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Abstract 
 

 

As a key technology of rapid and low-cost drug development, drug repositioning is 

getting more essential and popular for all pharmaceutical companies. Since drug 

repositioning means reuse of approved drugs for another purpose, their safety and method of 

production have already been confirmed. Besides biomedical experiments, computational 

methods are developed for drug repositioning. Most of them adopt network-based algorithms 

and combination of various databases including gene expression and pathway data. On the 

other hand, it is also suggested that text mining has much potential for drug repositioning. In 

biomedical text mining, biomedical named entities (e.g. genes, drugs, diseases, etc.) are 

recognized and the relations between these entities are extracted. Additionally, biomedical 

ontologies are utilized as the sources of semantic information for recognizing exactly names 

of biomedical entities. 

In this study, a text mining approach to the discovery of unknown drug-disease relation 

was tested. Starting from over 3 million PubMed abstracts related to cancer, biomedical 

named entities were first recognized and the relations among them were extracted. 

Biomedical ontologies such as PharmGKB, MeSH, DrugBank, and CTD databases were 

utilized for the sources of semantic information. Using a word embedding algorithm, senses 

of over 1.7 million words were well represented in sufficiently short feature vectors. Through 

various analysis including clustering and classification, feasibility of our approach was tested. 

Finally, our trained classification model achieved 87.6% accuracy in the prediction of drug-

disease relation in cancer treatment and succeeded in discovering novel drug-disease relations 

that actually reported in recent studies. 
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Chapter 1 Introduction 

This chapter aims to introduce generally about the content and distribution of our 

dissertation. 

 

Chương 2 Related works 

2.1 Drug repositioning 

As a new and effective strategy for drug discovery, drug repositioning (or drug 

repurposing, reprofiling, etc.) is attracting much interest and expectation from academic 

researchers and pharmaceutical companies [1]. Briefly saying, drug repositioning is reuse of 

existing drugs for other purposes. 

Besides biomedical experiments, computational methods are developed for drug 

repositioning. Especially, in rerent years it is also suggested that text mining has much 

potential for drug repositioning. 

2.2 Biomedical text mining 

 Text mining 

In general, text mining is the process of extracting information or discovering knowledge 

automatically from textual data or unstructured data. The process of text mining is quite 

similar to the process of data mining. Text mining is also known as an interdisciplinary area 

since it is related to various fields such as information retrieval, information extraction, 

natuaral language processing, data mining. 

 Biomedical text mining 

Biomedical text mining refers to the application of text mining to biomedical domain. 

Through biomedical text mining, useful knowledge, which is hidden in biomedical literature, 

can be extracted. 

 Information extraction (IE) 

Information extraction is the basic task for text mining. The process of information 

extraction includes two main tasks: named entity recognition (NER) and relation extraction 

(RE). 

 

Chương 3 Materials and methods 

3.1 Overview of processing pipeline 

The processing pipeline in this study is shown in Figure 1. It includes four phases: Text 

processing; Word embedding; Combination of word vectors and database information; and 

Generation of drug-disease relation vectors. 
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Figure 1. Overview of processing pipeline. Box colors indicate: light blue for corpus, light green for 

databases, yellow for word vectors, and pink for concatenated word vectors. (a), (b), (c), and (d) 

corresponding to four phases of processing pipeline. 

3.2 Resources and tools 

3.2.1 Biomedical databases 

 PubMed  

PubMed [2] is widely used in biomedical text mining community. It allows users to 

access to a large biomedical database including the summary information of published 

biomedical articles such as author, title, abstract, keywords, etc.  

 Medical Subject Headings (MeSH) 

MeSH is a comprehensive controlled vocabulary thesaurus of biomedical terms which 

is created and updated by the United States National Library of Medical (NLM) [3].  

 Pharmacogenomics Knowledgebase (PharmGKB) 

PharmGKB is a pharmacogenomics knowledge resource which is used to aggregate, 

curate, integrate, and disseminate information about the relationships between human 

genetic variations and corresponding drug responses [4]. 

 DrugBank 

DrugBank [5] is a pharmaceutical database which contains knowledge about drugs 

and drug targets. In DrugBank, Anatomical Therapeutic Chemical (ATC) code is used 

to classify active ingredients of drugs according to the system or organ. 

 Comparative Toxicogenomics Database (CTD) 

CTD provides useful information regarding relationships between different types of 

biomedical objects such as chemicals, and genes, and diseases [6]. 

3.2.2 Tools 

(d) (a) 

(b) 

(c) 
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 Enju parser 

Enju is a tool for parsing English sentences developed at Tsujii Laboratory in Tokyo 

University. In our study, Enju is used for Part-Of-Speech (POS) tagging and 

conversion of words into base forms. 

 word2vec software for word embedding 

This software provides an effective implementation for computing vector 

representations of words. It was developed by Tomas Mikolov and his co-workers. 

3.3 Data preparation 

3.3.1 Cancer-related corpus from PubMed abstracts 

As a raw corpus, we used a subset of PubMed abstracts downloaded in October 2013, 

filtered by the keyword “cancer”. From 3,099,076 abstracts, 14,847,050 sentences were 

extracted.  

3.3.2 Parsing sentences 

Enju [7] was used for POS recognition of words and conversion into base forms. Since 

the sentences were extracted from biomedical abstracts, “-genia” option was specified. As a 

result, POS and base form are recognized for each word. 

So that word2vec can differently treat the same word with different POS categories, they 

were attached right after the base form of words (e.g. “care” -> “care(V)”). For readability, 

nouns are kept as is. To simplify the input for word2vec, we removed all words except nouns, 

adjectives, adverbs, and verbs. 

3.3.3 Named entity recognition and conversion into single words 

Biological terms typically consist of two or more words. In addition, they have many 

synonyms. Since word2vec basically treats a sentence as a sequence of words, it is needed to 

recognize biological synonyms, aggregate them into primary terms, and convert them into 

single words. In this study, primary names and synonyms of drugs, diseases, and genes were 

extracted from PharmGKB [8] and used for recognition and aggregation (genes are used only 

for showing distribution of word vectors). For each converted single words, prefixes 

indicating their semantic categories were attached for later processing. After all conversion, 

14,847,050 sentences are expanded to 45,264,480. 

3.3.4 Word embedding 

In this study, we used word2vec software, a de facto standard implementation of word 

embedding algorithm, with the following parameters by default. As a result, 1,772,186 words 

were embedded into word vectors (2,303 for drugs, 3,069 for diseases, 8,703 for genes, and 

1,758,111 for others). 

3.3.5 Combination of word vectors and database information 

For the evaluation of clustering results, ATC codes [9] and MeSH tree numbers [3] were 

attached to drug and disease names, respectively. ATC codes were extracted from DrugBank 

[5]. Due to the incompleteness of data annotation, only 1,253 drugs out of 2,303 and 2,745 

diseases out of 3,069 have such classification. 

3.3.6 Generation of the special vector for drug-disease relations 

For the evaluation of difference vectors between drugs and diseases, relations between 

drugs and diseases occurring in the corpus were extracted from CTD [6]. The figure 2 

illustrates the concatenation of drug and disease vectors to create drug-disease relation 
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vectors. If the relation is written in CTD with therapeutic evidence, it is labeled “TRUE” 

(otherwise, “FALSE”). Only the 12,462 relations with therapeutic evidences were adopted for 

obtaining trustable results. In the set of relations, the mapping from drugs to diseases is 

many-to-many. For example, “drug::gefitinib” is related to 17 different diseases, and 

“disease::lung_neoplasm” is mapped from 60 different drugs.  

 

Figure 2.  The concatenation of drug and disease word vectors to create drug-disease relation vectors. If 

the relation is written in CTD with therapeutic evidence, it is labeled “TRUE” (otherwise, “FALSE”). 

In order to conduct detailed analysis on cancer-related drugs and diseases, 12,462 

extracted drug-disease relations were further filtered so that both of drug and disease names 

in each relation are attached to an ATC code and a MeSH tree number beginning with “L” 

(Antineoplastic and immunomodulating agents) and “C04” (Neoplasms), respectively. As a 

result, 1,097 relations consist of 104 anti-cancer drugs and 107 cancer-related diseases were 

extracted for detailed analysis. 

3.4 Algorithms 

3.4.1 Checking the distribution of biomedical word vectors  

In order to check the distribution of biomedical word vectors for drugs, diseases, and 

genes, we adopted Principle component analysis (PCA) to convert 200-dimension vectors 

into 3-dimension vectors and plotted in 3D space. In this study, prcomp and plot3d functions 

included in stats and rgl packages respectively for R software were used. 

3.4.2 Clustering for drugs and diseases 

For visual evaluation of word vector quality, we performed hierarchical clustering with 

cosine distance and Ward's method [10]. Before the clustering, 2,303 drugs and 3,069 

diseases occurring in the corpus were reduced to 1,282 and 1,051, respectively, so that all of 

them also occur in CTD. In this study, we used hclust and plot functions included in stats and 

graphics packages respectively in R software for hierarchical clustering and visualizing 

clustering performance. 

3.4.3 Classification for drug-disease relations 

Support Vector Machine (SVM) was adopted for learning and predicting possible 

relations between drugs and diseases. As an implementation, ksvm function included in 

kernlab package for R software was used with default parameters. 

3.4.4 Cross-validation 

Cross-validation is a very popular method which is used to evaluate the performance of 

classification problems. In this study, we performed 100 times 10-fold cross-validation. Then, 

the accuracies were averaged. 

3.4.5 Methods for the class-imbalance problem 

drug::A disease::B 

drug::A_disease::B TRUE 
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To solve class imbalanced problem, we applied the data level method in which 

corresponding to the number of positive examples (or correct drug-disease relations), the 

same number of negative examples (or incorrect drug-disease relations) were randomly 

selected, and used in each cross-validation. 

Chương 4 Experimental results and discussion 

4.1 Distribution of drug-disease-gene vectors 

Figure 3 illustrates the 3D plot of vectors corresponding to 2,303 drugs, 3,069 diseases, 

and 8,703 for genes. For visualization, the dimension of vector was reduced from 200 to 3 by 

PCA. In the top panel of the figure, it is shown that the distributions of word vectors in three 

categories are clearly separated. In the bottom panel, it is also shown that the frequent words 

have clear separation, whereas it is relatively difficult to discriminate the categories of rare 

words. 

 

Figure 3. Distribution of word vectors visualized through PCA and 3D plot. Top panel: blue, red, 

green colors indicate word vectors for drugs, diseases, and genes. Bottom panel: color gradation 

from light blue to light pink indicates the frequency of words (from rare to frequent). 
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4.2 Cluster analysis for drug and disease vectors 

Figure 4 and 5 show the result of hierarchical clustering for drugs and diseases, 

respectively. In the right panels of them, entire pictures of clustering results for 1,282 drugs 

and 1,051 diseases are shown. In the right panel of Figure 4, it can be seen that most of the 

anti-cancer drugs are condensed in the ninth cluster from the top (left panel for more detail). 

It indicates that the word vectors for drugs well represent the characteristics of corresponding 

drugs. Also in Figure 5, we can see that the seventh cluster from the top contains a number of 

cancer-related diseases, however, also in sixth and ninth clusters. The difference between 

these results might come from the fact that diseases can be classified from different 

perspectives (tissues, mechanism, etc.). 
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Figure 4. Result of hierarchical clustering on drugs. Red, green, blue, yellow colors for characters 

indicate that the drugs are classified in ATC codes as “L01:Antineoplastic Agents”, “L02:Endocrine 

Therapy”, “L03:Immunostimulants”, and “L04:Immunosuppressants”, respectively.  
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Figure 5. Result of hierarchical clustering on diseases. Green, yellow, red, dodgerblue, pink, blue, 

and springgreen colors for characters indicate that the diseases are classified in MeSH tree numbers as 

“C04.182:Cysts”, “C04.445:Hamartoma”, “C04.557:Neoplasms by Histologic Type”, 

“C04.588:Neoplasms by Site”, “C04.697:Neoplastic Processes”, “C04.730:Paraneoplastic Syndromes”, 

and “C04.834:Precancerous Conditions”.  
 

4.3 Classification of unseen drug-disease relations 
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The result of performance evaluation is shown in Table 1. Each accuracy is an average of 

100 times 10-fold cross-validation with different subsets of negative examples. In this table, 

it was revealed that the performance of classification is affected by vector size and window 

size, and the best accuracy was 87.5%. For exploratory use of the classification model to 

discover candidate drug-disease pairs, it means sufficiently high performance.  

Table 1 Accuracy of classifying correct and incorrect drug-disease relations by SVM. 

vector size 
accuracy 

window size = 2 window size = 3 window size = 4 window size = 8 

50 0.872 0.873 0.875 0.872 

75 0.873 0.874 0.874 0.874 

100 0.874 0.874 0.874 0.876 

200 0.874 0.874 0.874 0.874 
 

Finally, we tested all combinations of 2,199 drugs not used in training and 107 cancer-

related diseases (in total, 235,293 drug-disease pairs). In case of the classification model 

trained by 11,128 samples, only 64 test samples were predicted as positive, and all the drugs 

in the sample were anti-cancer drugs (but not included in 104 anti-cancer drugs used for 

training). By controlling the degree of class imbalance in training data, it is possible to 

predict a pair of non-anti-cancer drug and cancer-related disease as positive. For example, 

using the classification model trained by 1,097 positive and 8,776 negative samples (degree 

of imbalance is 1:8), 10 times training and test by 235,293 drug-disease pairs discovered the 

following candidate drugs for repositioning to cancer treatment, where the numbers indicate 

how many times they were discovered in 10 times training and test.  

drug::urokinase(10), drug::photodynamic_therapy(10),  drug::oxygen(10),  drug::nonoxynol-9(10),   

drug::nitroglycerin(10),  drug::nitrogen(10),  drug::l-phenylalanine(10),  drug::l-methionine(10),   

drug::l-glutamine(10),  drug::l-cysteine(10),  drug::glutathione(10),  drug::glucose(10),   

drug::epoxide(10),  drug::enzyme(10),  drug::collagenase(10),  drug::bisphosphonate(10),   

drug::amino_acid(10),  drug::amide(10),  drug::clarithromycin(9),  drug::vitamin(8),  drug::l-proline(7),   

drug::vitamin_e(6),  drug::xanthophyll(4),  drug::phospholipid(4),  drug::palifermin(4),  drug::ether(4),   

drug::ethacrynic_acid(4),  drug::denosumab(4),  drug::egfr_inhibitor(2),  drug::pyruvic_acid(1). 

Besides too general names like “drug::enzyme” and “drug::amide”, it is notable that the 

above list includes approved anti-cancer drugs (e.g. “drug::denosumab”), anti-cancer drugs 

under investigation (e.g. “drug::clarithromycin”, “drug::bisphosphonate”, and 

“drug::xanthophyll”), and drugs potentially promote cancer (e.g. “drug::urokinase” and 

“drug::collagenase”). Especially, it should be emphasized that repositioning of clarithromycin 

to anti-cancer agent has been reported in 2015 [11], despite the fact that the corpus was 

downloaded in 2013. Though further screening based on expert’s knowledge is necessary, 

this result demonstrate that the classification of concatenated word vector is a promising 

approach to in-silico screening of drug-disease relations for drug repositioning. 

 

Chương 5 Conclusion and future works 

5.1 Dissertation summary 



11 

 

In this study, we applied text mining techniques to drug repositioning in order to (i) 

check the distribution of biomedical words; (ii) analyze clustering of anti-cancer drug vectors 

and cancer-related disease vectors; (iii) find unseen drug-disease relations by classification. 

From experimental results, it was revealed that word embedding is effective for 

representing sense of all words in large amount of cancer-related PubMed abstracts. 

Furthermore, concatenation of word vectors of drugs and diseases well represents their 

relations and could be used for finding candidate drugs for repositioning by classification. 

5.2 Future works 

For better performance of classification, various feature selection and over-sampling 

algorithms [12] will be tested in the future work. Additionally, we will apply this method to 

other kinds of diseases as well as new kinds of biomedical relations such as gene-disease 

relations or drug-gene relations. Finally, if possible we will attempt to cover whole PubMed 

abstracts. 
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