新分子診断キットを用いた日本民族のY染色体欠損の診断

著者
飯島 将司

著者別表示

学位授与番号

学位名
博士（医学）

学位授与年月日

doi: https://doi.org/10.1111/iju.12467
Original Article: Clinical Investigation

New molecular diagnostic kit to assess Y-chromosome deletions in the Japanese population

Masashi Iijima,1 Eitetsu Koh,1 Kouji Izumi,1 Masaki Taya,1 Yuji Maeda,1 Kouichi Kyono,2 Atsumi Yoshida3 and Mikio Namiki1
1Departments of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, 2Kyono ART Clinic, Sendai, Miyagi, and 3Reproduction Center, Kiba Park Clinic, Tokyo, Japan

Objective: Deletions in the azoospermia factor regions are the most common known molecular genetic cause of human male infertility involving spermatogenetic failure. Testing for these deletions in Japanese DNA samples using conventional sequence-tagged site probes occasionally lead to considerable non-specific or faint products in the Japanese population. The aim of the present study was to evaluate the sensitivity and specificity of a newly developed kit for the detection of azoospermia factor microdeletions in the Japanese population.

Methods: Sequence-tagged site probes were reselected and the Luminex suspension array assay was carried out. Validation was retrospectively carried out with 2014 DNA sequences with known microdeletions, which were divided into four categories.

Results: Category 1 deletions that corresponded to the conventional classification of azoospermia factor deletion were present in 83 men (4.2%), which can result in intrachromosomal homologous recombination. Kit data confirmed the presence of deletions of this type in DNA sequences known to harbor the azoospermia factor deletions. Category 2 deletions involved cytogenetic abnormalities in 28 men (1.4%), whereas category 3 deletions in 759 men (37.7%) were atypical classifications including the gr/gr deletion. As these deletions are thought to be a result of palindromic units and non-homologous recombination, these microdeletions might impact in the interpretation of some clinical findings. The rest of the 1145 cases (56.8%) were assigned to category 4 as normal variants (polymorphism/no deletion).

Conclusions: The present findings show that this new kit offers good sensitivity and specificity with the advantage of saving in terms of cost and time.

Key words: azoospermia factor, detection kit, male infertility, microdeletion, Y chromosome.

Introduction

Male factors leading to infertility could account for up to 40–50% of total infertile couples.1 The origin of male-factor infertility remains largely unexplained. In healthy males, infertility could have a number of unknown causes, including genetic disorders. Approximately 7% of infertile men harbor microdeletions of the Y chromosome that are not detectable with routine karyotype analyses.2 Cytogenetic studies in infertile men have revealed a gene that controls spermatogenesis; this AZF is located on the Yq.3 Three spermatogenesis loci in Yq11 have been classified into three regions: AZFa, AZFb and AZFc.4 The euchromatic region of the Y chromosome is currently characterized by three structurally distinct features, the X-degenerated, X-transposed and ampliconic sequences. The ampliconic region includes eight palindromes with pairs of duplicated amplicons in which the DNA sequences share more than 99.9% homology.1 These amplicons and sub-amplicons can serve as substrates for structural genomic rearrangement. Thus, AZF deletions can result from intrachromosomal homologous recombination events between non-reciprocal homologous sequences.5

From the clinical point of view, deletions in the AZF regions are the most common known molecular genetic cause of human male infertility involving spermatogenetic failure.7 Thus, the molecular diagnosis of Y-chromosomal microdeletions should be routinely carried out worldwide in the work-up of male infertility in men with azoospermia or severe oligozoospermia. The importance of a molecular genetics approach that includes the evaluation of AZF deletions must...
be emphasized for men considering assisted reproductive techniques including TESE, because this genetic defect is transmitted to their sons, affecting their fertility. Furthermore, this information is useful for the avoidance of unnecessary surgical therapy.

Nowadays, the gold standard for the diagnosis of microdeletions in the AZFa, AZFb and AZFc regions utilizes PCR primers, including primers sY84, sY86, sY127, sY134, sY254 and sY255. When we previously tested Japanese patients using these eight probes, considerable non-specific or faint bands were occasionally observed in the PCR products, particularly after the use of the sY254 and sY255 probes in the AZFc region. Re-evaluation frequently necessitated the use of several adjacent STS markers.

To improve the sensitivity and specificity of the detection of microdeletions in the Y chromosome, we developed a new kit for the detection of molecular Y-chromosome deletions by re-selecting STS probes and carrying out multiplex target detection on the Luminex suspension array platform (Luminex, Austin, TX, USA). Here, we report the results of a retrospective evaluation of the new molecular Y-chromosome deletion kit using DNA with previously determined genetic phenotypes.

Methods

DNA sources and samples

The present study was approved by the ethics committee of the Kanazawa University Graduate School of Medical Science. All participants had granted informed consent for a previous study. Genomic DNA was sampled in a male infertility clinic, and stored after diagnosing the presence or absence of Y-chromosomal microdeletions between 1999 April and 2012 December. This genetic diagnosis included the identification of AZF deletions. The samples were anonymized and made available for research after approval by the appropriate ethics committee.

We retrospectively analyzed genomic DNA samples from 2014 anonymized subjects who visited the clinic with male infertility as their chief complaint. Deletions in these DNA samples were confirmed using in-house detection methods. DNA samples from patients with Klinefelter syndrome or hypogonadotropic hypogonadism were not included in the present investigation.

In-house detection probes

All DNA samples were screened for Y-chromosomal microdeletions according to the guidelines of the EAA and the EMQN. These guidelines recommend the following first-choice STS primers: two STS in AZFa (sY86 and sY84), two in AZFb (sY127 and sY134) and two in AZFc (sY254 and sY255). These STS probes previously yielded reproducible results.

All DNA samples were evaluated for deletions using the following in-house STS probes: for AZFa, probes sY82, sY84 and sY86; for AZFb, probes sY1264, sY1235, sY1227, sY1228, sY117, sY280, sY127, sY134, sY135, sY258, sY142 and sY143; for AZFc, probes sY1161, sY1191, sY1197, sY1291, sY1125, sY1054, sY1206, sY1201, sY255 and sY254. These probes were designed according to EAA/EMQN guidelines, and produced with the UCSC Genome Bioinformatics and the GenBank database. The human reference sequence (UCSC version hg16, 17 and 18) was based on National Center for Biotechnology Information Build 34 (July 2003), 35 (May 2004) and 36 (March 2006) produced by the International Human Genome Sequencing Consortium (http://genome.ucsc.edu/index.html).

All DNA samples were subjected to STS testing to confirm the presence or absence of deletions.

STS probes in the GENOSEARCH™ AZF Deletion kit

STS probes for the Y chromosome were chosen as markers of either single or double sequence copies using MSY Breakpoint Mapper (http://breakpointmapper.wi.mit.edu/) and UniSTS (http://www.ncbi.nlm.nih.gov/unists). A total of 20 STS probes were located on the Y chromosome. Probe sY757 (SOX3) served as a control probe for the X chromosome. The controls for the Yp were sY14 (SRY) and sY3118, and the controls for Yq were sY1251 and sY3159. Probes sY1251 and sY3159 were controls for the proximal and distal Y chromosome, respectively. Probes sY1324, sY1316 and sY1714 were used for the detection of AZFa deletions (Fig. 1). Figure 2 shows the locations (proximal to distal) of the following probes in the AZFb and AZFc regions: sY1024, sY1967, sY1309, sY3199, sY1233, sY3010, sY2990, sY1197, sY1191, sY1307, sY1291, sY2858 and sY1206. All of these probes are single-copy probes, with the exceptions of sY1967, sY1307, sY2858 and sY1206, which are present in two copies on the Y chromosome.

Multiplex PCR

Genomic DNA was prepared from patient peripheral blood lymphocytes with several commercial extraction kits according to the manufacturers’ protocols. PCR was carried out in 25 μL of PCR buffer (20 mmol/L Tris-HCl [pH 8.3], 30 mmol/L KCl, 2.5 mmol/L MgCl2) containing 200 μmol/L of each deoxyribonucleoside triphosphate, with 0.625 U TaqDNA Polymerase (Roche Diagnostics, Mannheim, Germany), 50–100 ng
of genomic DNA and each primer at a final concentration of 0.2 μmol/L. All PCR primers were biotinylated. The PCR profile consisted of one cycle of 2 min at 93°C, followed by 45 cycles of 1 min at 93°C, 30 s at the annealing temperature of 59°C and 60 s at 70°C, with a final cycle of 5 min at 70°C. Amplifications were carried out on a GeneAmp 9700 thermal cycler (Applied Biosystems, Foster City, CA, USA).

Luminex xMAP technology

Results from the GENOSEARCH™ AZF Deletion kit (MBL, Nagoya, Japan) of development stage were confirmed by Luminex xMAP technology. To detect deletions in the AZF regions, amplification by sequence-specific probes and hybridization of each solid phase-binding STS were carried out. The probes were 15–30mers that encompassed the sequence in the amplification region for each set of biotinylated primers. PCR products were mixed with the microbeads; the probes bound these beads, enabling multiple hybridization reactions in the same tube.

Each 30-μL hybridization reaction consisted of 5 μL PCR product, 20 μL 1 x hybridization buffer (75 mmol/L Tris-HCl [pH 8.0], 0.6 mmol/L ethylenediaminetetraacetic acid [pH 8.0], 0.15% surfactant, 4.5 mol/L tetramethylammonium chloride) and 5 μL probe-binding beads. The hybridization reactions were carried out at 95°C for 2 min and 52°C for 30 min. After the incubation, the beads were washed twice with 70 μL of phosphate-buffered saline-Tween with centrifugation for 1 min at 2000 g.

After washing, the samples were labeled with streptavidin-phycoerythrin and incubated at 52°C for 15 min. This hybridization between the PCR-amplified product and the probes on the fluorescently labeled beads allowed the quantification of the number of probes corresponding to each STS marker after flow cytometry based on the Luminex system. Each measurement encompassed at least 50 beads; the median phycoerythrin intensity was considered.

To determine the presence of deletions, we set individual cut-off values for the fluorescence intensity of each bead-bound probe; if the intensity was below the cut-off, the sequence was defined as harboring a deletion. Samples from healthy female subjects and a negative control of distilled water were used to determine the individual cut-offs.

Validation

We tested 2014 samples with our in-house kit. Our laboratory carried out validation with external control DNA samples dispatched from the EMQN every year.

Results

General results and probe characteristics

The current investigation evaluated 2014 DNA samples. The mean participant age was 35.0 ± 7.0 years (range 19–72 years). All DNA samples that had previously been determined to harbor deletions associated with a chief complaint of male infertility were analyzed. The deletions were classified into
40 patterns according to differences in adjoining patterns (Fig. S1).

Here, we present broad genetic information about microdeletions of the Y chromosome that are pertinent for clinicians or researchers investigating Japanese populations. For convenience, we grouped the results from our kit into four categories. Probe sY1291 is especially pertinent for Japanese populations; this marker was previously used for the detection of both the gr/gr (green-red sub-amplicon) deletion and Y haplogroup marker D.12,13 One-third of Japanese males carry the deletion probed by sY1291.14–16 Therefore, the deletion of the sequence probed by sY1291 would not be taken into account during the evaluation of all but gr/gr deletions (pattern 39).

Furthermore, a pair of palindromes was duplicated in the set of DNA samples included in this investigation, yielding double hybridization of STS probes; for example, for probes sY1967, sY1307, sY2858 and sY1206. These probes might not always detect the deletion of the duplicated region when implemented in a PCR-based evaluation. When non-contiguous deletions were observed, such as in patterns 7, 8, 11, 14, 15, 18, 25, 26, 31, 32, 35 and 36, we avoided non-sequential regions when designating the deletion location (Fig. S1, 1*).

Categorization of deletion patterns and number in a Japanese population

We classified the detected deletion patterns into the following four categories: category 1, classical AZF microdeletions; category 2, Y chromosome long-arm terminal deletions, including heterochromatin deletion; category 3, subclassification of Yq microdeletions; category 4, miscellaneous deletions (polymorphisms).

Category 1 deletions in 83 men (4.2%), category 2 deletion in 28 (1.4%) and category 3 deletion in 759 (37.7%) including gr/gr deletion were indicated. The remaining 1145 cases (56.8%) were assigned to category 4 in the present study.

For category 1 deletions, we divided the conventional concept of the AZF region into regions AZFa, AZFb (P5/proximal P1), AZFb+c (P5/distal P1); recombination between palindromes and distal palindromes (Fig. 2) and AZFc (b2/b4). The P5/distal P1 recombination eliminated the intervening homologous sequences. The “b2/b4” categorization captures a recombination event between sub-amplicons b2 and b4 (Fig. 2b,d). This deletion category is based on the EAA/EMQN guidelines.17 This conventional classification encompasses the probes indicated in Figure 2c, and yielded the corresponding patterns reported in Figure 3. There were seven, one, 12 and 63 samples that harbored deletions in AZFa, AZFb, AZFb+c, and AZFc, respectively (Fig. 3). All AZF deletions were confirmed by in-house STS probes. Therefore, the sensitivity and the specificity of our new kit were 100% for the detection of category-1 AZF deletions.

Category 1 deletions result in the recombination of the intervening homologous sequences between duplicated palindromes (Fig. 2d). Thus, the term “microdeletion” implies that a part of the deletion of the inner euchromatin region of Yq is a result of homologous recombination. We suggest differentiating microdeletion from partial Yq terminal deletion like following category 2 deletions.

With regard to category 2 deletions, probe sY3159 is located at the end of the Yq euchromatin (Fig. 1). Deletion of this sequence could be accompanied by elimination of the distal Y chromosome end, including the heterochromatin. Patterns 3 (Yq I), 6 (Yq II), 13 (Yq III), 17 (Yq IV), 19 (Yq V) and 29 (Yq VI) were deleted from the distal Yq (Fig. 1). These deletions were also detected by evaluating karyotype analyses (Table S1). Yq terminal deletions I-VI appeared in one, four, six, five, three and three samples, respectively. Interestingly, all patients carrying pattern 2 were diagnosed as XX male.

According to deletions of sY3159, patterns 37 indicated a normal karyotype. One sample showed pattern 38, deletion of sY3159. This karyotype was 46, XY (Fig. 6). Deletion of sY3159 alone was classified as a polymorphism present in the Japanese population; therefore, pattern 25 was classified as Ym-8 (Fig. 5).

Category 3 included atypical Y microdeletions (Fig. 5). These deletions most likely involved palindromic units, unlike the intrachromosomal non-homologous recombination that underlies category-1 deletions. Although few category 3 deletions were detected (Fig. 5: Ym-1 to Ym-7, Ym-9, Ym-10 and Ym-13 deletions occurred in 2, 1, 2, 1, 5, 1, 2, 1, and 2 samples, respectively), these deletions are of clinical significance, and are the focus of a separate investigation.

In contrast, patterns 25 and 26 (Ym-8), pattern 28 and 32 (Ym-11), and pattern 39 (Ym-12) indicate partial deletions of...
AZFc as a result of homologous recombination between sub-amplicons b1/b3, b2/b3 and gr/gr, respectively (Fig. 5). These deletions have already been investigated.18–20 There were 18, 33 and 690 samples in the present study with Ym-8, Ym-11, and Ym-12 deletions, respectively.

For category 4 deletions, patterns 12, 22, 23, 35, 36, 37 and 38 occurred in 5, 1, 1, 1, 2, 1, and 1 samples, respectively (Fig. 6). Probe sY1291 is negligible regardless of the absence or presence of band, as described earlier for the Japanese population. Therefore, we classified these deletions as polymorphisms including absence of two deletions.

Discussion

In Japan, all available genetic testing for AZF deletions is based on the Promega Y Chromosome AZF Analysis System (version 2.0; Promega, Madison, WI, USA). Previously, numerous non-specific bands were occasionally observed with these PCR products, probably because this system was optimized for Caucasian DNA or different thermocyclers.

In the present study, we evaluated the performance of the GENOSEARCH™ AZF Deletion kit, which is based on Luminex xMAP technology and identifies samples harboring deletions of sequences represented by STS probes. An automated multiplex bead-array system provided high-throughput identification of PCR products.21

Currently, up to 100 spectrally distinct fluorescence-labeled beads are available for multiplex target detection on the Luminex suspension microarray platform. This array system saves labor, money and time,22,23 and can be implemented daily with acceptable sensitivities and specificities. Its routine use

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Sample no.</th>
<th>Deletions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SY757</td>
<td>Ym-2 (P5+P4)</td>
</tr>
<tr>
<td>2</td>
<td>SY714</td>
<td>Ym-1 (P5+P4)</td>
</tr>
<tr>
<td>3</td>
<td>SY831b</td>
<td>Ym-1 (P5+P4)</td>
</tr>
<tr>
<td>4</td>
<td>SY1714</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>5</td>
<td>SY1714</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>6</td>
<td>SY2024</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>7</td>
<td>SY2990</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>8</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>9</td>
<td>SY1706</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>10</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>11</td>
<td>SY3176</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>12</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>13</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>14</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>15</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>16</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>17</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>18</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>19</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>20</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>21</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>22</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>23</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>24</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>25</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>26</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>27</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>28</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>29</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>30</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>31</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>32</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>33</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>34</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>35</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>36</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>37</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
<tr>
<td>38</td>
<td>SY1907</td>
<td>Ym-3 (AZFb partial)</td>
</tr>
</tbody>
</table>

Fig. 4 Y chromosome long-arm terminal deletions, including heterochromatin (category 2). Blue arrows highlight data from the same probe. Possible deletions are colored light blue.

Fig. 5 Y chromosome microdeletion (subclassification; category 3). Blue arrows highlight data from the same probe. Possible deletions are colored light blue.
Compared with conventional TESE, microdissection TESE has through microscopy is currently recognized as the best way of volumes and specimen volumes required for use of the neous detection strategies reduced the manpower, reagent with rapid, automated, high-throughput procedures; simulta-
detection of AZF deletions. Furthermore, this kit is compatible in comparison with the use of conventional STS probes for the AZF deletions.

show that the GENOSEARCH™ AZF Deletion kit might be a cient to make a diagnosis for male infertility. The present results referred to by the 2004 EAA/EMQN guidelines, and are suffi-
genic testing.

We detected excellent specificities and favorable sensitivities in comparison with the use of conventional STS probes for the detection of AZF deletions. Furthermore, this kit is compatible with rapid, automated, high-throughput procedures; simulta-
detection strategies reduced the manpower, reagent volumes and specimen volumes required for use of the GENOSEARCH™ AZF Deletion kit.

From the clinical point of view, microdissection TESE through microscopy is currently recognized as the best way of retrieving sperm in men with non-obstructive azoospermia. Compared with conventional TESE, microdissection TESE has a higher sperm retrieval rate and is safer.24 Genetic testing for Y-chromosome microdeletions is of prognostic significance for TESE.

Men with complete deletions of the AZFa or AZFb region or absence of the AZFb+c region have no chance of sperm retrieval during microdissection TESE,25 and are not recom-
dended to undergo this procedure. Many unnecessary TESE procedures are carried out, motivating the need for reliable genetic testing.

Category 1 deletions correspond to the AZF deletions referred to by the 2004 EAA/EMQN guidelines, and are suffi-
cient to make a diagnosis for male infertility. The present results show that the GENOSEARCH™ AZF Deletion kit might be a suitable replacement for conventional STS probes for Japanese populations. When deletions in category 2 are detected, cytogenetic assays should be carried out for determining the patient’s karyotype.

It should be emphasized that microdeletions, excluding the Ym-8, Ym-11 and Ym-12 microdeletions in category 3, are atypical classifications that have not been rigorously investi-
gated. Therefore, the presence of these microdeletions might impact on the interpretation of some clinical findings, although this scenario is expected to rarely occur. The accurate detection of these microdeletions was the most striking feature of the GENOSEARCH™ AZF Deletion kit.

In conclusion, we have described the development of the GENOSEARCH™ AZF Deletion kit for the detection of a panel of AZF deletions; this technology includes the use of Lumipool xMAP arrays. This new kit provided a routine tool for the diagnosis of AZF deletions in patients accessing a male infertility clinic in Japan. This kit would also be useful for the detection of atypical microdeletions.

Acknowledgments
Support for this study was provided by the A step Fund (2011) of the Japan Science and Technology Agency (AS231Z01752F)

Conflict of interest
None declared.

References

Supporting information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Fig. S1 raw deletion data in accordance with various patterns. Within the body of the figure, “0” denotes “absence,” “1” denotes “presence” and “1*” denotes duplicated copies of a DNA sequence. Possible deletions are colored grey. Notation is as in Figure 3.

Table S1 Chromosomal aberrations in category 2 in this study.