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Abstract 

 

Due to the diversity of terrain, rainfall and snowfall phenomena take on different forms depending 

on location. The amount and type of precipitation may change quite rapidly over a short period of time.  

As heavy snowfall may cause severe damage, it is a significant issue to be able to monitor 

precipitation continuously for decreasing the potential damage as well as obtaining a better 

meteorological understanding of orographic snowfall. Especially, it is important to understand the 

snowfall formation mechanism with different types of solid precipitation such as snowflake and graupel. 

This thesis aims to solve the problem of improving the accuracy of that kind of studies 

implementing a new approach to enhance the results. In this study, we conducted feature analysis and 

classification of particle data from Two-Dimensional Video Disdrometer (2DVD) through the combined 

use of various statistical methods including supervised and unsupervised machine learning. We developed 

a new system with 2DVD for observing and estimating various particles. Although the 2DVD takes 

binary image with lower resolution than Charge-coupled device video camera, combination of up-to-date 

classifier and features including fractal-related ones enabled the system to outperform the accuracy 

achieved in our previous study and similar state-of-the-art works. 

 

 

 

 

 

 

 

 

 

 

 

 



1  Introduction 

1.1 Meteorology and weather monitoring 

Modern meteorological weather monitoring consists of a large variety of approaches and 

techniques, using both remote (radars, lidars) and ground-based observation equipment and methods. 

For the purpose of remote measuring the precipitation intensity on a wide area, a popular facility is 

a polarimetric radar. This device is commonly used to obtain the cloud microphysical parameters. While 

polarimetric radars operate on large-scale, a device named disdrometer is additionally used for the 

ground-based observation of precipitation at a spot. It is a relatively-small instrument which can measure 

the size and falling velocity of a particle. Based on the fact that rain and graupel have different 

distribution of size and falling velocity, it is possible to discriminate them using a disdrometer. However, 

if two particles have similar size and falling velocity, it is impossible to discriminate them by a 

disdrometer. In this sense, the observation of precipitation using a polarimetric radar and/or a disdrometer 

is not sufficient for accurately estimating the amount of precipitation consisting of various types.   

1.2 Two-dimensional video disdrometer 

A two-dimensional video disdrometer (hereafter 2DVD) is an optical device developed for 

measuring solid precipitation characteristics on ground. The instrument is manufactured by Joanneum 

Research of Austria. 2DVD measures volume, diameter, shape, and velocity of every individual particle. 

From this data, one can estimate particle size distribution, precipitation rate, and other related variables. 

1.3 Types of solid precipitation 

While liquid precipitation consists of raindrops only, solid precipitation may be split into a variety 

of classes, depending on the particle parameters. These parameters are influenced by various factors such 

as snow formation processes and macro physical conditions. 

This study is intended to make difference only between hydrometeors of 2 basic classes: snow and 

graupel. Nevertheless it makes use of 3 intermediate classes which are artificial in the sense that are 

derived by manual annotation in difficult to classify cases.   

A graupel is round-shaped as an approximate ellipse, and in contrast, a snowflake has a complex 

shape. As to the size of a particle, graupels are relatively smaller than snowflakes. These features meet 

intuitive criteria in human’s discrimination of snowflake and graupel. The latter feature was frequently 

used in previous studies since it is easier to observe. 

2 Snow classification methods review  

We consider the following 2 papers to be the closest and most recent works in the field of snow 

classification: 



1. Nurzynska, K., Kubo, M. and Muramoto, K. (2010) 2D Feature Space for Snow Particle 

Classification into Snowflake and Graupel. IEICE Transactions on Information and Systems, E93-D, 12, 

3344-3351. 

2. Grazioli, J., Tuia, D., Monhart, S., Schneebeli, M., Raupach, T. and Berne, A. (2014) 

Hydrometeor classification from two-dimensional video disdrometer data. Atmospheric Measurement 

Techniques, 7, 2869-2882. 

First one is the previous work of the Bioinformatics Laboratory of Kanazawa University. Instead of 

2DVD, it uses grayscale images taken by CCD video camera. Using rich information of high-resolution 

grayscale image, it achieved high accuracy of particle-by-particle classification into snowflake and 

graupel. 

However, since it requires large space like a room, portability and applicability are low. In addition, 

it is a hand-made facility and not easy to use.  

The authors of the second paper used 2DVD to determine the dominant type of precipitation 

observed in a time interval. Conversely saying, it does not perform particle-by-particle classification. 

3 Materials and Methods  

3.1 System and Condition of Observation 

2DVD is an optical device developed for measuring precipitation drop size, shape, and velocity 

field. The sensor unit consists of two orthogonal and synchronized line-scan cameras and a bright light 

source in front of each of them. While precipitation particles fall between the cameras and light sources 

(an area of 10cm ×10cm) their shapes are recorded as shadows are being projected. We have ob-served 

snowfall event from 1250 JST to 1300 JST in January 26, 2011 at Kanazawa University. The data of 

16,010 snow particles were recorded by the 2DVD. The air temperature was about 0˚C through the event 

duration. 

3.2. Preparation of Data for Analysis and Classification 

Particle Images and Basic Features 

Since 2DVD scans two line images at once from two orthogonally oriented cameras (A and B), two 

different images are obtained for each particle. 

A graupel is round-shaped as an approximate ellipse, and in contrast, a snow-flake has a complex 

shape. As to the size of a particle, graupel are relatively smaller than snowflakes. These features meet 

intuitive criteria in human’s discrimination of snowflake and graupel. The latter feature was frequently 

used in previous studies since it is easier to observe.  

In addition to shape and size, it is possible to obtain various features of a particle by using 2DVD. 

The list of features used in this study is shown in Table 1. 

  



Feature type Feature name 

Camera-independent 
features 

equivolumetric_diameter[mm], volume[mm3], vertical_fall_velocity[m/s], height_of_one_line[mm] 

Camera-specific 
features 

height[mm]_A, height[mm]_B, number_of_lines_A, number_of_lines_B, pixelwidth[mm]_A, 
pixelwidth[mm]_B, width[pixel]_A, width[pixel]_B, height[pixel]_A, height[pixel]_B, 
total_pixels_A, total_pixels_B, area[mm2]_A, area[mm2]_B, perimeter[mm]_A, perimeter[mm]_B, 
box_count_1_A, box_count_1_B, box_count_2_A, box_count_2_B, box_count_4_A, 
box_count_4_B, box_count_8_A, box_count_8_B, fractal_1_2_A, fractal_1_2_B, fractal_2_4_A, 
fractal_2_4_B, fractal_1_4_A, fractal_1_4_B, fractal_4_8_A, fractal_4_8_B, fractal_2_8_A, 
fractal_2_8_B 

Camera-independent  
features(max and 

min) converted from 
camera-specific 

features (A and B) 

height[mm]_max, height[mm]_min, number_of_lines_max, number_of_lines_min, 
pixelwidth[mm]_max, pixelwidth[mm]_min, width[pixel]_max, width[pixel]_min, height[pixel]_max, 
height[pixel]_min, total_pixels_max, total_pixels_min, area[mm2]_max, area[mm2]_min, 
perimeter[mm]_max, perimeter[mm]_min, box_count_1_max, box_count_1_min, box_count_2_max, 
box_count_2_min, box_count_4_max, box_count_4_min, box_count_8_max, box_count_8_min, 
fractal_1_2_max, fractal_1_2_min, fractal_2_4_max, fractal_2_4_min, fractal_1_4_max, 
fractal_1_4_min, fractal_4_8_max, fractal_4_8_min, fractal_2_8_max, fractal_2_8_min 

Other features(not 
used in analysis and 

classification) 
time 

Table 1. Features for Analysis and Classification. 

The 2DVD software computes the volume and equivolumetric diameter based on three-dimensional 

shape reconstructed from two orthogonal projections. The particle shadows in the upper light sheet are 

matched with particle shadows in the lower sheet, and the software obtains the vertical fall velocity and 

height quantization (height_of_one_line) from the falling time through the planes separated 6.2mm 

vertically at the line-scan rate of 34.1 kHz.The number of lines scanned by each camera is the height of 

the particle. The light sheet of 10 cm is mapped onto 512 pixels in the line-scan camera, and the 

horizontal resolution of pixel (pixelwidth) is about 0.2 mm.The longest scan line is the particle width. The 

area of each particle was computed by multiplying total number of pixels (total_pixels), 

height_of_one_line and pixelwidth. We got the boundary of particle shape and computed the particle 

perimeter. 

Camera-specific features are important since they contain various information obtained by 2DVD. 

However, it is not sufficient to use them directly in the analysis and classification. When we use machine 

learning algorithms, the same type of features obtained by cameras A and B (e.g. perimeter[mm]_A and 

perimeter[mm]_B) are also treated as simply different and independent ones. To overcome this problem, 

we added extra features that are the result of integrating camera-specific features by calculating maximum 

and minimum values. For example, if perimeter[mm]_A> perimeter[mm]_B, then perimeter[mm]_max = 

perimeter[mm]_A and perimeter[mm]_min = perimeter[mm]_B. In a sense, it is a sorting operation of 

values from two cameras and if a feature is mainly characterized by large (small) values of it, the 

integrated feature of its maximum (minimum) will have strong power in the analysis and classification of 

particles.  

Fractal-related Features 

Perimeter is a feature that reflects two different characteristics of particle, that is, size and 

complexity of shape. In this study, we introduced fractal-related features also related to complexity of 

shape.  



Fractal geometry provides a mathematical model for many complex objects with property of self-

similarity found in nature. Fractal dimension is a useful feature for shape classification. The snowflake 

formation modeled by fractal dimension, was proposed for improvement estimates of snowfall retrieval 

by radar remote sensing. This study uses the box-counting method, which is one of the frequently used 

techniques to estimate the fractal dimension also known as Minkowski dimension. First, the smallest 

number of box shaped elements covering the particle boundary is counted (Figure 1). Next, the obtained 

amount of covering elements is log-log plotted versus the reciprocal of the element size (Figure 2). 

Finally, the box dimension estimate is taken from the monotonically rising linear slope. 

  
Figure 1. Example of covering results from the box-counting method. (a) Snowflake by camera A; raw image by 

2DVD (leftmost), boundary covered by boxes of size 1, 2, 4, and 8. (b) Snowflake by camera B. 

 

Figure 2. The log-log plot of the box-counting method. 

Human Annotation 

Total number of particles in our dataset is 16,010, that is, it consists of 16,010 feature vectors with 

the features listed in Table 1. To conduct meaningful analysis and evaluation of classification 

performance, we randomly sampled 1,600 feature vectors and annotated them manually. Before 

annotation, five categories were prepared: snowflake, snowflake-like, intermediate, graupel-like, and 

graupel. Additionally, if one of two images for a particle matched one of the following rules,it was 

automatically annotated as warning and filtered out before random sampling since it can be regarded as 

outlier or erroneous data. 



• equivolumetric_diameter[mm] is less than 0.2. 

• vertical_fall_velocity[m/s] is greater than 4. 

• width[pixel] / height[pixel] is less than 1/3 or greater than 3. 

• The horizontal position of the particle in the raw image is left-end and over 50% of left edge of the 

particle image is occupied by black pixel (i.e. it is strongly suspected that the particle passed by the left 

end of a camera and whole image of it was not taken by 2DVD).  

The numbers of annotated samples are shown in Table 2. According to these annotations, the 

datasets shown in Table 3 are used for analysis and classification.  

Annotation The number of particles 

snowflake 559 

snowflake-like 111 

intermediate 39 

graupel-like 144 

graupel 747 

warning 2,118 

not annotated 12,292 

Table 2.The number of samples after annotation. 

Dataset Annotation 
The number 
of particles 

whole snowflake, snowflake-like, intermediate, graupel-like, graupel, warning, not annotated 16,010 

no-warning snowflake, snowflake-like, intermediate, graupel-like, graupel, not annotated 13,892 

warning-only warning  2,118 

5-classes snowflake, snowflake-like, intermediate, graupel-like, graupel  1,600 

2-classes snowflake, graupel 1,306 

Table 3.Datasets according to annotation. 

3.3. Algorithms 

Normalization 

A feature vector consists of two or more feature values for features. However, it is problematic to 

use the original values for machine learning because in general, value distribution can differ from feature 

to feature. Therefore, it is popular to normalize the original values of feature vectors so that all the 

features have the same aver-age and variance. In this study, we normalized our dataset with average = 0 

and variance = 1 for each feature before the analysis and classification.  

Pearson’s Correlation Coefficient 

To see the direct and pair wise relationship between every pair of features, we calculated Pearson’s 

correlation coefficient. If its value is near to 1, two features are quite similar. It is one of the most basic 

feature analysis methods. In addition, it is known that, removing one of two similar and redundant 

features may lead to better performance of classification, regression, clustering, etc. 

Principal Component Analysis (PCA) 



Among various unsupervised learning algorithms, PCA might be the most popular one. Based on 

the calculation of features’ linear combination that maximizes the variance, PCA converts the original 

feature space into the space of principal components (PCs). After PCA, all the PCs are ordered as PC1, 

PC2, … and it is believed that PC1 is the strongest feature for characterizing the feature vectors, PC2 is 

secondly strong, and so on. Due to this effect of PCA, it is broadly used for different purposes. As the 

basic analysis of original features, coefficient of each feature in the linear combination formula for some 

important PCs like PC1 is evaluated. In this study, it may reflect the importance of the feature to 

characterize and classify snowflakes and graupel.  

Support Vector Machine (SVM) 

Due to its applicability and high-performance, SVM is one of the most popular machine learning 

algorithms today. Among various variants and implementations of SVM, we used ksvm function 

implemented in kernlab package for R. Regarding the choice of kernel, the default one (Radial Basis 

Function kernel, also known as Gaussian kernel) was adopted. A hyper-parameter “sigma” for this kernel 

is being automatically optimized by ksvm.  

Cross-Validation 

To evaluate the performance of predicting the class label (i.e. snowflake or graupel) of unseen 

samples (i.e. unseen particles), it is popular to conduct cross-validation. In this study, we adopted 10-fold 

cross-validation that randomly divides given dataset into 10 and perform learning and prediction 10 times 

by changing 10% of data-set for test (rest of 90% is used for training). One problem about this kind of 

cross-validation is that the evaluated performance is affected by the result of random division and 

different performances are achieved in every evaluation. To solve this problem, we repeated 10-fold 

cross-validation 100 times and averaged the accuracy. 

4 Experimental Results and Discussion 

4.1 Feature analysis by Pearson’s correlation coefficient results may be summarized as follows: 

• Box-count features (i.e. features about the number of boxes) are highly similar to each other. In 

contrast, fractal features are dissimilar to each other.  

• Some of other features are similar to each other (i.e. height and perimeter features). It indicates 

that redundant features like box-count may exist also in these other features.  

• About the difference between camera-specific features and camera-independent features 

calculated from them, fractal features showed clear difference. In other words, calculation of max and 

min was meaningful at least for fractals. 

4.2 Feature analysis by PCA results may be summarized as follows: 



• PC1s of these datasets are similar to each other (Figure 3). Most of the important features in PC1 

are occupied by box-count features (Table 4).  

• PC2 of the dataset “whole” is quite dissimilar to others and the difference is caused by the 

inclusion of “warning-only”. In other words, after filtering errors, PC2 is more or less the same in each 

dataset. About top 10 features of PC1 of “warning-only” (Table 4), it is convincing that most of them are 

occupied by size-related features (height, perimeter, area, etc.) because many of the particles in this 

dataset were removed from “whole” dataset due to their strange size. About PC2s of the datasets “no-

warning”, “5-classes”, and “2-classes”, some of the fractal features occupy top 4 important features.  

• PC3s of the datasets “5-classes” and “2-classes” are quite dissimilar (correlation between them is -

0.97). Since in “2-classes”, ambiguous particles annotated as “snowflake-like”, “inter-mediate”, or 

“graupel-like” are removed from “5-classes”, it can be interpreted that PC3 of  “5-classes” is highly 

affected by the characteristics of such ambiguous particles. 

 

Figure 3. PC1 of the datasets except “warning-only”. 

rank whole no-warning 5-classes 2-classes warning-only 

1 box_count_4_min box_count_4_min total_pixels_B total_pixels_B height[mm]_min 

2 box_count_8_max box_count_8_min total_pixels_max total_pixels_max height[mm]_B 

3 box_count_4_max box_count_8_max total_pixels_min total_pixels_min height[mm]_max 

4 box_count_4_B box_count_8_B total_pixels_A total_pixels_A height[mm]_A 

5 box_count_4_A box_count_4_B width[pixel]_B width[pixel]_B perimeter[mm]_min 

6 box_count_2_min box_count_4_max box_count_8_B box_count_8_B perimeter[mm]_B 

7 box_count_8_min box_count_8_A box_count_8_min box_count_8_min perimeter[mm]_A 

8 box_count_8_A box_count_2_min box_count_4_B width[pixel]_max perimeter[mm]_max 

9 box_count_8_B box_count_4_A width[pixel]_max box_count_8_max area[mm2]_max 

10 box_count_2_max box_count_2_B box_count_8_max box_count_4_B area[mm2]_min 

10 box_count_2_max box_count_2_B box_count_8_max box_count_4_B area[mm2]_min 

Table 4. Top 10 features in descending order of PC1 values. 



4.3 Particle classification by SVM 

First, we evaluated the accuracy of prediction with “2-classes” dataset and all 72 features. The 

average error of prediction (i.e. 1 - average accuracy) was 0.08263. After converting the 72 features into 

72 PCs by PCA, the average error decreased to 0.07191.  

Since so many redundant features exist in the 72 features, reduction of feature set by feature 

selection might decrease the average error of prediction. To choose the representative feature in each 

group, 72 evaluations were performed using only one specific feature in each evaluation. As a result, 14 

representative features with the lowest average errors in their groups were selected. Among them, 

box_count_2_max achieved the best performance (0.1055) as a single feature. It is also notable that the 

suffixes “_max” and “_min” frequently appear instead of “_A” and “_B”. It indicates that the conversion 

of camera specific features to camera-independent ones contributed to achieve better classification 

performance.  

Starting from the feature set with all of these 14 features, feature selection by backward elimination 

was performed. As a baseline performance before the 1st iteration, the average error 0.0543 achieved by 

the feature set with all of these 14 features was used (Table 5).  

In this study, four features were removed through 1st to 4th iterations, and the process of backward 

elimination stopped since 5th iteration could not achieve any improvement. Using the remaining 10 

features, the average error 0.0461 was achieved and it was the best performance of classification in this 

study . Unlike the analysis in section 4.2, this result revealed that fractal features could not contribute to 

the best performance. In other words, they might be useful for more detailed characterization of various 

particles, not for just classifying snowflakes and graupel. In contrast, a box-count feature 

(box_count_2_max) was so important as to the classification by only one feature achieved average error 

0.1055 that is nearly 90% accuracy. It is an interesting finding that, although a box-count feature is a by-

product of fractal calculation, it is significantly important in the classification of snowflakes and graupel. 

 

 

 

 

 

 

 

 

 

 

 



feature 
prediction by 

single feature 
1

st
 iteration 2

nd
 iteration 3

rd
 iteration 4

th
 iteration 5

th
 iteration 

box_count_2_max 0.1055  0.0599  0.0543  0.0481  0.0493  0.0463  

total_pixels_max 0.1198  0.0577  0.0538  0.0485  0.0461  removed 

number_of_lines_min 0.1222  0.0549  0.0511  0.0485  0.0480  0.0466  

height[pixel]_min 0.1224  0.0548  0.0513  0.0481  0.0480  0.0467  

perimeter[mm]_max 0.1274  0.0683  0.0665  0.0626  0.0654  0.0653  

width[pixel]_max 0.1405  0.0564  0.0509  0.0471  0.0479  0.0476  

area[mm2]_max 0.1886  0.0602  0.0574  0.0495  0.0526  0.0522  

height[mm]_min 0.1913  0.0546  0.0531  0.0465  removed removed 

equivolumetric_diameter[mm] 0.2026  0.0652  0.0622  0.0556  0.0561  0.0573  

volume[mm3] 0.2045  0.0567  0.0506  0.0481  0.0486  0.0469  

fractal_2_8_min 0.2069  0.0520  0.0484  removed removed removed 

pixelwidth[mm]_max 0.2434  0.0517  removed removed removed removed 

height_of_one_line[mm] 0.3449  0.0557  0.0529  0.0509  0.0504  0.0513  

vertical_fall_velocity[m/s] 0.4261  0.0556  0.0522  0.0503  0.0499  0.0503  

Table 5. Average errors (i.e. 1 – average accuracy) in the predictions by single feature and multiple features with 

backward elimination. If the elimination of a feature decreased (increased) the average error of prediction, it is shown 

in red (blue) color.The least average error in each column is shown in bold face. 

5 Conclusion and Future Works 

5.1 Dissertation summary 

In this study, we tried not only to (i) outperform the accuracy of the existing analogous 

classification methods, but to (ii) explicitly use the fractal features derived from particle shape and (iii) 

estimate the value of each feature in the contribution to classification. That was a nontrivial task due to 

the described study area problems. Moreover, it had been challenging as recent researches show 

significant advance in adjacent domains. 

We conducted feature analysis and classification of particle data from 2DVD through the combined 

use of various statistical methods including supervised and unsupervised machine learning. Experimental 

results revealed that fractal and box-count features are useful for the characterization and classification of 

snowflakes and graupel. The average accuracy of particle-by-particle classification was around 95.4%, 

which has not been achieved by previous studies. 

From this result, it can be said that we could develop a system for automatically monitoring solid 

precipitation with practically sufficient accuracy of discriminating snowflakes and graupel. Additionally, 

we demonstrated that combining acquisition time information with the results of classification on large 



amount of particles, it becomes possible to conduct time-series analysis of amount and type of particles, 

which contributes to elucidate the mechanism of orographic snowfall (phenomena). 

5.2 Future works 

In this study, we mainly focused on two types of particles (i.e. snowflake and graupel). As an 

extension of this study, conducting human annotation with not only two types but also other detailed 

types of particles (e.g. dendrite-like, aggregate-like, melting-snow-like, and other depending on local 

precipitation particularity), makes it possible to quantitatively analyze wide-variety of snowfall in places 

with weather conditions not necessarily similar to those in Kanazawa. This may undoubtedly boost the 

practical applicability of the method yet lies beyond the scope of this study.  

We hope that these two future work vectors will result in an even better method useful in a range of 

meteorological purposes. 
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