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Abstract

Due to the diversity of terrain, rainfall and snallpphenomena take on different forms depending

on location. The amount and type of precipitaticayrahange quite rapidly over a short period of time

As heavy snowfall may cause severe damage, isignaficant issue to be able to monitor
precipitation continuously for decreasing the po&#mlamage as well as obtaining a better
meteorological understanding of orographic snowtadlpecially, it is important to understand the
snowfall formation mechanism with different typdssolid precipitation such as snowflake and graupel

This thesis aims to solve the problem of improwimg accuracy of that kind of studies
implementing a new approach to enhance the resultsis study, we conducted feature analysis and
classification of particle data from Two-DimensibN&deo Disdrometer (2DVD) through the combined
use of various statistical methods including suisexyand unsupervised machine learning. We develope
a new system with 2DVD for observing and estimatiagous particles. Although the 2DVD takes
binary image with lower resolution than Charge-dedplevice video camera, combination of up-to-date
classifier and features including fractal-relate@® enabled the system to outperform the accuracy

achieved in our previous study and similar statéefart works.



1 Introduction
1.1 Meteorology and weather monitoring
Modern meteorological weather monitoring consisfs ao large variety of approaches and
techniques, using both remote (radars, lidars)ggodnd-based observation equipment and methods.
For the purpose of remote measuring the precipitatitensity on a wide area, a popular facility is
apolarimetric radar. This device is commonly used to obtain the cloudrophysical parameters. While
polarimetric radars operate on large-scale, a dew@meddisdrometer is additionally used for the
ground-based observation of precipitation at a.dpat a relatively-small instrument which can reeee
the size and falling velocity of a particle. Based the fact that rain and graupel have different
distribution of size and falling velocity, it is psible to discriminate them using a disdrometemveéicer,
if two particles have similar size and falling vely, it is impossible to discriminate them by a
disdrometer. In this sense, the observation ofipitation using a polarimetric radar and/or a disdeter
is not sufficient for accurately estimating the amiof precipitation consisting of various types.

1.2 Two-dimensional video disdrometer

A two-dimensional video disdrometer (hereafter 2DVI3 an optical device developed for
measuring solid precipitation characteristics oaugd. The instrument is manufactured by Joanneum
Research of Austria. 2DVD measures volume, diamstepe, and velocity of every individual particle.
From this data, one can estimate particle sizeiloligion, precipitation rate, and other relatediatales.

1.3 Types of solid precipitation

While liquid precipitation consists of raindropslyrsolid precipitation may be split into a variety
of classes, depending on the particle parametéeselparameters are influenced by various factmts s
as snow formation processes and macro physicaitcamsl

This study is intended to make difference only lestwhydrometeors of 2 basic classesw and
graupel. Nevertheless it makes use of 3 intermediate etas$ich are artificial in the sense that are
derived by manual annotation in difficult to cldgsiases.

A graupel is round-shaped as an approximate ellisé in contrast, a snowflake has a complex
shape. As to the size of a particle, graupels eagively smaller than snowflakes. These featuregtm
intuitive criteria in human’s discrimination of smflake and graupel. The latter feature was fredyent

used in previous studies since it is easier torvlese

2 Snow classification methods review

We consider the following 2 papers to be the cloaed most recent works in the field of snow

classification:



1. Nurzynska, K., Kubo, M. and Muramoto, K. (2020) Feature Space for Snow Particle
Classification into Snowflake and Graupel. IEICE&A$actions on Information and Systems, E93-D, 12,
3344-3351.

2. Grazioli, J., Tuia, D., Monhart, S., Schneelidli, Raupach, T. and Berne, A. (2014)
Hydrometeor classification from two-dimensionaleeddisdrometer data. Atmospheric Measurement
Techniques, 7, 2869-2882.

First one is the previous work of the Bioinformaticaboratory of Kanazawa University. Instead of
2DVD, it uses grayscale images taken by CCD vidaoeara. Using rich information of high-resolution
grayscale image, it achieved high accuracy of gartyy-particle classification into snowflake and
graupel.

However, since it requires large space like a rquontability and applicability are low. In addition
it is a hand-made facility and not easy to use.

The authors of the second paper used 2DVD to deterthe dominant type of precipitation

observed in a time interval. Conversely sayingpis not perform particle-by-particle classificatio

3 Materials and Methods
3.1 System and Condition of Observation

2DVD is an optical device developed for measuriregipitation drop size, shape, and velocity
field. The sensor unit consists of two orthogomal aynchronized line-scan cameras and a bright ligh
source in front of each of them. While precipitatjmarticles fall between the cameras and lightsesir
(an area of 10cm x10cm) their shapes are recosistlaows are being projected. We have ob-served
snowfall event from 1250 JST to 1300 JST in Jan@&r\2011 at Kanazawa University. The data of
16,010 snow particles were recorded by the 2DV dintemperature was about 0°C through the event

duration.

3.2. Preparation of Data for Analysis and Classifiation
Particle Images and Basic Features

Since 2DVD scans two line images at once from twbagonally oriented cameras (A and B), two
different images are obtained for each particle.

A graupel is round-shaped as an approximate e]lgse in contrast, a snow-flake has a complex
shape. As to the size of a particle, graupel degively smaller than snowflakes. These featurestme
intuitive criteria in human’s discrimination of smflake and graupel. The latter feature was freqyent
used in previous studies since it is easier torvlese

In addition to shape and size, it is possible t@aiobvarious features of a particle by using 2DVD.
The list of features used in this study is showifiable 1.



Feature type Feature name

Camefr:;tr;crlgsendent equivolumetric_diameter[mm], volume[nimvertical_fall_velocity[m/s], height_of one_limajn]
heightfmm]_A, heightfmm]_B, number_of_lines_A, nuenbof_lines_B, pixelwidthimm]_A,
pixelwidth[mm]_B, width[pixel]_A, width[pixel]_B, leight[pixel]_A, height[pixel]_B,
total_pixels_A, total_pixels_B, area[mmA, area[mm]_B, perimeter[mm]_A, perimeter[mm]_B,
box_count_1_A, box_count_1_B, box_count_2_A, boxinto2_B, box_count_4_A,
box_count_4_B, box_count_8_A, box_count_8_B, fladta?2 A, fractal_1_2 B, fractal 2_4 A,
fractal_2_4 B, fractal_1_4_A, fractal_1_4 B, fracta 8 A, fractal_4_8_B, fractal_2_8_A,
fractal_2_8_B
heightifmm]_max, height{mm]_min, number_of_lines_mapmber_of_lines_min,
Camera-independent pixelwidthimm]_max, pixelwidth[mm]_min, width[pixglmax, width[pixel]_min, height[pixel]_max,
features(max and  height[pixel]_min, total_pixels_max, total_pixelsirmarea[mm]_max, area[mrj_min,
min) converted from perimeter[mm]_max, perimeter[mm]_min, box_count_axibox_count_1_min, box_count_2_max,
camera-specific box_count_2_min, box_count_4_max, box_count_4_hwo®, count_8_max, box_count_8_min,
features (A and B) fractal_1_2_max, fractal_1_2_ min, fractal_2_4 nfeactal_2_4 min, fractal_1_4_max,
fractal_1_4 min, fractal_4_8 max, fractal_4_8_nfiiactal_2_8_max, fractal_2_8 min

Camera-specific
features

Other features(not
used in analysis and time
classification)

Table 1. Features for Analysis and Classification.

The 2DVD software computes the volume and equivelunimdiameter based on three-dimensional
shape reconstructed from two orthogonal projectidhg particle shadows in the upper light sheet are
matched with particle shadows in the lower shewt,the software obtains the vertical fall veloatyd
height quantization (height_of one_line) from thiifig time through the planes separated 6.2mm
vertically at the line-scan rate of 34.1 kHz.Thentner of lines scanned by each camera is the hefght
the particle. The light sheet of 10 cm is mappet® &12 pixels in the line-scan camera, and the
horizontal resolution of pixel (pixelwidth) is akidi2 mm.The longest scan line is the particle idihe
area of each particle was computed by multiplyotgltnumber of pixels (total_pixels),
height_of_one_line and pixelwidth. We got the baanydf particle shape and computed the particle
perimeter.

Camera-specific features are important since tlo@yain various information obtained by 2DVD.
However, it is not sufficient to use them diredtiythe analysis and classification. When we usehimac
learning algorithms, the same type of featuresinbthby cameras A and B (e.g. perimetermm]_A and
perimeter[mm]_B) are also treated as simply difié@nd independent ones. To overcome this problem,
we added extra features that are the result ofiateng camera-specific features by calculating imamn
and minimum values. For example, if perimeter[mn#_gerimeter[mm]_B, then perimeter[mm]_max =
perimeter[mm]_A and perimeter[mm]_min = perimetaminB. In a sense, it is a sorting operation of
values from two cameras and if a feature is mathgracterized by large (small) values of it, the
integrated feature of its maximum (minimum) wilMeastrong power in the analysis and classificatibn

particles.

Fractal-related Features
Perimeter is a feature that reflects two differdmracteristics of particle, that is, size and
complexity of shape. In this study, we introducextfal-related features also related to complexdity

shape.



Fractal geometry provides a mathematical modetrfany complex objects with property of self-
similarity found in nature. Fractal dimension iaseful feature for shape classification. The snakél
formation modeled by fractal dimension, was proddse improvement estimates of snowfall retrieval
by radar remote sensing. This study uses the bortow method, which is one of the frequently used
techniques to estimate the fractal dimension atewk as Minkowski dimension. First, the smallest
number of box shaped elements covering the patimlmdary is counted (Figure 1). Next, the obtained
amount of covering elements is log-log plotted usrthe reciprocal of the element size (Figure 2).

Finally, the box dimension estimate is taken fréw@ monotonically rising linear slope.

Figure 1. Example of covering results from the box-counting method. (a) Snowflake by camera A; raw image by

2DVD (leftmost), boundary covered by boxes of size 1, 2, 4, and 8. (b) Snowflake by camera B.
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Figure 2. The log-log plot of the box-counting metbd.
Human Annotation

Total number of particles in our dataset is 16,@08t is, it consists of 16,010 feature vectordiwit
the features listed in Table 1. To conduct meaningfalysis and evaluation of classification
performance, we randomly sampled 1,600 featureov®eind annotated them manually. Before
annotation, five categories were prepared: snowflakowflake-like, intermediate, graupel-like, and
graupel. Additionally, if one of two images for arficle matched one of the following rules,it was
automatically annotated as warning and filteredomibre random sampling since it can be regarded as

outlier or erroneous data.



* equivolumetric_diameter[mm] is less than 0.2.

« vertical_fall_velocity[m/s] is greater than 4.

 width[pixel] / height[pixel] is less than 1/3 greater than 3.

» The horizontal position of the particle in thevremage is left-end and over 50% of left edge &f th

particle image is occupied by black pixel (i.asistrongly suspected that the particle passetidyeft

end of a camera and whole image of it was not take2DVD).

The numbers of annotated samples are shown in Palecording to these annotations, the

datasets shown in Table 3 are used for analysislasdification.

Annotation The number of particles
snowflake 559
snowflake-like 111
intermediate 39
graupel-like 144
graupel 747
warning 2,118
not annotated 12,292

Table 2.The number of samples after annotation.

Dataset Annotation E?Tjgﬁiigggr
whole snowflake, snowflake-like, intermediate, grakdike, graupel, warning, not annotated 16,010
no-warning snowflake, snowflake-like, intermediaeupel-like, graupel, not annotated 13,892
warning-only warning 2,118
5-classes snowflake, snowflake-like, intermedigtaupel-like, graupel 1,600
2-classes snowflake, graupel 1,306

3.3. Algorithms

Normalization

Table 3.Datasets according to annotation.

A feature vector consists of two or more featureies for features. However, it is problematic to

use the original values for machine learning beeaugeneral, value distribution can differ fronatiere

to feature. Therefore, it is popular to normalize original values of feature vectors so thatradl t

features have the same aver-age and varianceslsttily, we normalized our dataset with average =

and variance = 1 for each feature before the aisadysl classification.

Pearson’s Correlation Coefficient

To see the direct and pair wise relationship betweagery pair of features, we calculated Pearson’s

correlation coefficient. If its value is near toto features are quite similar. It is one of thestrbasic

feature analysis methods. In addition, it is kndhat, removing one of two similar and redundant

features may lead to better performance of clasditin, regression, clustering, etc.

Principal Component Analysis (PCA)



Among various unsupervised learning algorithms, Raight be the most popular one. Based on
the calculation of features’ linear combinationtthreaximizes the variance, PCA converts the original
feature space into the space of principal compaen@hts). After PCA, all the PCs are ordered as PC1,
PC2, ... and it is believed that PC1 is the stronfgegtire for characterizing the feature vectors2 RC
secondly strong, and so on. Due to this effect@APit is broadly used for different purposes. As t
basic analysis of original features, coefficieneath feature in the linear combination formulasmme
important PCs like PC1 is evaluated. In this studwyay reflect the importance of the feature to

characterize and classify snowflakes and graupel.

Support Vector Machine (SVM)

Due to its applicability and high-performance, S\8vne of the most popular machine learning
algorithms today. Among various variants and immatations of SVM, we used ksvm function
implemented in kernlab package for R. Regarding:ti@ce of kernel, the default one (Radial Basis
Function kernel, also known as Gaussian kernel)adapted. A hyper-parameter “sigma” for this kernel

is being automatically optimized by ksvm.

Cross-Validation

To evaluate the performance of predicting the diassl (i.e. snowflake or graupel) of unseen
samples (i.e. unseen patrticles), it is populaotedact cross-validation. In this study, we adogt@«dold
cross-validation that randomly divides given datas® 10 and perform learning and prediction 10es
by changing 10% of data-set for test (rest of 98%sied for training). One problem about this kihd o
cross-validation is that the evaluated performasedfected by the result of random division and
different performances are achieved in every ev@naTo solve this problem, we repeated 10-fold
cross-validation 100 times and averaged the acgurac

4 Experimental Results and Discussion
4.1 Feature analysis by Pearson’s correlation co&tfent results may be summarized as follows:

» Box-count features (i.e. features about the nurabboxes) are highly similar to each other. In
contrast, fractal features are dissimilar to eablero

» Some of other features are similar to each diterheight and perimeter features). It indicates
that redundant features like box-count may exs al these other features.

« About the difference between camera-specificuiest and camera-independent features
calculated from them, fractal features showed algféerence. In other words, calculation of max and
min was meaningful at least for fractals.

4.2 Feature analysis by PCAesults may be summarized as follows:



» PC1s of these datasets are similar to each @#mgure 3). Most of the important features in PC1
are occupied by box-count features (Table 4).

* PC2 of the dataset “whole” is quite dissimilaiotbers and the difference is caused by the
inclusion of “warning-only”. In other words, aftéltering errors, PC2 is more or less the sameaiche
dataset. About top 10 features of PC1 of “warningfo(Table 4), it is convincing that most of theare
occupied by size-related features (height, perimatea, etc.) because many of the particles s thi
dataset were removed from “whole” dataset duedo girange size. About PC2s of the datasets “no-
warning”, “5-classes”, and “2-classes”, some offilaetal features occupy top 4 important features.

* PC3s of the datasets “5-classes” and “2-classestjuite dissimilar (correlation between them is -
0.97). Since in “2-classes”, ambiguous particlesotated as “snowflake-like”, “inter-mediate”, or
“graupel-like” are removed from “5-classes”, it da@ interpreted that PC3 of “5-classes” is highly

affected by the characteristics of such ambigua@usgtes.

0.2

—8—whole ®— no-warning
0.15 bebiflz

5-classes 2-classes
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Features sorted in descending order of PC1 of whole dataset

Figure 3. PC1 of the datasets except “warning-only”

rank whole no-warning 5-classes 2-classes warning-only

1 box_count_4_min box_count_4_min total_pixels_B total_pixels_B height[mm]_min

2 box_count_8_max box_count_8_min total_pixels_max total_pixels_max height[mm]_B

3 box_count_4_max box_count_8_max total_pixels_min total_pixels_min height[mm]_max

4 box_count_4_B box_count_8_B total_pixels_A total_pixels_A height[mm]_A

5 box_count_4_A box_count_4_B width[pixel]_B width[pixel]_B perimeter[mm]_min
6 box_count_2_min box_count_4_max box_count_8 B box_count_8_B perimeter[mm]_B

7 box_count_8_min box_count_8_A box_count_8_min box_count_8_min perimeter[mm]_A

8 box_count_8_A box_count_2_min box_count_4_B width[pixel]_max perimeter[mm]_max
9 box_count_8_B box_count_4_A width[pixel]_max box_count_8_max area[mm2]_max

10 box_count_2_max box_count_2_B box_count_8_max box_count_4_B area[mm2]_min

10 box_count_2_max box_count_2_B box_count_8_max box_count_4_B area[mm2]_min

Table 4. Top 10 features in descending order of PGaalues.



4.3 Particle classification by SVM

First, we evaluated the accuracy of prediction i#titlasses” dataset and all 72 features. The
average error of prediction (i.e. 1 - average aaxy)rwas 0.08263. After converting the 72 featumé&s
72 PCs by PCA, the average error decreased to@071

Since so many redundant features exist in the &&res, reduction of feature set by feature
selection might decrease the average error of gtedi To choose the representative feature in each
group, 72 evaluations were performed using onlyspezific feature in each evaluation. As a redult,
representative features with the lowest averagesim their groups were selected. Among them,
box_count_2_ max achieved the best performance%B)1ds a single feature. It is also notable that th
suffixes “_max” and “_min” frequently appear indeaf “_A” and “_B". It indicates that the conversio
of camera specific features to camera-independesg oontributed to achieve better classification
performance.

Starting from the feature set with all of thesddatures, feature selection by backward elimination
was performed. As a baseline performance beforéghieration, the average error 0.0543 achieyed b
the feature set with all of these 14 features veasi|fTable 5).

In this study, four features were removed througfitd 4th iterations, and the process of backward
elimination stopped since 5th iteration could ndtiave any improvement. Using the remaining 10
features, the average error 0.0461 was achieved was the best performance of classificatioris t
study . Unlike the analysis in section 4.2, thsuterevealed that fractal features could not dbuate to
the best performance. In other words, they mighideful for more detailed characterization of vasio
particles, not for just classifying snowflakes amdupel. In contrast, a box-count feature
(box_count_2 max) was so important as to the ¢legson by only one feature achieved average error
0.1055 that is nearly 90% accuracy. It is an irgiéng finding that, although a box-count featura isy-

product of fractal calculation, it is significanfiyjportant in the classification of snowflakes andupel.



prediction by

feature single feature 1% iteration 2" iteration 3" jteration 4" iteration 5" iteration
box_count_2_max 0.1055 0.0599 0.0543 0.0481 0.0493 0.0463
total_pixels_max 0.1198 0.0577 0.0538 0.0485 0.0461 removed
number_of_lines_min 0.1222 0.0549 0.0511 0.0485 0.0480 0.0466
height[pixel]_min 0.1224 0.0548 0.0513 0.0481 0.0480 0.0467
perimeter[mm]_max 0.1274 0.0683 0.0665 0.0626 0.0654 0.0653
width[pixel]_max 0.1405 0.0564 0.0509 0.0471 0.0479 0.0476
area[mm2]_max 0.1886 0.0602 0.0574 0.0495 0.0526 0.0522
height[mm]_min 0.1913 0.0546 0.0531 0.0465 removed removed
equivolumetric_diameter[mm)] 0.2026 0.0652 0.0622 0.0556 0.0561 0.0573
volume[mm3] 0.2045 0.0567 0.0506 0.0481 0.0486 0.0469
fractal_2_8 min 0.2069 0.0520 0.0484 removed removed removed
pixelwidth[mm]_max 0.2434 0.0517 removed removed removed removed
height_of_one_line[mm] 0.3449 0.0557 0.0529 0.0509 0.0504 0.0513
vertical_fall_velocity[m/s] 0.4261 0.0556 0.0522 0.0503 0.0499 0.0503

Table 5. Average errors (i.e. 1 — average accuracy) the predictions by single feature and multipleeatures with
backward elimination. If the elimination of a feature decreased (increased) the average error of pretion, it is shown

in red (blue) color.The least average error in eackolumn is shown in bold face.

5 Conclusion and Future Works
5.1 Dissertation summary

In this study, we tried not only to (i) outperfothe accuracy of the existing analogous
classification methods, but to (ii) explicitly uses fractal features derived from particle shap (@)
estimate the value of each feature in the coninbub classification. That was a nontrivial tasledo
the described study area problems. Moreover, itde@h challenging as recent researches show
significant advance in adjacent domains.

We conducted feature analysis and classificatigmadticle data from 2DVD through the combined
use of various statistical methods including suiseyand unsupervised machine learning. Experirhenta
results revealed that fractal and box-count featare useful for the characterization and clasdiba of
snowflakes and graupel. The average accuracy t€leaby-particle classification was around 95.4%,
which has not been achieved by previous studies.

From this result, it can be said that we could tigva system for automatically monitoring solid
precipitation with practically sufficient accuraof/discriminating snowflakes and graupel. Addititja

we demonstrated that combining acquisition timermiation with the results of classification on krg



amount of particles, it becomes possible to contio-series analysis of amount and type of padicl
which contributes to elucidate the mechanism ofmaphic snowfall (phenomena).
5.2 Future works

In this study, we mainly focused on two types atipkes (i.e. snowflake and graupel). As an
extension of this study, conducting human annatatiith not only two types but also other detailed
types of particles (e.g. dendrite-like, aggregéte;Imelting-snow-like, and other depending on loca
precipitation particularity), makes it possibleggantitatively analyze wide-variety of snowfallpfaces
with weather conditions not necessarily similatitose in Kanazawa. This may undoubtedly boost the
practical applicability of the method yet lies bagahe scope of this study.

We hope that these two future work vectors willieg an even better method useful in a range of
meteorological purposes.
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