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1 Research Motivation and Objective

Main idea of this research is to understand control performance use model-free pre-
dictive control or Just-in-Time (JIT) predictive control, the model as a data-driven
for controller to obtain optimize solutions. Model predictive control commonly use
in chemical industry [1] and proposed by Stenman in 1999 [2], the method use an
update of mathematical model constantly refer to input and output data by Just-In-
Time modelling. The data store in a database [3], [4] a sufficient data [5].

Inoue and Yamamoto [6] proposed another ”model free” predictive control in
the just-in-time modelling framework. In the method, an optimal control input is
directly predicted not using any local models, but by online current measured data
and stored past data.

More recently, two approaches substituting the conventional the nearest neigh-
bor and LWA technique have been introduced [7], [8]. In [7], weights are calculated
as a solution of a linear equation. In [8], weights are computed as a solution of an
ℓ1-minimization problem which produces a sparse vector with a few nonzero ele-
ments. This kind of ℓ1-minimization is now popular in signal processing community
[9].

The focus of this paper is to compare of three methods ([6], [7], and [8]) by ap-
plying them to control of an unstable system. Stabilization by model free predictive
control is still an open problem. Asymptotic stabilization seems to be impossible
except for an ideal case where there is no noise and nonlinearity and so on. Bound-
edness of all signals in the control system only will be guaranteed in practical ap-
plications. In this paper, we statistically evaluate the effect by model free predictive
control through many trials. When an unstable system is given, it is difficult to make
a rich database containing input/output data without feedback control. Hence, we
assume that there exists simple feedback control stabilizing the unstable system to
make a database. However, when we use model free predictive control, we do not
use the stabilizing controller unlike [10] and [11]. In addition, we investigate the
effect of database maintenance. In this paper, as a method of database maintenance,
we propose that least accessed data in the database is replaced with the most cur-
rent data which was obtained online. Replacing is done to prevent the size of the
database increasing.

2 Model Free Predictive Control

For the first step we make a vector consist of u f is u future, y f is y future and r is
a reference signal. The P-step-ahead is decided by operator. The design of vector
can be shown as :

u f =


u(k + 1)

...
u(k + P)

 , y f =


y(k + 1)

...
y(k + P)

 (1)
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r(k + 1) =


r(k + 1)

...
r(k + P)

 (2)

In this section, the parameter l, m and n produce these kind of vector. The yp is
a past output, up is a past input. (where p = past, f=future)

yp(k) =


y(k − (m − 1))

...
y(k)

 , up(k) =


u(k − n)

...
u(k − 1)

 (3)

After that, we have to get a weight matrix ψ1...ψk and the weight matrix comprise
of three vector. The matrix ψl can be arranged as follow :

ψl =


y

p
l
y

f
l

up
l

 (4)

2.1 Just In Time Information Vector
Almost all JIT method has an information vector (ϕ(k)). The vector give an infor-
mation about a few signal to achieve the goal to follow the reference. Therefore, the
design of information vector is :

up
i =


u(τi − n)

...
u(τi − 1)

 , yp =


y(τi − (m − 1))

...
y(τi)

 , (5)

ϕ(k) =

 y
p(τi)
r(k)

up(τi)

 (6)

The vector ψ in this method is a database and the vector ϕ is an information vector.

2.2 Database Maintenance
An overview of database maintenance :

Figure 1: Database maintenance in model-free predictive control
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When an unstable system is given to be controlled, we first make a database
which stores input/output data of the unstable system. Then, we have to stabilize
the unstable system to use a standard feedback control method not model-free pre-
dictive control. The simplest way of stabilizing is static feedback

u(k) = K(r(k) − y(k)) + v(k) (7)

with a constant gain K and the additional control input v to the stabilized system.

3 Comparison of Model-Free Predictive Control Al-
gorithm

3.1 Locally Weight Average (LWA)
Model-free predictive control proposed by [6] utilizes collected past input/output
data of the controlled system as N vectors

ai :=

yp(ti)
y f (ti)
up(ti)

 ∈ ℜd, i = 1, 2, . . . ,N, (8)

ci := u f (ti) ∈ ℜhu , i = 1, 2, . . . ,N, (9)

where d = n + hy + m,

yp(t) =


y(t − n + 1)

...
y(t)

 , and up(t) =


u(t − m)

...
u(t − 1)

 . (10)

An underlying idea of model-free predictive control consists two step:

(i). selecting k nearest vectors ai j to a query vector

b =

 yp(t)
r(t)

up(t)

 (11)

that contains the current situation up(t), yp(t), and the desired trajectory for
the future output r(t);

(ii). generating the expected future input sequence as LWA to use weights xi j as

û f (t) =


û(t|t)
...

û(t + hu − 1|t)

 (12)

=

k∑
j=1

xi ju f (ti j) =
k∑

j=1

xi jci j . (13)
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In [6], the so-called Just-In-Time method [5] is utilized. Basically, all vectors ai

are sorted according to the distance to b as

d(ai1 ,b) ≤ · · · ≤ d(aik ,b) ≤ · · · ≤ d(aiN ,b). (14)

In addition, the number k and weights xi j for ai j satisfying

xi1 ≥ xi2 ≥ · · · ≥ xik and
k∑

j=1

xi j = 1. (15)

are determined, for example by using LWA and the Akaike’s Final Prediction Error
criterion. In [12], the distance based on the ℓ1-norm

∥x∥1 =
k∑

i=1

|xi| (16)

is defined as

d(a,b) =
∥∥∥W−1(a − b)

∥∥∥
1

(17)
W = diag(w1, . . . , wd) (18)

where for the ith element of a j,

wi = max
j=1,...N

a ji − min
j=1,...N

a ji. (19)

Moreover, the weight is calculated as

x̃i = tr
(
Id −W−1(ai − b)(ai − b)T W−1

)
(20)

xi = x̃i/

k∑
i

x̃i. (21)

3.2 Linear Norm Solution
In [7], finding the weights xi j is reformulated as solving the linear equation

Ax = b, (22)

where

A =
[
ai1 ai2 · · · aik

]
∈ ℜd×k, (23)

x =
[
xi1 xi2 · · · xik

]T
∈ ℜk. (24)

When d > k, the solution is given by a least mean square solution as x = (AT A)−1AT b.
When d < k, the solution is given by the least-norm (minimum norm) solution
x = AT (AAT )−1b of

min
x
∥Ax − b∥2 . (25)
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The size of the solution x in (25) (i.e., the neighbor size k) can be extended to the
size of database N by introducing

A =
[
a1 a2 . . . aN

]
∈ ℜd×N (26)

x =
[
x1 x2 . . . xN

]T
∈ ℜN . (27)

as

min
x
∥Ax − b∥ subject to ∥x∥0 = k, (28)

where

∥x∥0 = card {xi | xi , 0} (29)

is the l0 norm is the total number of non-zero elements in x. Because of the l0 norm
constraint, (28) is a mixed-integer problem, which is generally difficult to solve in
real time.

3.3 l1 Norm Solution
In [8], (28) is reformulated as an ℓ1-minimization problem:

min
x
∥x∥1 subject to Ax − b = 0. (30)

To solve the ℓ1-minimization problem, several methods have been developed. In
particular, there are a large number of ℓ1-minimization algorithms [9] such as gra-
dient projection, homotopy, augmented Lagrange multiplier, and Dual Augmented
Lagrange Multiplier (DALM) algorithms1.

Remark 1 Just-In-Time algorithms generally cause long feedback delays. Hence,
model-free predictive control is limited to slow dynamical systems.

4 Model-free Predictive Control Algorithm
Initialization. Determine n,m,N, hu, and hy. Let the discrete-time be t = 0.

Step 1. Whenever t ≤ max(n,m), repeat this step. Measure y(t) and apply u(t)
with an appropriate value to the controlled system. Increment the discrete-time as
t ← t + 1.

Step 2. From the given reference trajectory r(t), define a query vector (11).

Step 3. Perform one of the three methods given below.

1MATLAB solvers are available at http://www.eecs.berkeley.edu
/˜yang/software/l1benchmark/l1benchmark.zip
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Step 3a (by LWA), determine the number k and weights xi1 , . . . , xik as (15).

Step 3b (by least-norm solution), determine weights xi1 , . . . , xik by (22).

Step 3c (by ℓ1-minimization), solve by the ℓ1-minimization problem (30).

Step 4. The expected future input sequence is calculated by (12).

Step 5. Apply the first element û(t|t) of û f (t) to the system as u(t). Increment the
discrete-time as t ← t + 1, and return to Step 2.

5 Database Maintenance for system
The stabilization step use (7) and the irrelevant data can make the size of database
increase, to avoid that for bad data can be deleted. For example, in Step 5, at time t
the most irrelevant data aiN and ciN in the database are replaced withyp(t − h)

y f (t − h)
up(t − h)

 and u f (t − h) (31)

where h = max(hy, hu).
However, because this method records u produced unsatisfactory control results

(i.e., large difference r − y) in the database, it often generates a poor control perfor-
mance. Hence, we update the database only when (31) yields small tracking errors
that are less than a prescribed level, i.e.

∥r(t − h) − y f (t − h)∥ < γ. (32)

where γ is a constant value.

6 Simulation and Discussions
In this section, we present several simulation results to evaluate the effect by database
updates on model-free predictive control for unstable systems and to compare the
three methods in Step 3. We used the system

y(t) = 1.2y(t − 1) + u(t − 1) + ε(t) (33)

with the unstable pole 1.2. The training data was created to use stabilizing feedback
(7) with K = −0.5 and r(k) = 0. The resulting stabilized system is

y(t) = 0.7y(t − 1) + v(t − 1) + ε(t). (34)

To apply 100 sets of random sequences ε(t) according to Gaussian distribution with
zero mean, variance σ2 = 0.052, and random sequence v(t) generated from a uni-
form distribution [−3, 3] to the stabilized system, we generated 100 databases con-
taining samples (N = 600) of the control input u(t) and output y(t). Throughout the
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simulations, we set the order of the system and horizons as n = 1, m = 1, hy = 1,
and hu = 1, and used two types of the references signal r:

sinusoidal : r(t) = 2 sin
2π
40

t, square : r(t) =



0 0 ≤ t < 50
1 50 ≤ t < 100
0 100 ≤ t < 150
−1 150 ≤ t < 200
...

...

(35)

We used (14) and (20) as LWA for Step 3a and fixed the neighbor size k = 4. We
adopted the distance defined by (17) for all methods to sort vectors. In Step 3b,
we fixed k = 10. Since d = n + hy + m = 3 < k, Step 3b provides the least-norm
solution. In Step 3c, we used the DALM method [9] to solve (30).

100 200 300 400 500 600
−5

0

5

y

100 200 300 400 500 600
−5

0

5

t

u

Figure 2: Stored measurement data. Top plot: y. Bottom plot: u.

To use the generated 100 databases and another 100 random sequences ε(t),
we simulated the three methods for model-free predictive control. We calculated
the sum of the squares of the tracking error to compare these methods e(a:b) =
r(a:b) − y(a:b), we adopt the “colon” notation in Matlab, as

b∑
t=a

e(t)2. (36)

In Fig. 3, From Fig. 3, we conclude as follows.

• Model-free predictive control by the least-norm solution (Step 3b) and ℓ1-
minimization (Step 3c) yields less tracking errors than the standard LWA
method (Step 3a). Hence, there is a possibility to obtain better results us-
ing more appropriate parameter values.

• Although ℓ1-minimization (Step 3c) is the best in view of the tracking error,
the computational time by ℓ1-minimization is much longer than that by other
methods. The average computational ratios of Step 3b to Step 3a and Step 3c
to Step 3a were approximately 0.999 and 14.21, respectively.

• In all methods, the tracking error for the square reference signal is smaller
than that for the sinusoidal one because the former is a piecewise constant.
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Figure 3: Boxplot of the sum of squares of the tracking error e(t) = r(t) − y(t) for
the sinusoidal (label 1) and square references (label 2): (a) standard LWA method,
(b) least-norm solution, and (c) ℓ1-minimization.
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Figure 4: Boxplot of the sum of tracking error e(t) = r(t) − y(t) by the least-norm
solution to evaluate the effect of database maintenance: (a) the sinusoidal reference
and (b) the square reference.

We show a typical result in Fig. 4, which we obtained when we used 100 sets
of random sequences ε(t) according to Gaussian distribution with zero mean and
variance σ2 = 0.012. The variance was smaller than that (σ2 = 0.052) in the first
simulation results. To obtain the results, we used the level of database maintenance
γ = 6 × 10−4 for the sinusoidal reference and γ = 5 × 10−4 for the square reference.
The results were sensitive to γ. From Fig. 4, we conclude as follows.

• The interquartile range indicated by the boxes became smaller through database
maintenance.

• The maximum of data points indicated by the end of the upper whiskers also
became smaller through database maintenance.

• There are outliers indicated by “+”. In particular, there exist large valued
outliers in the results for the square reference.

• The distribution of the tracking errors for the square reference is poorer than
that for the sinusoidal reference, unlike the distribution shown in Fig. 3; this
is because of the piecewise constant reference.

Finally, we show examples of simulation results in Figs. 5, 6, 7 and 8. In the
figures, the red dashed line indicate the reference signal r; the blue solid line is
the output y; and the top, middle, and bottom are output y, input u, and error e,
respectively. For Figs.5-8:(a) standard LWA method, (b) least-norm solution, and
(c) ℓ1-minimization.
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Figure 5: Simulation results using a fixed database.
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Figure 6: Simulation results using a fixed database.
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Figure 7: Simulation results using an update database.
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Figure 8: Simulation results using an update database.

7 Conclusion

In this study, we compared the three methods based on LWA, least-norm solutions,
and ℓ1-minimization in model-free predictive control using Just-In-Time modeling
for an unstable system. The least-norm solutions and ℓ1-norm solutions gave much
smaller tracking errors than the LWA. Since ℓ1-minimization requires much longer
computational time, we concluded that the method using least-norm solutions is the
best for practical usage. Furthermore, we determined that database maintenance
yields better results when working with a small-sized database.
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