Method of Inferring Source Code Locations
Corresponding to Mobile Applications Run-time
Logs

BEE:jpn

HhRE

~FH:2017-10-05

F—7— K (Ja):

*—7— K (En):

YER

A—=ILT7 KL R:

Firi&:
http://hdl.handle.net/2297/45365

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

@IES

http://creativecommons.org/licenses/by-nc-nd/3.0/

EfTR a7 6 N Y % Y — X a— FERT 2 #EHl§
LENANT TV — a v DTSR TIE
Method of Inferring Source Code Locations
Corresponding to Mobile Applications Run-time Logs
H ARARHAT RN SRR I

PEFERE 1323112002
/NEY W

Abstract

We present a development supporting tool which infers source-code locations by an-
alyzing run-time logs of mobile applications. At the development of an application, a
developer conventionally inserts log function calls in order to confirm that the applica-
tion correctly runs as expected. After that, she needs to have a process for estimating
details of the program’s runtime behavior to identify the location of a defect location.
Such process relies on her abilities and it is not easy in many cases. Most runtime
environments of mobile applications provide only limited resources, and thus they
cannot save the sufficient amount of runtime logs. The situation also becomes worse
by careless insertions of log function calls. In this work, our method analyzes static
source-code and runtime logs. After that, it can support the developer by quickly
inferring candidates of log function calls. For the fast inference of the candidates,
our method first extracts log-strings from the source-code and constructs the index of
their locations in advance. In this work, we implemented our method as LogChamober,
a plugin tool on Android Studio which is the major integrated development environ-
ment for Android applications. We report our experiments on the real open-source

applications with the implementation.

PR

AHETIE, A= 74V R ETHETZ2ENANT 7Y r— a v OFfikiu 7
EHOT, 2o 2 8E LY —R2a—F Lo 2 #EN T 2R Y — V2 RET 5.
% DA, HRERZENANT SV r—2 a v 2BFT 2 L EI, EITROBIEL IR
EBYDMRT 272012, 77V —vavicu VB L 280Al. 2ok 7l
TRDEXL 2 WEIEOEFT 2 RET 5 2012, BRI NLETRT 7 » s 70 7T 4
DEATREDENEZ TN HEE T 2B EICR 5. 2D X9 BIEEEBHREFHE DR IIC
WAL, % OEARBEHTIER V. FICEANA LT Y r—y a v OIET 385813 —
) Y — AR e N T30 THIIcE TR V2K ko), B4k hiiae
TEAEIEH L DA X o TR IC 2 5. AFROIRE T 2 Fikl, Efrlkku /&y —2
a— FONT &SI 247\, FEfThkia 72 B L 2Eiromz s 2 LT, 7
v 772 OFETROMEDOHE DXLEEZ T 5. BEHOHEIIC v 7 OXFI % H 502 C o
i U BEIM 92 2 & TRBUCT) . AIFZE T Android 7 7Y F— a VT D 7%
D DITHT 2 FEAFFEEREE Android Studio(IntelliJ IDEA) @ 75 7' 4 ~ LogChamber

ELTHEZTO, HBICAHENTWE A=Y =207 7) 77— a VIZw L CEE
filigEhm % fr\v, GRME%E FEEE L 7.

TH 2842 A 1A
FHRXBEREE (F)
1. HURCEE GHEBEOSAIRERHTS T L,)
EATHER /DB D Y — A 2 — FEFAHERT B5E AT 7Y = 2 v ORBEETE

(#3R) Method of Inferring Source Code Locations Corresponding to Mobile Applications Run—time Logs

2. WIERIME (D F B _ETHEHEER

O py ¥

&b bt :‘ r)
@ ® % EpER

3. FERHROEE (600~650 F)

4. FEFER QO & WThOR) Of #% - TE#H
(2 mEFr # + (I %)

