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In rotating ring resonators, resonant frequencies are split because of the Sagnac effect. The rotation sensitivity
of the frequency splitting characterizes the sensitivity of resonator-based optical gyroscopes. In this paper, it is
shown that the sensitivity of frequency splitting can be significantly enhanced in a ring resonator operating at
an exceptional point (EP), which is a non-Hermitian degeneracy where two eigenvalues and the corresponding
eigenmodes coalesce. As an example, a ring resonator with a periodic structure is proposed and theoretically and
numerically studied. It is numerically demonstrated that in the resonator operating near an EP, the rotation-induced
frequency splitting can be more than two orders greater than that in conventional ring resonators. In addition,
this paper discusses the influence of the resonator loss on the measurement sensitivity of the frequency splitting
and a method of rotation detection based on rotation-induced changes of eigenmodes near an EP.
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I. INTRODUCTION

Optical gyroscopes are highly sensitive rotation sensors
[1–3]. They are widely used as key components of in-
ertial navigation systems in many industrial and military
applications, such as airplanes, ships, satellites, and so on.
Considerable research effort has been devoted to realizing
chip-scale compact optical gyroscopes [4–17] because such
small and navigation-grade rotation sensors have the potential
to be used in mobile platforms and may extend into numerous
applications. However, the sensitivity of an optical gyroscope
decreases as the size of the sensing element decreases. This
is because the operating principle is based on the Sagnac
effect [18], which manifests itself in the form of a phase shift in
a rotating ring interferometer and frequency splitting between
clockwise (CW) and counterclockwise (CCW) propagating
modes in a rotating ring resonator. The splitting is referred to
as Sagnac frequency splitting (SFS). The rotation sensitivity of
SFS is proportional to the effective size of the resonator, which
is obtained by dividing the enclosed area by the perimeter of
the closed optical path in the resonator [1].

Thus far, many proposals for enhancing the sensitivity
of SFS have been made [17,19–24]. Most of them are
based on enhancement using the effect of anomalous disper-
sion [19–24]. The SFS can be made larger by the effect of
anomalous dispersion of superluminal light propagation in a
resonator [19]. Although the enhancement using anomalous
dispersion seems to be promising, it has been pointed out
that strong dispersion systems are essentially accompanied by
intense loss or significant linewidth broadening [25,26].

Meanwhile, a general theory on the sensitivity enhancement
of sensors using resonators has been recently presented in the
context of non-Hermitian physics in microcavities [27], and
several applications have been proposed [28–31]. The basic
idea of the enhancement is to use an anomalous perturbation
response at the so-called exceptional point (EP) in non-
Hermitian resonator systems. An EP is a non-Hermitian degen-
eracy, where two or more eigenvalues and the corresponding
eigenmodes coalesce [32–34], and it is distinct from Hermitian
degeneracy (normal degeneracy), where the eigenmodes of
the degenerate eigenvalues are linearly independent. The
occurrences of EPs have been experimentally and numerically

demonstrated in a variety of systems [35–42]. If the system
with two coalescing eigenvalues at an EP is subjected to a
perturbation of strength ε, the magnitude of the resulting eigen-
value splitting is typically proportional to ε1/2 [27,32,43–46].
For weak perturbation of strength ε � 1, the ε1/2-order
splitting is much greater than the ε-order splitting of normal
degenerate eigenmodes.

In this paper, the enhancement of the sensitivity of SFS by
using EPs is studied. A ring resonator that can operate at an EP
is considered and the SFS arising in the resonator is analyzed.
It is theoretically and numerically shown that the SFS in the
resonator is significantly greater than that in conventional
ring resonators. In addition, this paper discusses the influence
of resonator loss on the measurement sensitivity of SFS and a
rotation detection method using the rotation-induced changes
of the eigenmodes near an EP.

II. PERTURBATION SENSITIVITY AT EP

This section briefly introduces a perturbation theory for
non-Hermitian matrix operators [43,44], and we discuss the
condition for enhancing the sensitivity to rotation perturbation.
Non-Hermiticity is a requirement for the existence of an EP
and can be introduced by loss or gain in resonator systems. In
this study, we consider a resonator system that is described by a
non-Hermitian effective Hamiltonian matrix Ĥ0. It is assumed
that the system is at an EP, where only two eigenvalues and
the corresponding eigenvectors of Ĥ0 coalesce. Let us denote
the coalescing eigenvalue as E0 and right or left eigenvectors
as u0 or v0 at an EP, satisfying Ĥ0u0 = E0u0 and v

†
0Ĥ0 =

E0v
†
0 [44,47], where † denotes Hermitian conjugate.

Once the system at the EP is subject to perturbation of ε

order, so that the matrix operator is changed to Ĥ = Ĥ0 + εĤ1,
where Ĥ1 is a perturbation, the eigenvalues of the perturbed
system split into two as follows:

E± = E0 ± ε
1
2

√
v
†
0Ĥ1u0 + O(ε), (1)

and the corresponding right eigenvectors also split into two,

u± = u0 + (E± − E0)u1 + O(ε), (2)
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FIG. 1. Ring resonator consisting of N unit cells of arc length a.
n1 and n2 are complex-valued refractive indices in a unit cell. R is
the ring radius. The ring waveguide is a one-dimensional waveguide.

where u1 is the associate vector defined by (Ĥ0 − E0)u1 =
u0 and the normalization condition v

†
0 · u1 = 1 [43]. It is

important to note that the square-root response to perturbation
does not always occur at an EP; however, it depends on the
eigenvectors and perturbation types. Indeed, the condition for
the square-root response is

v
†
0Ĥ1u0 �= 0. (3)

If u0 is also the right eigenvector of perturbation Ĥ1, v†
0Ĥ1u0 =

E1v
†
0 · u0 is derived, where E1 is the eigenvalue of Ĥ1, and the

inner product v
†
0 · u0 is zero at the EP because of the self-

orthogonality [43]. In this case, condition (3) is not satisfied,
and the eigenvalue splitting becomes smaller than the order
of ε1/2.

Here, let us consider the condition for enhancing rotation
sensitivity by applying the above results to ring resonators.
Rotation is regarded as a perturbation to the resonator. As
shown in the next section, rotation perturbation can be
described by a momentum operator i∂/∂x [see Eq. (4)], the
eigenmodes of which are CW and CCW modes, e±ikx , where k

is an eigenvalue of the operator. Therefore, resonators with CW
or CCW mode as an eigenmode do not satisfy condition (3)
even if the resonator operates at an EP. The example can be
seen in a microcavity with asymmetric backscattering [48].

III. RING RESONATOR OPERATING AT EP

One of ring resonators satisfying condition (3) is a coupled
ring resonator with parity-time symmetry [31]. However, the
resonator structure leads to rotation dependence of the eigen-
mode loss (or amplification), which may affect the sensitivity
of rotation detection. This section proposes another type of
ring resonator, which satisfies condition (3) without such
rotation dependence. The ring resonator has a one-dimensional
periodic structure along the ring waveguide, which consists of
N unit cells of arc length a. Suppose the ring radius is R,
and the length of the waveguide is L(= Na = 2πR). It is
assumed that the waveguide is a single-mode waveguide and
the radius R is much larger than the width of the waveguide.
Figure 1 illustrates an example of a ring resonator with a
periodic structure, where the unit cells are characterized by
two refractive indices n1 and n2. A periodic structure generally
induces coupling between CW and CCW modes in the ring
resonator. Therefore, the eigenmodes of the resonator are not
pure CW or CCW modes [49,50]. The resonator can be made

to operate at an EP by engineering absorption or radiation
losses.

We consider the case when the ring resonator is rotating
clockwise with angular velocity � in a plane and that the elec-
tric field is perpendicular to the plane and oscillates as �e−iωt

in the rotating resonator, where ω is an angular frequency. The
field � satisfies the following wave equation [50–52],[

∂2

∂x2
+ n2

(ω

c

)2
+ 2i

(ω

c

)
�D

∂

∂x

]
� = 0, (4)

where x denotes a coordinate along the ring waveguide in the
rotating frame of reference. It is assumed that the field � can
be characterized only by x dependence because of the one-
dimensional ring structure. �D = R�/c is the dimensionless
angular velocity, and c is the speed of light in vacuum. n(x) is a
complex-valued refractive index and it is periodic with period
a so that n(x + a) = n(x). The imaginary part Im n(x) char-
acterizes the loss in the resonator, so that the resonator system
is non-Hermitian. �(x) and ω obtained by solving Eq. (4)
under the periodic boundary condition �(x) = �(x + L)
are an eigenmode and eigenfrequency of the ring resonator,
respectively. Because of the non-Hermiticity of the resonator,
ω is a complex-valued frequency. The real part is the resonant
frequency of the eigenmode, and the imaginary part denotes
the decay rate of the mode, which characterizes the spectral
linewidth at the resonance.

According to the Bloch(-Floquet) theorem, the field in a
periodic medium takes the form � = ψκ (x)eiκx , where κ is
the Bloch wave number and ψκ (x) is a periodic function with
period a so that ψκ (x + a) = ψκ (x). Because of the periodic
boundary condition of the resonator, the Bloch wave number
is discretized as κ = 2πl/L [53], where l is an integer.

In systems with periodic structures, such as photonic
crystals, there are EPs near a 
 point (κ = 0) of the Bloch
wave-number space [37,54]. For κa � 1 and |�D| � 1, the
eigenmode is determined by the wave equation[

∂2

∂x2
+ n2

(ω

c

)2
+ 2i

(
κ + ω

c
�D

) ∂

∂x

]
ψκ = 0, (5)

where −a/2 � x < a/2 and the second orders of κa and �D

are omitted.
We focus on a resonator where the unit cell is symmetric

with respect to x = 0 so that n(−x) = n(x). When � = 0,
there are nearly degenerate eigenmodes at κ = 0, the wave
functions of which are even and odd functions with respect
to x = 0. We label the nearly degenerate modes as j = 1, 2.
The wave function φj of eigenmode j is described by

[ ∂2

∂x2 + n2(ωj

c
)
2
]φj = 0, where ωj is the eigenfrequency of the

mode j . φ1 and φ2 can satisfy the following relations:

∫ a/2

−a/2
φiφjn

2dx = δij , (6)

∫ a/2

−a/2
φi

∂φj

∂x
dx = −

∫ a/2

−a/2
φj

∂φi

∂x
dx. (7)

For κ �= 0 and �D �= 0, we describe the wave function
ψκ as c1φ1 + c2φ2 and substitute it into Eq. (5). After some
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calculations with Eqs. (6) and (7), we have

(Ĥ0 + εĤ1)u = ωu, (8)

where

Ĥ0 =
(

ω0 − ω0
2 −i α0cκ

ω0

i α0cκ

ω0
ω0 + ω0

2

)
, Ĥ1 =

(
0 −i

i 0

)
,

(9)

and t u = (c1,c2). In the above, ε = α0�D , ω0 = ω2 − ω1,
ω0 = (ω1 + ω2)/2, and α0 = c

∫
φ1

∂φ2

∂x
dx.

When �D = 0, the eigenvalues of the effective Hamil-
tonian Ĥ0 are ω = ω0 ± ω0/(2β0)

√
β2

0 + 1, where β0 =
ω0ω0/(2α0cκ). When β2

0 = −1, the two eigenvalues and
corresponding eigenvectors coalesce.

When �D > 0, the coalescing eigenfrequencies and eigen-
vectors at the EP split into two due to the rotation perturbation
Ĥ1. According to Eq. (1), the splitting frequencies are
described as follows:

ω± = ω0 ±
√

2α2
0cκ

ω0
�D + O(|α0�D|), (10)

and the corresponding right eigenvectors are

u± ≈ u0 + (ω± − ω0)u1, (11)

where t u0 = (1,iβ0) and t u1 = − 1
ω0

(1, − iβ0).
When the modes at the EP are such low-loss modes that

| Im ω0| � Re ω0 and the spatial variation of n is sufficiently
small, α0 is approximated by Re ω0/n0, where n0 is the spa-
tially averaged refractive index. In this case, the magnitude of
SFS at the EP can be expressed as ωEP = | Re (ω± − ω0)| ≈√| Im ω0| Re ω0�D/n0. Meanwhile, in conventional ring
resonators without any periodic structures but with the same
index and same radius, the magnitude of SFS is given by
ωNS = (Re ω0/n0)�D [19,52]. The enhancement factor η

defined by the ratio of ωEP to ωNS is

η = ωEP

ωNS

≈
√

| Im ω0|n0

Re ω0�D

. (12)

The SFS can be enhanced in the range 0 < �D <

| Im ω0|n0/ Re ω0.

IV. NUMERICAL DEMONSTRATION

In this section, the enhancement of the SFS near an EP
is numerically demonstrated in the ring resonator shown
in Fig. 1, which consists of two materials with refractive
indices n1 and n2. The following parameters were used
for this demonstration: n2

1 = 13.095, n2
2 = 13.10 + i0.055,

and d = 0.49455a. Figure 2 shows eigenfrequency ω as a
function of κ , which represents a band curve defined in the
limit N → ∞. When �D = 0, two eigenfrequencies almost
coalesce at κ = κEP ≈ 1.1638 × 10−5 (2π/a).

The enhancement of the SFS arising near the EP can be
visually understood based on the shift of the band curve in
the presence of rotation. When �D > 0, the band curve is
shifted in the direction of κ < 0, so that resonant frequencies
Re ω change for each κ value [Fig. 2(a)]. The largest shifts
of resonant frequencies arise for the eigenmodes at κ = κEP ,
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FIG. 2. Eigenfrequency ω as a function of Bloch wave number
κ , which corresponds to a complex band curve defined in the limit
N → ∞. (a) Real and (b) imaginary parts of frequency ω are shown
as a function of κ . ω0 is an eigenfrequency coalescing at the EP
when �D = 0. When �D > 0, the band curve is shifted and resonant
frequencies change for each eigenmode at a given κ value. The largest
frequency shifts arise at κ = κEP , whereas the decay rates almost do
not change.

whereas the decay rates of the modes almost do not change
[Fig. 2(b)].

In order to ensure that κ approaches κEP in an actual
experiment, the number of cells N should be as large as
possible because of κ = 2πl/(Na). In the simulation, we
set l = 1, N = 85925, i.e., κa/(2π ) = 1.163806 × 10−5. (For
this N value, the radius R = Na/(2π ) will be 3.8 mm if the
optical wavelength 2πc/ Re ω0 and a are 1 μm and 0.276 μm,
respectively.) Figure 3(a) shows the rotation dependences of
the resonant frequencies and decay rates of eigenmodes at
the κ value. Figure 3(b) shows the enhancement factor η

as a function of �D . More than 100 times enhancement
can be achieved for �D < 5 × 10−9, which corresponds to
2.3 × 104 deg/s in a ring resonator of radius R = 3.8 mm.

V. DISCUSSION

A. Effects of resonator loss and gain

According to Eq. (12), the enhancement factor η can be
increased by increasing | Im ω0|; however, it is limited by
the average decay rate | Im ω0| when the resonator is a passive
system. This means that large resonator losses are needed for
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FIG. 3. (a) Real and imaginary parts of eigenfrequency shifts
ω± − ω0 at κ ≈ κEP as a function of �D . (b) Enhancement factor
η = ωEP /ωNS as a function of �D . (c) ξ of the eigenmodes with
frequency ω+ (solid curve) and ω− (dashed curve) at κ ≈ κEP [see
Eq. (13)].

enhancing the SFS, resulting in spectral linewidth broadening
and the decrease in the sensitivity of rotation detection [55].

A way to solve the tradeoff between the enhancement
of SFS and loss reduction is to include optical gain in
resonators [27]. If the gain is introduced in a resonator, the
resonator losses can be reduced, while | Im ω0| and thus
enhancement factor η are maintained. This can be analytically
shown when the variation of refractive index n is small so that∫

φ2
1dx ≈ ∫

φ2
2dx ≈ 1/n2

0 and | Re n| � | Im n|. The effect of
the gain is incorporated in Eq. (4) by changing the imaginary
part of the refractive index Im n2 to Im n2 − g, where g > 0 is
a gain coefficient. We obtain the eigenfrequency ω± ≈ ω0 +
igω0/(2n2

0) ± ωEP . The magnitude of SFS is not changed
by the gain, whereas the decay rate | Im ω±| decreases as g

increases.
In general, when gain exceeds loss and lasing occurs,

nonlinear coupling, e.g., lock-in phenomenon, occurs among
modes [1], which may make it difficult to operate at an EP.
To avoid nonlinear mode coupling phenomena, gain should

not exceed the lasing threshold value. SFS can be measured
by detecting the shifts of the resonant frequencies, such as
resonant gyroscopes [55].

B. Rotation-induced changes of eigenmodes
and alternative rotation sensing approach

According to Eq. (11), the right eigenvector t u = (c1,c2)
at an EP strongly depends on rotation, which means that
the wave function ψκ = c1φ1 + c2φ2 is changed by rotation.
The rotation dependence of the wave function is a unique
characteristic of the ring resonator operating at an EP, and it can
be exploited as an alternative rotation sensing approach [8].
In this approach, rotation can be measured without a direct
dependence on the spectral linewidth of the resonator.

Here, we measure changes in the wave functions of
eigenmodes by using the ratio of the CCW wave components
to the CW wave components,

ξ =
∑

m>0 |am|2∑
m<0 |am|2 − 1, (13)

where am = ∫
ψκe

−ikmxdx is the Fourier transform of ψκ to
the wave number domain, km = 2πm/a (m is an integer).
am denotes a CCW (CW) wave component with angular
momentum m when m is positive (negative). ξ can be measured
experimentally by coupling a waveguide to the ring resonator
and monitoring the changes in the coupling intensities of CW
and CCW waves.

Figure 3(c) shows ξ obtained for each eigenmode at
κ ≈ κEP . When �D = 0, the CW and CCW wave components
are balanced (i.e., ξ = 0), which means that the eigenmodes
are standing waves. As �D increases, the eigenmode corre-
sponding to frequency ω+(−) has a larger CCW (CW) wave
component. ξ changes greatly at low rotation rates because
of the square-root behavior. If ξ = 10−4 is experimentally de-
tectable in the resonator operating just at the EP, the minimum
detectable rotation rate is approximately 4.5 × 10−14, which
corresponds to 0.2 deg/s for the resonator with R = 3.8 mm.
As R increases, the minimum detectable rotation rate can be
further reduced.

C. Two technical difficulties for sensing applications

Lastly, we comment on two technical difficulties of rotation
detection by using ring resonators operating at an EP. The first
one is rotation detection for �D < 0. As seen in Eq. (10), when
�D < 0, the resonant frequencies at κ = κEP > 0 almost do
not change but the decay rates split into two. Consequently,
inverse rotation �D < 0 cannot be measured from the SFS.
However, even when �D < 0, the SFS arises at κ = −κEP

because of the symmetry of Eq. (4). At least two ring resonators
operating at κ = ±κEP would be needed for practical rotation
sensing.

The second difficulty stems from fabrication imperfections
or parameter mismatches, which induce unwanted frequency
shifts and degrade the sensitivity to rotation. For instance,
when the resonator has a periodic structure but the refractive
index n is perturbed as n + n(x) and there is a deviation from
the condition β2

0 = −1, the resulting frequency difference
(ω+ − ω−)/2 between the two modes can be estimated as
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√
δ + η, where δ = ω2

0/4 + (cκ/ω0 + �D)2α2
0 and η is a

function of n2
ij = ∫

φin2φjdx. Therefore, an approach that
precisely accesses EPs would be needed, such as an active
tuning of device geometry or parameters by using two fiber
tips [56,57].

VI. SUMMARY

This paper showed a condition for enhancing SFS by using
EPs and proposed a ring resonator with a periodic structure
that satisfies the condition. It was shown that the SFS of the
eigenmodes near an EP can be greatly enhanced compared
to that of conventional ring resonators at low rotation rates.

The resonator loss can be reduced by optical gain without
affecting the enhancement factor of the SFS. In addition, it
was also shown that the ring resonator operating at an EP has
the unique feature that the wave functions of the eigenmodes
are drastically changed by rotation. The changes in the wave
functions can be used as an alternative approach to rotation
detection without a direct dependence on the spectral linewidth
of the resonator.
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