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I Research Motivation

The standard model (SM) of particle is now considered to be extended due to

unsuccessful explanation of some observational phenomena in this framework. Those

phenomena are the neutrino masses and mixing [1], the existence of dark matter [2]

and the baryon number asymmetry in the universe [3]. Finding a model that can

explain all those phenomena simultaneously without causing any tension to other phe-

nomenological problems such as lepton flavor violating processes would be a crucial

step to understand the new physics beyond the SM. One of a promising candidate for

that purpose is a simple extension of the SM with an inert doublet scalar and three

right-handed neutrinos. Several studies [4–6] show that possibility.

On the other hand, the existence of inflationary expansion of the universe at

very early time is strongly supported by the CMB observations. Severe observational

constraints such as Planck 2013 and Bicep2 restrict the allowed inflation model now

[7, 8]. They completely disfavor any model predicting at almost scale invariant and

blue tilted scalar power spectrum. They also prefer to a single field model over more

complicated scenarios. There are also theoretical constraints such as the Lyth bound

[9] that restricts the allowed field value to realize the sufficient tensor-to-scalar ratio.

The η problem is another one that is a kind of hierarchy problem between the inflaton

mass and the Hubble parameter. In single field inflation models, since the Lyth bound

prevents the inflaton field to have a value below Planck scale, the higher order terms

suppressed by the Planck mass appear to ruin the flatness of the inflaton potential.

If there is no symmetry protecting the potential, this difficulty is caused and the η

problem is inevitable as well. The observation by Planck 2015 [10] tightens the tensor-

to-scalar ratio constraint to be r0.002 < 0.11 (95 % CL) so that only a few model can

still survive, as instances the hiltop quartic model, R2-inflation, Higgs-inflation and

power-law chaotic inflation with power less than two.

From such many inflation models that survive from the observational constraints,

there are not so many inflaton candidates that play any role in particle physics. Even

so, they have still problems. As instances, the power-law chaotic inflation which is

motivated by axion monodromy suffers trans-Planckian problem due to the Lyth bound

and the η problem, and the Higgs inflation suffers from the unitary problem caused by

a large non-minimally coupling [11, 12].

Motivated by the above facts, we consider an extension of the radiative seesaw

model with a complex scalar to explain the inflation of the universe as well without

disturbing favorable features of the original model. To evade the Lyth bound and the

η problem, the field value of the inflaton which corresponds to the complex scalar will
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be kept in sub-Planckian values by choosing a potential in such a way that only a

particular dynamics of the inflaton is allowed. In this scenario, the spectral index and

the tensor-to-scalar ratio could have values in a region favorable by the recent CMB

observations depending on the parameter sets in the inflaton potential.

II Modification of The Radiative Neutrino Mass

Generation Model

Radiative seesaw scenario is an alternative way to explain tiny neutrino masses.

In this scenario they are radiatively induced at the one loop level by imposing an exact

Z2 symmetry and introducing additional Z2-odd scalar doublet η and Z2-odd right-

handed neutrino Ni(i = 1, 2, 3) [13]. All of the standard model particle are labeled by

even parity. As a result of this assignment, the Lagrangian of this model is

−LN = −hαiN̄iη
†lα − h∗αil̄αηNi +

Mi

2
N̄iN

c
i +

M∗
i

2
N̄ c
iNi (1)

with the scalar sector potential is given as

Vscalar = m2
1Φ†Φ +m2

2η
†η + λ1(Φ†Φ)2 + λ2(η†η)2 + λ3(Φ†Φ)(η†η) + λ4(Φ†η)(η†Φ)

+
1

2

[
λ5(Φ†η)2 + λ∗5(Φη†)2

]
. (2)

Any bilinear term (Φ†η) is forbidden by the Z2 symmetry so that λ5 can always be

chosen as a real parameter by the field redefinition for η. Under the assumption that

m2
1 < 0 and m2

2 > 0, Higgs Φ obtains the vacuum expectation value v :=
√
−m2

1/2λ1 =

〈φ0〉 [15].

(a) (b)

Figure 1: (a) One-loop generation of neutrino mass considered in the radiative
neutrino masses model with an inert doublet [14] (b) One-loop generation of neutrino
masses in the present model. The coupling µa in this diagram is defined as µ1 := µ√

2

and µ2 := iµ√
2
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Neutrino mass is generated through the one loop diagram given by Fig 1.a, that

involves the exchange of η0
R and η0

I . Applying Feynman rules to the diagram gives the

neutrino mass matrix :

Mν
ij =

hikhkj
16π2

Mk

[
m2
η0R

m2
η0R
−M2

k

ln

(
m2
η0R

M2
k

)
−

m2
η0I

m2
η0I
−M2

k

ln

(
m2
η0I

M2
k

)]
. (3)

where mη0R,I
denote the mass of the neutral components of the inert doublet and Mk

denotes the mass of the right-handed neutrinos. If we use the quantities ∆m2 := (m2
η0R
−

m2
η0I

)/2 = λ5v
2 and m2

0 := (m2
η0R

+ m2
η0I

)/2, under the assumptions that m2
0 � ∆m2,

m2
η0R
' m2

η0I
' m2

0 are satisfied, the neutrino mass is approximated as

Mν
ij =

3∑
k=1

hikhkjMk

8π2

λ5v
2

(m2
0 −M2

k )

[
1− M2

k

(m2
0 −M2

k )
ln

(
m2

0

M2
k

)]
. (4)

This equation shows that the smallness of λ5 is a crucial role to explain the smallness

of neutrino masses for the TeV range Mk and m0.

To explain the smallness of λ5 in the radiative seesaw model, we can consider a

scenario in which this coupling is an effective coupling in low energy region resulted

from integrating out of a heavy singlet scalar S. In this scenario, the coupling λ5 in

the original model is supposed to be zero. We will explain how λ5 is derived from

the extended model later. The new singlet scalar S should be a Z2 odd field in order

to couple with the inert doublet scalar η and Higgs doublet scalar Φ. The additional

Lagrangian terms should be added in the original model are

−LS = m̃2
SS
†S +

1

2
m2
SS

2 +
1

2
m2
SS
†2 + κ1

(
S†S

)2
+ κ2

(
S†S

) (
Φ†Φ

)
+ κ3

(
S†S

) (
η†η
)

− µSη†Φ− µ∗S†Φ†η. (5)

Writing S = 1√
2
(ϕ1 + iϕ2) the masses of each components are given as m̄2

1 = m̃S +m2
S

and m̄2
2 = m̃2

S − m2
S. Since Z2 is considered to be an exact symmetry, m̃2

S > m2
S is

satisfied.

Neutrinos still remain massless at tree level such as in the original Ma-model

since η has zero vacuum expectation value. However, neutrino masses can be generated

through diagram given in the Figure 1.b. By applying Feynman rules, the resulting

neutrino mass matrix is found as

(M)αβ =
3∑
i=1

2∑
a=1

hαi
hβiµ

2
a 〈Φ〉

2

8π2
I(M2

i ,M
2
η , m̄

2
a). (6)
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where I(M2
i ,m

2
1,m

2
2) is defined as

I(M2
i ,m

2
1,m

2
2) = − M2

i ln(M2
i )

(M2
i −m2

2)(M2
i −m2

1)2
+

(m4
1 −M2

i m
2
2) ln(m2

1)

(M2
i −m2

1)2(M2
i −m2

2)2

+
m2

2 ln(m2
2)

(m2
1 −m2

2)2(M2
i −m2

2)
− 1

(M2
i −m2

1)(m2
1 −m2

2)
. (7)

This masses matrix is reduced to the neutrino masses matrix of Ma-model under as-

sumption that the condition m̃S � mS,mη,Mi is satisfied. The approximated formula

is given by

(M)αβ =
3∑
i=1

hαi
hβi 〈Φ〉2

8π2

m2
Sµ

2

m̃4
S

Mi

M2
η −M2

i

[
1 +

M2
i

M2
η −M2

i

ln

(
M2

i

M2
η

)]
, (8)

where the factor
m2

Sµ
2

m̃4
S

appears from
∑2

a=1 µ
2
a/m̄

2. Comparing this to equation (4), it is

obvious that the coupling constant λ5 for the (η†Φ)2 in the original model is effectively

approximated as the quantity
m2

Sµ
2

m̃4
S

. We might interpret the original model as the low

energy limit of the present extended model, in which λ5 is an effective coupling derived

from the interaction −µSη†Φ − µ∗S†Φ†η by integrating out S. At tree level of this

extended model, the amplitude of the interaction ηΦ→ ηΦ is given by

M'
[

µ2
1

(q2 − m̄2
1)
− µ2

2

(q2 − m̄2
2)

]
' µ2

[
m2
S

m̄2
1m̄

2
2

]
m̄2

1,m̄
2
2�q2

' µ2m2
S

m̃4
S

, (9)

which coincides with λ5 in the original Ma-model. Hierarchical masses problem bet–

ween µ,mS and m̃S now replaces the smallness problem of λ5 in the Ma-model. It is

a key factor to explain the smallness of the neutrino masses. If we leave the origin of

this hierarchy problem to a complete theory at high energy regions, all the neutrino

masses, the DM abundance and the baryon number asymmetry could be also explained

in this extended model at TeV regions just as discussion given in [5].

III Aspects as The Inflation Model

III.1 General features of the model

We consider an inflation scenario working at sub-Planckian scale by introducing non-

renormalizable terms obeying Z2 symmetry to the potential for complex scalar field S

given in equation (5). These terms could restrict the trajectory of the evolution of S.

In that case, even though the radial motion of S is small, additional angular motion

makes its whole trajectory length sufficiently large to evade the Lyth bound.
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As such an example, lets assume that the complex scalar S has Z2 invariant

additional potential as below

V = c1

(
S†S

)n
M2n−4

pl

[
1 + c2

(
S

Mpl

)2m

exp

(
i
S†S

Λ2

)
+ c2

(
S†

Mpl

)2m

exp

(
i
S†S

Λ2

)]
(10)

= c1
ϕ2n

2nM2n−4
pl

[
1 + 2c2

(
ϕ√

2Mpl

)2m

cos

(
ϕ2

2Λ2
+ 2mθ

)]
, (11)

where Mpl is the reduced Planck mass, and both of n and m are positive integers.

In the second line, we adopt polar coordinate expression for S = 1√
2
ϕeiθ. The most

crucial part in the potential is the exponential term. However, we cannot explain its

origin in this stage. We only expect that it might be effectively induced through the

nonperturbative dynamics in the UV completion of the model.

The quantities characterizing the inflation need to be calculated to understand

the features of the inflation. Some of them are the slow-roll parameters η and ε, the

e-folding number N , the spectral index ns, the tensor-to-scalar ratio r and the running

of the spectral index n′s. If the inflaton is restricted to move along the minimums of

the potential, The condition Λ � ϕ < Mpl is satisfied. As results, those mentioned

quantities are given as follow:

ε :=
(
M2

pl/2
)

(V ′/V )
2

= m2Λ̄4ϕ̄−6 [B(ϕ)/A(ϕ)]2 , (12)

η := M2
pl (V ′′/V ) = m2Λ̄4ϕ̄−6 [C(ϕ)/A(ϕ)] , (13)

ξ := M4
pl

(
V ′V ′′′/V 2

)
= m4Λ̄8ϕ̄−12

[
B(ϕ)D(ϕ)/A(ϕ)2

]
(14)

ns ' 1− 6ε+ 2η, r ' 16ε, n′s :=
dn

d ln k
' 16εη − 24ε2 − 2ξ (15)

N := N(ϕ)−N(ϕe) (16)

where we have defined ϕ̄ :=
(

ϕ√
2Mpl

)
, Λ̄ :=

(
Λ
Mpl

)
and

A(ϕ) := 1− 2c2ϕ̄
2m, (17)

B(ϕ) := n− 2c2(n+m)ϕ̄2m, (18)

C(ϕ) := n(2n− 3)− 2c2(n+m)(2n+ 2m− 3)ϕ̄2m, (19)

D(ϕ) := n(2n− 3)(2n− 6)− 2c2(n+m)(2n+ 2m− 3)(2n+ 2m− 6)ϕ̄2m, (20)

N(ϕ) :=
Λ̄−4ϕ̄6

6nm2

[
1 +

6c2mϕ̄
2m

n(3 +m)
F

(
1,

3

m
+ 1;

3

m
+ 2; 2c2

(
1 +

m

n

)
ϕ̄2m

)]
. (21)

The quantity F (a, b; c;x) denotes the Hypergeometric function. The Energy scale of
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the inflation is fixed by the normalization of scalar power spectrum ∆2
R := V

24π2M4
plε

∣∣∣
k∗

,

which is given about ln (1010∆2
R) = 3.094±0.034 (68% CL, Planck TT, TE, EE+lowP

combination data) [10]. All of the slow-roll parameters and cosmological parameters

compared to observations should be represented at the horizon exit k∗ = aH.

To understand whole processes that the scalar field S will undergo, it is useful

to investigate the time evolution of the fields numerically. Each component field ϕ1,2

of the scalar field S = 1√
2
(ϕ1 + iϕ2) follows the equation of motions as follows:

ϕ̈i + 3Hϕ̇i = − ∂V
∂ϕi

(i = 1, 2), (22)

where the Hubble parameterH of the system is now written asH2 = 1
3M2

pl

(∑
i

1
2
ϕ̇i + V

)
and ∂V

∂ϕi
denotes the partial derivative of potential V (S) in the direction of the field

component ϕi. The initial value of the field could not be selected arbitrarily as it

could ruin its dynamics depending on it. The best way is to place the inflaton initial

value at potential minimum. At a particular point, the motion suddenly falls toward

of the center of the potential and starts the oscillation. This point is considered to the

time when the inflation end and the reheating after inflation takes place to convert

energy density of the inflaton to the particles production. It is related to the time

when slow-roll parameter ε(t) := −Ḣ/H2 is close to unity but mostly much less than

unity.

III.2 Constraints from Planck 2013, Bicep2 and Planck 2015

The Planck 2013 constrains the scalar spectral index to be ns = 0.9603 ± 0.0073 and

the scalar power spectrum amplitude to be ∆2
R = 2.196+0.051

−0.06 × 10−9. It also and

establishes an upper bound on the tensor-to-scalar ratio as r < 0.11 (95% CL) at the

pivot scale k∗ = 0.002 Mpc−1. Thus, any models predicting subtantial deviation from

the nearly scale invariance and a blue tilted scalar power spectrum, such as a original

hybrid model, are ruled out. Moreover, since the level of local non-Gaussianities is

constrained by a bound f loc
NL = 2.7± 5.8, Planck 2013 data prefers single field inflation

to more complicated possibilities. Some of them, i.e. exponential potential models, the

simplest hybrid inflationary models, and monomial potential models of degree n ≥ 2,

do not provide a good fit to the data [7]. However, Bicep2 measures rather higher

tensor-to-scalar ratio than that measured by Planck 2013. The bound is given at

r = 0.20+0.07
−0.05 without dust foreground subtraction that disfavors r = 0 at 7.0σ level, or

it is given at r = 0.16+0.06
−0.05 if dust foreground subtraction is included [16]. Monomial
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potential with power 2 ≤ p ≤ 3 survives under this new constrain. Here we give more

attention to p = 2 which corresponds to n = 3 in our model to minimize the tension

between the results of Planck 2013 and Bicep2. Predictions given for some parameter

sets for n = 3 and m = 1 are presented in the Table 1 and in the Figure 2.

c1 c2
Λ
Mpl

ϕ∗
√

2Mpl
H∗(GeV) N∗ ns r n′s
×1014

A 1.66× 10−6 0.7 0.04 0.378 0.871 59.0 0.971 0.107 -0.00016
2.04× 10−6 0.7 0.04 0.371 0.921 54.2 0.968 0.119 -0.00022
2.42× 10−6 0.7 0.04 0.366 0.965 49.1 0.965 0.131 -0.00027

B 0.257 6.0 0.002 0.0512 0.945 60.4 0.969 0.124 -0.00046
0.305 6.0 0.002 0.0505 0.986 55.0 0.966 0.136 -0.00054
0.364 6.0 0.002 0.0498 1.030 50.0 0.962 0.149 -0.00064

Table 1: Predictions for some typical parameter sets of the model defined for n = 3
and m = 1.

Figure 2: Predicted values of (ns, r) for several parameter sets
(
c2,

Λ
Mpl

)
given

in the Table 1 are plotted here. The dotted line represents the prediction of the
quadratic chaotic inflation model, in which the points corresponding to N∗ = 50
and 60 are represented as crossed lines. The horizontal solid lines and dotted lines
represent the Bicep2 1σ constraints with and without the foreground subtraction,
respectively [16]. The contours given as Figure 4 in Planck Collaboration XXII [7]
are used here. Since the running of the spectral index is negligible, the blue contour
should be compared with the predictions

The Planck 2015 mission releases the announcement that the spectral index of

curvature perturbations is measured to be ns = 0.968±0.006 with the tight constraint

of scale dependence dns/d ln k = 0.003 ± 0.007. The upper bound on the tensor-to-

scalar ratio is r < 0.11(95% CL) measured at pivot scale k∗ = 0.002 Mpc−1 which is
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stronger than before. Even so, monomial inflation with power p < 2 is found to survive

from the constraint [10]. Due to this finding, we need to consider new parameter sets

given for n ≤ 3 to find new predictions in this model. The complete predictions are

plotted in the Figure 3. This figure shows that n = 1 is the most favorable one in the

present model.

Figure 3: Predicted regions in the (ns, r) plane are presented in panel (a) for n = 3,
in panel (b) for n = 2, and in panel (c) for n = 1. Λ is fixed as Λ = 0.05Mpl in all
cases. Contours given in the right panel of Fig. 21 in Planck 2015 results.XIII.[17]
are used here. Horizontal black lines r = 0.01 represent a possible limit detected by
LiteBIRD in near future.

III.3 Reheating after inflation

The early stage of the reheating may be constituted by two main processes: preheating

due to the parametric resonance through quartic interactions of S with Φ and η and

the perturbative decay due to an interaction term µSη†Φ. The first constituent may

not occur effectively as the fields coupled to ϕ1,2 have large effective mass so it seems

difficult for ϕ1,2 to produce these particles. The perturbative decay due to µ√
2
ϕ1η

†Φ

and iµ√
2
ϕ2η

†Φ takes place to complete energy transfer from the inflaton to the radiation.

The decay width of each process is given by Γϕi
= 1

8π
|µ|2
m̄i

where m̄2
1 = m̃2

S + m2
S and

m̄2
2 = m̃2

S − m2
S are the mass of ϕ1 and ϕ2, respectively. As m̃S is assumed much

larger than mS, the reheating temperature given from this perturbative decay can be
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estimated as [18]

TR ' 1.6× 108

(
|λ5|
10−6

)1/2(
m̃S

mS

)√
m̃S

106 GeV
GeV. (23)

If we taking the lightest neutral component of η as dark matter with mass of order

1 TeV, it suggests that |λ5| should be O(10−6) or less [20, 21]. Thus the reheating

temperature would be vary in the range of 105 GeV ≤ TR ≤ 1015 GeV depending on

the value of m̃S. This order is high enough to produce termal right-handed neutrinos

of O(1) TeV to produce sufficient baryon asymmetry via leptogenesis.

IV Conclusion

An extension of the radiative neutrino masses model by a complex singlet has

been considered to explain the inflation of the universe by keeping favorable features of

the original model, the simultaneous explanation of the small neutrino masses, the DM

abundance and the baryon number asymmetry in the Universe. The complex singlet

not only plays a role in the inflation scenario due to its component but is also involved

in the neutrino mass generation at one loop to explain the smallness of neutrino masses.

By choosing a complex scalar potential realizing a dynamics of the inflaton following a

spiral-like valley, trans-Planckian field variation can be realized to generate the suffi-

cient e-foldings even though the relevant field is kept sub-Planckian. The η problem is

now stated in the different way, that is the mass hierarchy of m̃2
S,m

2
S, κϕ

2 � H2 which

is relevant to the neutrino mass and the scale hierarchy Λ�Mpl. The UV completion

of the model is expected to give a solution for it. The origin of the potential cannot

be still discovered at this stage.

The model interestingly behaves like a single field inflation scenario which is

closely related with the power-low chaotic inflation in a limiting case. We have shown

that the predicted values for them by using the parameter sets for n = 1, 2 and m = 1

are favorable even for Planck 2015 observational constraints.

Furthermore, the rough estimation of the reheating temperature in this model

could be high enough to produce thermal right-handed neutrinos for resonant leptoge-

nesis. Therefore, the model seems to have no serious difficulty to explain the crucial

problems beyond the SM including the baryon number asymmetry like the original

model of the radiative neutrino masses model.
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