ of 1.6 M solution in n-hexane) in THF (3 mL), was added. Finally, the reaction was warmed to $25^{\circ} \mathrm{C}$ and stirred for 20 h . The reaction was quenched by the addition of a sat. aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was concentrated under reduced pressure. The residue was partitioned with CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$ and subsequently extracted with CHCl_{3}. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $/ \mathrm{AcOEt}=5 / 1$ to $2 / 1$) to give 12 as a solid ($122 \mathrm{mg}, 65 \%$). $R_{\mathrm{f}}=0.4($ hexane $/ \mathrm{AcOEt}=2 / 1)$. $\mathrm{Mp} 84-86{ }^{\circ} \mathrm{C} .[\alpha]^{25}-32(c 0.29, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.08$ (s, 3H), 0.09 (s, $3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 1.90(\mathrm{dd}, J=14.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=14.2$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=8.7,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22-7.35(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.54,-5.48,18.2,25.2,25.8,27.6$, $39.4,53.8,56.7,69.8,82.5,125.4,127.2,128.6,142.5,151.6,152.7$. IR (KBr): 3480, 2929, 2857, 1756, 1638, 1458, 1409, 1367, 1309, 1252, 1146, 1093, 853, 779, $701 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 435.2679$, found: 435.2680 .

Di-t-butyl(4S,6S)-4-(((t-butyldimethylsilyl)oxy)methyl)-4-methyl-2-oxo-6-
phenyldihydropyrimidine- $\mathbf{1 , 3 (2 H , 4 H}$)-dicarboxylate (14): To a toluene (3 mL) solution of $\mathbf{1 2}$
($10 \mathrm{mg}, 0.023 \mathrm{mmol}$) was subsequently added DMAP ($3 \mathrm{mg}, 0.023 \mathrm{mmol}$) and di- t-butyl dicarbonate ($25 \mathrm{mg}, 0.12 \mathrm{mmol}$). The resulting mixture was heated at $90^{\circ} \mathrm{C}$ for 1 h under a nitrogen atmosphere. The mixture was concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ $\mathrm{AcOEt}=10 / 1$ to $\left.5 / 1\right)$ to give the corresponding product 14 as a solid $(10 \mathrm{mg}, 81 \%) . R_{\mathrm{f}}=0.3$ (AcOEt). Mp 96-97 ${ }^{\circ} \mathrm{C} \cdot[\alpha]^{25}{ }_{\mathrm{D}}-20(c 0.09, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.11(\mathrm{~s}, 3 \mathrm{H}), \delta=0.12(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~s}, 12 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.93(\mathrm{dd}, J=$ 13.7, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=13.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.13(\mathrm{dd}, J=10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.35(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.6,-$ $5.5,18.3,22.7,25.9,27.4,27.7,41.8,56.9,58.4,67.5,82.7,83.3,125.7,127.3,128.6,151.0$, 151.2, 153.2. IR (KBr): 2928, 2855, 1765, 1734, 1673, 1386, 1367, 1247, 1136, 843, 784, $767 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (FAB) calcd for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$535.3203, found: 535.3195.

Di-t-butyl ((1S,3S)-4-hydroxy-3-methyl-1-phenylbutane-1,3-diyl)dicarbamate (16): A solution of $\mathbf{1 2}(257 \mathrm{mg}, 0.59 \mathrm{mmol})$ in conc. $\mathrm{HCl}(3.0 \mathrm{~mL})$ was stirred for 2 d at $120{ }^{\circ} \mathrm{C}$ (bath temp.). ${ }^{19}$ The mixture was concentrated under reduce pressure to give a crude 1,3-diamine hydrochloride $\mathbf{1 5}$ as brown solid. The resulting ammonium salt was dissolved in THF (3 mL) and the solution was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{NaHCO}_{3}(348 \mathrm{mg}, 4.14 \mathrm{mmol})$ was slowly added to the mixture at $0{ }^{\circ} \mathrm{C}$. Subsequently, a THF (5 mL) solution of di- t-butyl dicarbonate ($645 \mathrm{mg}, 2.96 \mathrm{mmol}$) was added slowly during the time of 4 h at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was gradually warmed to rt and stirred for 20 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $/ \mathrm{AcOEt}=5 / 1$ to $\left.2 / 1\right)$ to give 16 as a solid ($170 \mathrm{mg}, 73 \%, 2$ steps $) . R_{\mathrm{f}}$ $=0.3$ (hexane/AcOEt $=2 / 1$). Mp 117-119 ${ }^{\circ} \mathrm{C} \cdot[\alpha]^{25}{ }_{\mathrm{D}}-50(c 0.47, \mathrm{EtOH}) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.14(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 18 \mathrm{H}), 2.03-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.24(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=11.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.86$ (brs, 1H), 5.55 (brs, 1H), 7.11-7.29 (m, $5 \mathrm{H})$. Signal of one OH or NH proton was not observed clearly. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $23.028 .3,28.4,42.3,51.7,56.4,69.5,79.5,79.8,126.1,127.1,128.7,143.7,155.3,156.1$. IR (KBr): 3411, 2979, 2932, 1686, 1510, 1455, 1391, 1366, 1252, 1170 1074, $700 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$395.2546, found: 395.2553.
(2S,4S)-2,4-Bis((t-butoxycarbonyl)amino)-2-methyl-4-phenylbutyl acetate (17): To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3$ $\mathrm{mL})$ solution of $16(150 \mathrm{mg}, 0.38 \mathrm{mmol})$ were slowly added $\mathrm{Ac}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})$
during the time of 2 h at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the reaction mixture was gradually warmed up to rt and stirred for 22 h . The mixture was concentrated under reduce pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $/ \mathrm{AcOEt}=5 / 1$ to $\left.2 / 1\right)$ to give $\mathbf{1 7}$ as an oil ($160 \mathrm{mg}, 91 \%$). $R_{\mathrm{f}}=0.5$ (hexane/ $\mathrm{AcOEt}=2 / 1$). $[\alpha]^{25}{ }_{\mathrm{D}}-46(c 0.33, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.26(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.82-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.22(\mathrm{~m}$, $1 \mathrm{H}), 4.04(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.76(\mathrm{~m}, 2 \mathrm{H}), 4.98$ (brs, 1 H$), 7.08-$ 7.25 (m, 5H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.8,22.9,28.3,42.5,51.1,54.2,68.3,79.3,79.5$, $125.9,127.1,128.6,143.7,154.4,154.9,170.6$. IR (neat): 3420, 2979, 1742, 1718, 1700, 1521, 1366, 1247, 1169, 1042, $700 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 437.2652$, found: 437.2649 .

Di-t-butyl ((3S,5S)-5-methyl-2-oxotetrahydro-2H-pyran-3,5-diyl)dicarbamate (19): To a CCl_{4} (2 mL) and $\mathrm{MeCN}(2 \mathrm{~mL})$ solution of $\mathbf{1 7}(100 \mathrm{mg}, 0.23 \mathrm{mmol})$ was added a $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ solution of RuCl_{3} hydrate ($24 \mathrm{mg}, 0.11 \mathrm{mmol}$) at rt and the reaction mixture was turned to be black after stirring. Subsequently, $\mathrm{NaIO}_{4}(1.47 \mathrm{~g}, 6.9 \mathrm{mmol})$ was added and the black color of the mixture was turned to be yellow. The reaction was vigorously stirred at $25{ }^{\circ} \mathrm{C}$ for $24 \mathrm{~h} .{ }^{20}$ The reaction mixture was filtered and the filtrate was extracted with CHCl_{3}. The combined extracts were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $/ \mathrm{AcOEt}=5 / 1$ to $0 / 1$, then $\mathrm{AcOEt} / \mathrm{MeOH}=10 / 1$) to give the corresponding carboxylic acid 18. To a dry $\mathrm{MeOH}(3 \mathrm{~mL})$ solution of the resulting carboxylic acid $\mathbf{1 8}$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ powder $(158 \mathrm{mg}, 1.15 \mathrm{mmol})$ at rt and the reaction mixture was stirred for $24 \mathrm{~h} .{ }^{20 \mathrm{~b}}$ After the reaction mixture concentrated under reduced pressure, $\mathrm{CHCl}_{3} / \mathrm{H}_{2} \mathrm{O}(1 / 1, \mathrm{v} / \mathrm{v}, 4 \mathrm{~mL})$ was added to the residue and the solution was acidified to $\mathrm{pH} 3-4$ by the addition of $0.1 \mathrm{M} \mathrm{KHSO}_{4}$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirred for 24 h . The mixture was extracted with CHCl_{3}. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ $\mathrm{AcOEt}=10 / 1$ to $2 / 1$) to give 19 as a solid $(36 \mathrm{mg}, 46 \%, 3$ steps). $R_{\mathrm{f}}=0.3$ (hexane/AcOEt $=2 / 1$). Mp 183-184 ${ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}+20\left(c 0.30, \mathrm{CHCl}_{3}\right) ;\left[\mathrm{lit} .{ }^{5},[\alpha]^{25} \mathrm{D}\right.$ $+19.1\left(c 1.10, \mathrm{CHCl}_{3}\right) ;$ lit. $\left.{ }^{4},[\alpha]^{25}{ }_{\mathrm{D}}+21.5\left(c 1.10, \mathrm{CHCl}_{3}\right)\right] .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.39(\mathrm{~s}$, $3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) 1.60-1.68(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.77(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.51-$ $4.62(\mathrm{~m}, 2 \mathrm{H}), 4.75$ (brs, 1 H), 5.30 (brs, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.9,28.3$, 39.7, $47.8,50.7,73.6,80.4,154.5,155.1,172.0 ;\left[\right.$ lit. ${ }^{5}, \delta=25.8,28.3,39.7,47.8,50.7,73.7,80.3,154.5$,
155.1, 173.0; lit. $\left.{ }^{4}, \delta=28.29,29.66,39.66,47.78,50.67,73.65,80.30,154.52,155.16,172.05\right]$. IR (KBr): 3444, 2978, 2927, 1718, 1696, 1636, 1519, 1247, 1164, $1045 \mathrm{~cm}^{-1}$. HRMS (DART) calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$345.2026, found: 345.2033.

ACKNOWLEDGEMENTS

This paper is warmly dedicated to Professor Teruaki Mukaiyama on the occasion of his 90th birthday. This work was partially supported by Grants-in-Aid from the Japan Society for the Promotion of Science, Kanazawa University SAKIGAKE Project, and the Kanazawa University CHOZEN Project.

SUPPORTING INFORMATION

Concise list of types of data or files found in the SI.
(1) Kobayashi, J.; Kanda, F.; Ishibashi, M.; Shigemori, H. J. Org. Chem. 1991, 56, 4574-4576.
(2) (a) Hashimoto, T.; Maruoka, K. Org. Biomol. Chem. 2008, 6, 829-835. (b) Ohfune, Y.; Oe, K.; Namba, K.; Shinada, T. Heterocycles 2012, 85, 2617-2649. Recent reports: (c) Shinada, T.; Oe, K.; Ohfune, Y. Tetrahedron Lett. 2012, 53, 3250-3253. (d) Sankar, K.; Rahman, H.; Das, P. P.; Bhimireddy, E.; Sridhar, B.; Mohapatra, D. K. Org. Lett. 2012, 14, 1082-1085. (e) Yoshimura, T.; Kinoshita, T.; Yoshioka, H.; Kawabata, T. Org. Lett. 2013, 15, 864-867. (f) Nagatomo, M.; Nishiyama, H.; Fujino, H.; Inoue, M. Angew. Chem. Int. Ed. 2015, 54, 15371541.
(3) Recent reviews of the preparation of nitrogen-substituted quaternary chiral centers: (a) Kang, S. H.; Kang, S. Y.; Lee, H-S.; Buglass, A. J. Chem. Rev. 2005, 105, 4537-4558. (b) Ohfune, Y.; Shinada, T. Eur. J. Org. Chem. 2005, 5127-5143. (c) Vogt, H.; Bräse, S. Org. Biomol. Chem. 2007, 5, 406-430. (d) Clayden, J.; Donnard, M.; Lefranc, J.; Tetlow, D. J. Chem. Commun. 2011, 47, 4624-4639.
(4) Namba, K.; Shinada, T.; Teramoto, T.; Ohfune, Y. J. Am. Chem. Soc. 2000, 122, 10708-10709.
(5) Ichikawa, Y.; Okumura, K.; Matsuda, Y.; Hasegawa, T.; Nakamura, M.; Fujimoto, A.; Masuda, T.; Nakano, K.; Kotsuki, H. Org. Biomol. Chem. 2012, 10, 614-622.
(6) Kano, T.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2006, 128, 2174-2175.
(7) Sibi, M. P.; Stanley, L. M.; Soeta, T. Org. Lett. 2007, 9, 1553-1556.
(8) Tran, K.; Lombardi, P. J.; Leighton, J. L. Org. Lett. 2008, 10, 3165-3167.
(9) Recent reviews of asymmetric 1,3-dipolar cycloaddtion of azomethine imines: (a) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887-2902. (b) Suga, H. Top. Heterocycl. Chem. 2009, 18, 119-154. (c) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366-5412. (d) Nájera, C.; Sansano, J. M.; Yus, M. Org. Biomol. Chem. 2015, 13, 8596-8636. (e) Singh, M. S.; Chowdhury, S.; Koley, S. Tetrahedron 2016, 72, 1603-1644. Recent examples of asymmetric 1,3-dipolar cycloaddtion of azomethine imines and related reactions: (f) Liu, X.; Wang, Y.; Yang, D.; Zhang, J.; Liu, D.; Su, W. Angew Chem. Int. Ed. 2016, 55, 8100-8103. (g) Wang, Y.; Wang, Q.; Zhu, J. Chem. -Eur. J. 2016, 22, 8084-8088 and references cited therein.
(10) (a) Ukaji, Y.; Inomata, K.; Chem. Rec. 2010, 10, 173-187. (b) Yoshida, M.; Sassa, N.; Kato, T.; Fujinami, S.; Soeta, T.; Inomata, K.; Ukaji, Y. Chem. -Eur. J. 2014, 20, 2058-2064. (c) Ukaji, Y.; Soeta, T. In Methods and Applications of Cycloaddition Reactions in Organic

Syntheses; Nishiwaki, N. Ed.; Wiley \& Sons, Inc.: New Jersey, 2014. Chap. 11. (d) Ukaji, Y.; Soeta, T. J. Synth. Org. Chem. Jpn. 2015, 73, 65-75 and references cited therein.
(11) For the synthesis of manzacidin C , (S, S)-DIPT was used as a chiral auxiliary in the case of phenyl-substituted azomethine imine 1a.
(12) Catalytic method of the 1,3-dipolar cycloaddition of $\mathbf{1 a}$ to $\mathbf{2}[(S, S)$-DIPT (0.2 equiv), 1a (1.0 equiv), 2 (1.0 equiv), MgBr_{2} (1.0 equiv), $n-\mathrm{BuMgCl}$ (1.4 equiv), in EtCN at $\left.80^{\circ} \mathrm{C}, 7 \mathrm{~d}\right]$ (ref.10) gave the cycloadduct 3a in 32\% yield with 67% ee .
(13) Examples of cleavage of fused pyrazolidinone ring: (a) Turk, C. ; Golič, L.; Selič, L.; Svete, J.; Stanovnik, B. ARKIVOC 2001, 87-97. (b) Foroughifar, N.; Mobinikhaledi, A. Asian J. Chem. 2002, 14, 1441-1452. (c) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334-5335. (d) Kawai, H. ; Kusuda, A.; Nakamura, S.; Shiro, M.; Shibata, N. Angew Chem. Int. Ed. 2009, 48, 6324-6327. (e) Luo, N.; Zheng, Z.; Yu, Z. Org. Lett. 2011, 13, 3384-3387. (f) Na, R.; Jing, C.; Xu, Q.; Jiang, H.; Wu, X.; Shi, J.; Zhong, J.; Wang, M.; Benitez, D.; Tkatchouk, E.; Goddard, III, W. A.; Guo, H.; Kwon, O. J. Am. Chem. Soc. 2011, 133, 13337-13348. (g) Hori, M.; Sakakura, A.; Ishihara, K. J. Am. Chem. Soc. 2014, 136, 13198-13201. (h) Winterton, S. E. ; Ready. J. M. Org. Lett. 2016, 18, 2608-2611.
(14) Matsuyama, H.; Itoh, N.; Matsumoto, A.; Ohira, N.; Hara, K.; Yoshida, M.; Iyoda, M. J. Chem. Soc., Perkin Trans. 1 2001, 2924-2930.
(15) (a) Giovannini, A.; Savoia, D.; Umani-Ronchi, A. J. Org. Chem. 1989, 54, 228-234. (b) Shirokane, K.; Wada, T.; Yoritate, M.; Minamikawa, R.; Takayama, N.; Sato, T.; Chida, N. Angew. Chem. Int. Ed. 2014, 53, 512-516.
(16) (a) Shintani, R.; Ito, T.; Nagamoto, M.; Otomo, H.; Hayashi, T. Chem. Commun. 2012, 48, 9936-9938. (b) Rosenberg, S. H.; Rapoport, H. J. Org. Chem. 1985, 50, 3979-3982.
(17) (a) Suami, T.; Sasai, H.; Matsuno, K.; Suzuki, N. Carbohydrate Res. 1985, 143, 85-96. (b) Macdonald, S. J. F.; Montana, J. G.; Buckley, D. M.; Dowle, M. D. Synlett 1998, 1378-1380.
(18) Khatik, G. L.; Kumar, R.; Chakraborti, A. K. Org. Lett. 2006, 8, 2433-2436.
(19) Morgen, M.; Bretzke, S.; Li, P.; Menche, D. Org. Lett. 2010, 12, 4494-4497.
(20) (a) Matsuura, F.; Hamada, Y.; Shioiri, T. Tetrahedron 1993, 49, 8211-8222. (b) Novak, T.; Tan, Z.; Liang, B.; Negishi, E. J. Am. Chem. Soc. 2005, 127, 2838-2839.

学位論文審査報告書（甲）

1．学位論文題目（外国語の場合は和訳を付けること。）

Highly Enantioselective 1，3－Dipolar Cycloaddition of Azomethine Imines and an Application to a Formal Total Synthesis of Manzacidin C（アゾメチンイミンの高エナンチ才選択的1，3－双極子付加環化反応 と Manzacidin C の形式全合成への底用）
2．論文提出者（1）所 属 物質化学専攻

3．審査結果の要旨
．．．提出学位論文について，各審查委員により個別に予備審查を害施するとともに，平成 29年2月6日に開催された口頭発表の結果を踏まえて。同日に論文審査委員会を開催 して協議を行った。その結果，以下の様に判定した。．．．

天然有機化合物の全合成研究は，天然から単離される化合物が極微量であり，その生理活性の探孛には合成による化合物の供給が必要であることから，極めて重要である。沖
 ジアミン部位を有する特徴的な構造を有するが，相対および絶対立体配置を制御して合成することは困難であった。本論文では，不斎合成を活用したmanzacidinCの全合成研究について詳細に述べたものである。まず，アゾメチンイミンの不斎 1,3 －双極子付加環
 に，得られた生成物からの官能基変換により，manzacidin C～の変換が既知である光学活性ラクトンの合成に成功し，manzacidin Cの不斎形式全合成を達成した。本論文の内容は，不斎合成手法を巧みに活用して有用な光学活性天然有機化合物合成への道筋をつ けた研究として非常に意義深いことからっ博士（理学）の学位に値するものと判断した。
4．審査結果
（1）判
定（いずれかに○印） \qquad

博士（理学）

