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Abstract

We present a development supporting tool which infers source-code locations by an-
alyzing run-time logs of mobile applications. At the development of an application, a
developer conventionally inserts log function calls in order to confirm that the applica-
tion correctly runs as expected. After that, she needs to have a process for estimating
details of the program’s runtime behavior to identify the location of a defect location.
Such process relies on her abilities and it is not easy in many cases. Most runtime
environments of mobile applications provide only limited resources, and thus they
cannot save the sufficient amount of runtime logs. The situation also becomes worse
by careless insertions of log function calls. In this work, our method analyzes static
source-code and runtime logs. After that, it can support the developer by quickly
inferring candidates of log function calls. For the fast inference of the candidates,
our method first extracts log-strings from the source-code and constructs the index of
their locations in advance. In this work, we implemented our method as LogChamober,
a plugin tool on Android Studio which is the major integrated development environ-
ment for Android applications. We report our experiments on the real open-source

applications with the implementation.
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