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 

Abstract— Autonomous vehicles are being developed rapidly in 

recent years. In advance implementation stages, many particular 

problems must be solved to bring this technology into the market 

place. This paper focuses on the problem of driving in snow and 

wet road surface environments. First, the quality of LIDAR 

reflectivity decreases on wet road surfaces. Therefore, an 

accumulation strategy is designed to increase the density of online 

LIDAR images. In order enhance the texture of the accumulated 

images, Principal Component Analysis (PCA) is used to 

understand the geometrical structures and texture patterns in the 

map images. The LIDAR images are then reconstructed using the 

leading principal components with respect to the variance 

distribution accounted by each eigenvector. Second, the 

appearance of snow lines deforms the expected road context in 

LIDAR images. Accordingly, the edge profiles of the LIDAR and 

map images are extracted to encode the lane lines and roadside 

edges. Edge matching between the two profiles is then calculated 

to improve localization in the lateral direction. The proposed 

method has been tested and evaluated using real data that 

collected during the winter of 2016/2017 in Suzu and Kanazawa, 

Japan. The experimental results show that the proposed method 

increases the robustness of autonomous driving on wet road 

surfaces, provides a stable performance in laterally localizing the 

vehicle in the presence of snow lines and significantly reduces the 

overall localization error at a speed of 60km/h.   

 
Index Terms—Autonomous vehicles, laser imaging detection 

and ranging (LIDAR), autonomous localization, principal 

component analysis (PCA), template matching. 

 

I. INTRODUCTION 

UTONOMOUS vehicles have become an important 

requirement to improve human life quality and safety. In 

terms of quality, such vehicles can significantly decrease traffic 

jams and transportation fee; moreover, this facility will be 

applicable for people regardless age, e.g., handicapped and 

older people can easily make use this facility. Increasing the 

safety is an intuitive outcome of bringing autonomous vehicles 

into reality. Autonomous vehicles are expected to reduce traffic 

accidents to nearly zero level so that various networks and shar- 
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ing information can be established and achieved. Various 

studies have been conducted to create a world model around the 

vehicle to interpret the sensing information, know what things 

to concern and plan the movement accordingly [1]. In order to 

achieve these tasks, numerous complicated operations must be 

addressed such as localization, mapping, path planning, 

obstacle detection, traffic-signal recognition and collision 

prediction [2-5].  

Localization and mapping come together as a main 

requirement to enable autonomous driving. A high definition 

map is generated to describe the surrounding environment 

accurately [6]. Localization techniques are then used to 

precisely localize the vehicle by measuring the similarity 

between the observation sensing on the environment and the 

corresponding generated map in the lateral and longitudinal 

directions. Technically, mapping and localization strategies are 

designated based on the sensors such as camera or laser 

imaging detection and ranging (LIDAR). Camera based 

systems are preferred as they are commercial and simpler [7]. 

However, laser based systems are currently more reliable 

because laser beam reflectivity is not influenced by lighting 

conditions. Moreover, static and dynamic objects can be easily 

removed based on height information [8]. Thus, laser based 

systems serve as a basis to switch smoothly to camera based 

system deployment. This transition strategy is being followed 

in the unit of autonomous vehicles in Kanazawa University, 

Japan, to explore, investigate and address many particular and 

critical problems. One of these problems that observed in 2016 

is driving autonomously in snow and wet-ground environments. 

This problem is often neglected as autonomous driving is 

usually conducted in good weather conditions. However, such a 

serious problem cannot be ignored if autonomous vehicles are 

to be commercialized. The first effect of this problem is that the 

quality of LIDAR images becomes low because of the weak 

reflectivity of the wet road surface as illustrated in Fig. 1a. Thus, 

many regions disappear in the LIDAR image compared to that 

in the corresponding map image. Moreover, the intensity level 

of the LIDAR image differs from that of the map image. This 

explicitly affects the similarity measurement of the static 

features between the map and the LIDAR images. The second 

effect is the existence of snow lines inside the lane and near the 

roadsides. Snow lines form additional like-areas similar to the 

lane lines as shown in Fig. 1b. These extra areas may dominate 

the similarity measurement operation and make the vehicle to 

drift lateral. This situation is particularly dangerous on roads 
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with only two lanes.  

The main contributions of this paper are to address the 

aforementioned issues and propose relevant solutions. As the 

paper is an extension of our conference paper [9], more details 

and discussions are provided as well as a new strategy of 

accumulating LIDAR frames during the autonomous driving is 

explained. The LIDAR frames are accumulated to enhance the 

texture and structure of the road representation. Principal 

Component Analysis (PCA) is employed to reconstruct the 

accumulated LIDAR image based on the map images. The two 

unique steps help in improving the quality of the LIDAR image 

on wet road surfaces by recovering some missing areas and 

bringing the intensity level to that of the map images. Edge 

profiles of the LIDAR and map images are then calculated to 

describe the road structure by a number of picks. The pick 

distribution helps in encoding the positions of lane lines, 

roadsides and snow lines. The snow lines appear as extra picks 

in the LIDAR profile. Therefore, an edge matching strategy is 

applied to reduce the effects of snow lines and estimate the 

lateral location of the vehicle based on the common picks 

between the LIDAR and map profiles. 

A localization system along with these improvement steps 

has been tested using real data. The data were collected in 

2016/2017 from the cities of Suzu and Kanazawa, Japan. Snow 

and rain were frequently observed during the collection phase. 

We were permitted to conduct autonomous driving at a 

maximum speed of 60km/h and difficult situations were 

encountered including the mentioned ones in this paper. The 

results have verified that the improved localization system is 

more stable and robust in overcoming the snow line and wet 

road surface situations.   

II. STANDARD LOCALIZATION SYSTEM 

Localization techniques are broadly fall into two categories: 

intensity based and features based [10][11]. In camera based 

systems, features are generally used because images are rich 

with different patterns and textures. The features can be 

extracted from poles, billboards, traffic signs, street indicators, 

etc. The relevant maps are predefined images that contain 

various measurements of the features, e.g., position, size, shape, 

color, etc. Localization is done by minimizing the error 

between the map information and the actual features that are 

being extracted from the camera image [12]. On the other hand, 

a LIDAR image is sparse and less detailed to accurately express 

particular features at different positions of the vehicle. 

Therefore, LIDAR based systems are usually designed to use a 

holistic scanning of the environment and feature extraction can 

be partially incorporated to support the localization technique 

[13]. LIDAR maps are generated by accumulating point clouds 

to precisely describe the environment in 2D or 3D coordinate 

systems. Localization is achieved by measuring the matching 

score between the map and LIDAR images. In the next 

subsections, a brief explanation on a standard LIDAR based 

localization method is provided with relevant problems and 

developments. This method was used in the unit of autonomous 

vehicle in Kanazawa University, 2015/2016.  

A. Intensity Based Localization (Image Matching) 

GPS data have low accuracy, in the range of 100cm, and 

cannot be used to localize autonomous vehicles. Moreover and 

with incorporating Real Time Kinematic (RTK) system, the 

signals received from satellites are subject to noise. The noise is 

due to static and dynamic objects depending on the weather and 

driving conditions. Dead reckoning is usually used to estimate 

the vehicle location x𝑡,DRbased on the velocity v and elapsed 

time series Δ𝑡 as illustrated in (1).  
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The estimation error is proportional to the distance from the 

initial position. In order to bring more confidence to this 

technique and obtain the actual position x𝑡,Act accurately, we 

try to estimate the offset  𝛥x𝑡,DR  between the reference and 

current environment representations using (2).  
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The reference representation is described by predefining 2D 

high definition maps using LIDAR point clouds as shown in 

Fig. 2a. The current environment is represented by online 

LIDAR image as in Fig. 2b. The localization is then achieved 

by calculating the cross correlation between the template 

(LIDAR) and map images as expressed in (3).  
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where 𝑚𝑖(Δ𝑥, Δ𝑦) is the expected infrared reflectivity for the 

map at the offsets (Δ𝑥, Δ𝑦), Z represents the infrared reflectivity 

of the LIDAR image and n is the number of searched positions. 

 
Fig. 1. Localization problems illustrated by map image, corresponding 

enlarged LIDAR image and camera image. (a) Low LIDAR image quality 

because of wet ground (b) Deformed road structure due to snow lines inside 

the lane. 
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The equation describes the matching score at each visited 

position by the template in the map image as illustrated in Fig. 

2d. In order to keep modelling the changes in the matching 

distribution, prior posterior probability 𝑃𝑡−1(𝑖, 𝑗) is incorporated 

using (4). 
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where 𝜂 is the normalizing constant, 𝑃̅𝑡(Δ𝑥, Δ𝑦) is the predicted 

posterior probability of the current vehicle pose and  𝜎𝑖  is the 

error covariance as shown in Fig. 2e. Finally, the two terms of 

the predicted and image matching probabilities are multiplied 

to estimate the current posterior probability 𝑃𝑡(Δ𝑥, Δ𝑦) as 

clarified in (5) and Fig. 2f.  
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where  𝛽 and  𝛾 are constants used to prevent the likelihood 

distribution from being too smooth. The posterior probability is 

expected to be sharp and stable such that it can be utilized to 

calculate the offsets 𝛥x𝑡,DR using (6).  
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Consequently, (2) is applied and the vehicle position is 

estimated as illustrated in Fig. 2c, i.e. the LIDAR image 

overlaps the map image based on the estimated position. 

III. PROBLEMS AND PROPOSED IMPROVEMENTS 

The represented system in the previous section has been 

evaluated in 2015/2016 in Suzu city, Japan. In winter, we were 

permitted for the first time in Japan to conduct autonomous 

driving under very hard weather conditions such as snow, rain 

and wet-ground environments. Unfortunately, the system 

performance was very unstable because of the low quality of 

LIDAR image and the appearance of snow lines. In the next 

subsections, these two problems are explained in details with 

corresponding proposed solutions.  

A. Enhancing LIDAR Image Quality by Increasing Density  

A LIDAR frame is sparse and cannot be in the same 

resolution of map images during the autonomous driving 

because of processing time and vehicle velocity. In order to 

enhance the real-time environment description, a certain 

number of frames are accumulated and a stack of the last L 

frames is created and simultaneously updated. Technically, the 

LIDAR image is fixed in size and a data association problem 

must be addressed, i.e., the accumulated LIDAR image is 

generated as a contribution of the previous accumulated image, 

shown in Fig. 3a, and the current LIDAR frame in Fig. 3b. 

Accordingly and before adding the current LIDAR frame, the 

contribution of the last frame in the stack, Fig. 3c, must be 

deleted from the previous accumulated image. As the vehicle 

velocity may change during the L frames, pixel values are 

deleted with respect to the vehicle pose in the last frame. 

Therefore, a stack on the vehicle poses in the L frames is also 

created and updated. This technical operation is applied 

particularly for each pixel in the new accumulated image 

because the last frame may share only few pixels (not entire) 

with the current frame as illustrated in Fig. 3d. Figure 3e 

demonstrates the above strategy and shows the accumulated 

LIDAR image. A significant enhancement between the 

accumulated image and the current frame in Fig. 3b can be 

observed in terms of appearance, texture and context compared 

to the corresponding predefined map image in Fig. 3f.   

 

B. Enhancing LIDAR Image Quality Using PCA 

The represented system using (5) is sensitive to particular 

changes in image patterns and textures. LIDAR-based 

localization systems are ineffective in wet-grounds and rain 

environments because the reflectivity of the laser beams 

becomes very weak. Thus, many expected areas in LIDAR 

 
Fig. 2. Localization system. (a) Map image. (b) LIDAR image. (c) 

Matching image. (d) Image matching distribution. (e) Predicted posterior 

probability. (f) Current posterior probability.  
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images are distorted compared to the map images. Moreover, 

the contrast of the snow/wet areas is higher/less than that in the 

corresponding areas in map images. This increases the effects 

of the intensity difference in the matching calculation 

𝑅(Δ𝑥, Δ𝑦) and incorrect offsets 𝛥x𝑡,DR are obtained accordingly. 

In order to improve the system performance and achieve a more 

robust matching calculation, PCA is employed to reconstruct 

LIDAR images using map images. This improvement step is 

performed to recover some missing areas and adjust the 

intensity level of the LIDAR images to best align the level in 

the map images.  

PCA has been used to solve various problems in image 

processing including data reduction [14], shape modeling and 

reconstruction [15], pattern analysis [16], object classification 

and detection [17] and image reconstruction [18]. The principle 

is to represent M vectors as points in N dimensional space. The 

point distribution in the space increases based on the variance 

between the vectors. The point distribution can be described 

efficiently by fitting a new coordinate system, called 

eigenspace, to maximize the variation encoding. From the view 

of this paper, eigenspace provides two advantages. First, the 

directions of the most variations in the M vectors can be 

obtained by the first eigenvectors. Therefore, the noise can be 

filtered by reconstructing a vector using these few eigenvectors. 

This step brings the intensity level of the reconstructed vector 

to that of the M vectors. Second, the patterns can be refined by 

projecting into the eigenspace and adjusting the outrange 

projections based on the encoded variance in each eigenvector. 

This step recovers the missing values and approximates wrong 

patterns to those in the M vectors. The above explanation is 

mathematically translated in the following section.  

The map image, shown in Fig. 4a, is divided into M blocks 

with size of N×N. Each block is converted into 𝑁2 dimensional 

vectors containing the pixel intensity values. The mean vector 𝐼 ̅

is calculated using (7) and the vectors are translated into 

zero-mean values 𝐼′ accordingly.  
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The translated vectors are arranged in a matrix 𝛩 and the 

corresponding covariance matrix C is calculated using (8). The 

covariance matrix expresses the relationships between the 

pixels of the vectors with respect to their positions.  
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The eigenvectors of the covariance matrix are then computed 

by solving (9) and the corresponding eigenvalues λ are obtained 

as shown in Fig. 4b.  

 

 C                                                                                (9) 

 

where Ω  is the eigenvector matrix. A vector/block can be 

restored by a weighting linear combination of the eigenvectors 

using (10). The weights are contained in the projection vector 𝐵 

which represent the positions of the projected vector in the 

eigenspace.  
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Equation (10) is the eigenspace equation which models the 

patterns and the intensity values in the M map blocks (map 

image).  

In order to enhance the online LIDAR image quality in Fig. 

4c, the image is divided into S<<M blocks with size of NxN and 

converted into S vectors. Each vector is projected into the 

eigenspace to determine its position using (11).  
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The position is modified by checking the projections with 

respect to the corresponding eigenvalue 𝜆𝑖 of each eigenvector. 

Accordingly, the outrange projections are corrected to be in the 

range of ±3√𝜆𝑖  to obtain a regular Gaussian distribution. The 

block is then reconstructed using (10) and the corrected 

projection vector as illustrated in Fig. 4d for the entire blocks. 

Image matching probability (3) is then calculated between the 

map and reconstructed LIDAR images. 

 

C. Edge matching for reducing snow line effects 

The represented system in (5) has also yielded unstable 

performance in some situations especially when the matching 

probability 𝑅𝑖(Δ𝑥, Δ𝑦) is continuously incorrect for long 

distances. Accordingly, the error in the prior probability 𝑃𝑡−1 is 

accumulated and a sudden lateral deviation of the vehicle 

occurs. The main reason behind this scenario is the difference 

in road patterns between the map images and the actual 

environmental conditions. Snow lines are formed because of 

car motions and supposed to appear inside lanes and externally 

beside lane lines, e.g., the waiting and emergency areas. The 

 
Fig. 4.  LIDAR image reconstruction. (a) Map image. (b) Eigenvectors of 

the map image. (c) LIDAR image. (d) Reconstructed LIDAR image. 

 

 



representation of snow lines is similar to the lane lines in 

LIDAR images as shown in Fig. 1b. These lines deform the 

expected road pattern and increase the occurrence of similar 

areas compared to the map image. Consequently, the image 

matching calculation using (3) may yield a high probability to 

laterally localize the vehicle towards the snow lines. In order to 

make the system more robust to the environmental changes, 

edge matching is incorporated. The lane lines and road edges 

are more static and are less affected by changing of the 

environmental conditions. These edge features are extracted by 

applying Sobel filter on the map and LIDAR images [19]. The 

strength 𝐸 (𝑢, 𝑣) and direction 𝜃𝐸(𝑢, 𝑣) of the extracted edges 

are obtained by (12). 
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where 𝐸𝑈  and 𝐸𝑉  are the gradient components in 𝑢 and 𝑣 

directions respectively. Figures 5a and 5b show a map image 

and the corresponding strength of the edges, i.e., the edge 

image. The edges that are parallel to the vehicle heading 

direction are very significant for lateral controlling. Thus, the 

edge image is filtered based on the gradient directions 𝜃𝐸  to 

encode edges with less than 20deg as illustrated in Fig. 5c. The 

averaged value 𝐻Map  in each row 𝑣  of the filtered image 

𝐸𝑈
′ (𝑢, 𝑣) is calculated using (13) with respect to the number of 

edges 𝑁(𝑣).  
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Accordingly, the edge profile of the map is created as shown in 

Fig. 5d and the edge profile 𝐻Obs(𝑣) of the LIDAR image in 

Fig. 5e is similarly obtained as shown in Fig. 5f. Edge matching 

𝑅Edge(𝑣𝑐) between the map and LIDAR profiles is then 

computed and normalized by  𝜂  using (14) to represent the 

degree of similarity as illustrated in Fig. 5g.  
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The edge matching profile is a column vector whereas the 

image matching produced by (3) is a matrix. Therefore, the 

edge matching profile is typically propagated in a housing 

matrix  𝑅𝑡,Edge(Δx, Δy) that contains the same size of 

𝑅Img(Δ𝑥, Δ𝑦) as demonstrated in Fig. 5h. Based on the 

conditional independence assumption, the edge matching and 

the image matching probabilities are combined with the prior 

probability in (15) to estimate the posterior probability of the 

vehicle pose. The offsets and the actual pose of the vehicle are 

then calculated by following the same steps in (6) and (2) 

respectively.  

 

𝑃𝑡 𝑡⁄ (Δx, Δy) = η𝑃𝑡 𝑡⁄ −1
𝛼 (Δx, Δy)𝑅𝑡,Image

𝛽 (Δx, Δy)𝑅𝑡,Edge
𝛾 (Δx, Δy)                 (15) 

IV. SETUP AND PLATFORM 

Figure 6a shows the operated platform. The vehicle is 

equipped with many sensors and devices. Velodyne HDL-64E 

S2 laser range finder LIDAR with 64 separate beams is 

attached to the vehicle roof. Velodyne spins to generate 3D 

point clouds to describe the environment around the vehicle. 

Applonix POS-LV 220 coupled GNSS/IMU is deployed to 

receive GPS data and measure the velocity, acceleration and 

rotation angles. A camera system is utilized for image 

processing and computer vision applications. Twelve 

omnidirectional radars are distributed on the vehicle body to 

scan distant areas in range of 180 m. The outputs of the sensors 

are sent to the central processing unit installed in the trunk. The 

 

Fig. 5.   Edge matching integration. (a) Map image. (b) Strength of gradients. (c) Filtered image based on gradient directions. (d) Map Edge profile. (e) Filtered 
LIDAR image. (f) LIDAR edge profile. (g) Edge matching profile. (h) Matching profile represented in two directions.  
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Fig. 6. (a) Operated platform. (b) 2D high definition map. 

 



processing unit has Intel-Core™ i7-6700 CPU working at 3.40 

GH with 8 GB of RAM. The operating system is Windows-7 

64X and the localization system was coded using VS-2010 C++ 

and OpenCV library. The auto-driver comprises many modules 

such as fusion preceptor, object detection and tracking, traffic 

signal detection and recognition, path planning, trajectory 

predictor, localization, mapping and so forth.   

The map data were collected by manually driving on roads 

with good weather conditions in different environments 

including urban, country side and mountainous regions. The 

point clouds of LIDAR are accumulated and the dynamic and 

static objects such as buildings and cars are removed at height 

of 30cm. The maps were then generated using a 

post-processing operation to ensure an accurate detail 

integration. Thus, a 2D map is obtained with encoding the road 

surface as illustrated in Fig. 6b. The size of each map patch is 

64×64 𝑚2  that represented by 256×256 pixels in the image 

domain.  

The improved system has been tested and evaluated in Suzu 

and Kanazawa cities, Japan. The maximum speed permitted by 

the government was 60km/h. The results and images presented 

in this paper were obtained during the following period: 

26th-27th February and 30th-31st March 2016 in Suzu and 27th 

January and 3rd March 2017 in Kanazawa.  The weather in these 

days was snowing and raining frequently. The road surface was 

wet and snow covered many areas, i.e., long snow lines 

appeared in some road segments. Accordingly, various difficult 

situations were encountered during the autonomous driving. 

LIDAR data package is sent at a frequency of 10 Hz and 

GNSS/IMU measurements are obtained with 100 Hz. 

Therefore, we keep update the vehicle pose using the proposed 

method in the range of 0.1sec. The online accumulated LIDAR 

image consists of L=10 frames and covers 32×32 𝑚2 , i.e., 

192×192 pixels in the image domain. Obviously, the image 

matching is calculated 64×64 times and Fourier transform is 

used to efficiently reduce processing time [20].  

LIDAR and map images are divided into blocks with size of 

16×16 pixels. The map blocks are used to create the eigenspace 

that encodes approximately 75% of the total variance. This 

percent is accommodated by a changeable number k of 

eigenvectors depending on each map image. We constrain k to 

be less than 9 because of processing time. However, seven 

eigenvectors were found sufficient to account the desired 

variance. LIDAR blocks are projected into the eigenspace and 

corrected as explained in section III. The GNSS and RTK 

measurements were stored as ground truth to compare and 

evaluate the outcomes of the proposed method.  

V. RESULTS AND DISCUSSION  

The online accumulation of LIDAR frames is a unique idea 

because only a single frame or point cloud is used to localize 

the vehicle in most of the previous studies [21]. Such an 

approach provides a sparse representation of the environment. 

Consequently, the researchers tend to extract some features 

from the point cloud or to use Iterative Closest Point (ICP) to 

match the map images [22]. In contrast, the proposed 

accumulation strategy makes the online LIDAR image dense 

and more compatible in the intensity level and the appearance 

with map images. Accordingly, the matching operation 

becomes more robust in measuring the similarity of the road 

structures. Figures 7a and 7b illustrate matching results using 

one LIDAR frame and ten accumulated frames, respectively. 

The corresponding probability distributions are shown in Figs. 

7c and 7d. The matching probability 𝑅(Δ𝑥, Δ𝑦) indicates better 

distribution using the accumulated LIDAR image, i.e., the 

accumulated images correctly overlap the map images and 

match the road structure based on the position of the maximum 

matching score in 𝑅(Δ𝑥, Δ𝑦). This is because of enhancing the 

road context representation and encoding more details of the 

environment such as road painting landmarks and surrounding 

structures. 

Figure 8 shows some samples of the image enhancement 

using PCA. The image matching results to map images using 

raw and reconstructed LIDAR images are illustrated in Figs. 8a 

and 8b, respectively. The corresponding matching scores are 

 
Fig. 7.  LIDAR frame accumulation. (a) Matching result between map 

image and one LIDAR frame. (b) Matching result using the accumulated 
LIDAR image. (c) Matching distribution yielded by one frame. (d) 

Matching distribution yielded by the accumulated image.  
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Fig. 8.  LIDAR image reconstruction. (a) Matching result between map 

image and raw LIDAR image. (b) Matching between map image and 

reconstructed LIDAR image. (c) Matching distribution yielded by raw 

image. (d) Matching distribution yielded by the reconstructed image.  
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shown in Figs. 8c and 8d. The first and second cases in Fig. 8 

demonstrate a wrong matching calculation using the raw 

images because of the wet road surface and the snow 

appearance at the roadside. The reconstructed images provide 

correct positions relative to the map images because the 

intensity level is enhanced and some missing areas with respect 

to the road context are recovered. The third case shows the 

same correct matching result that obtained by the raw and 

reconstructed LIDAR images. On the other hand, the 

corresponding matching distribution using the reconstructed 

LIDAR image demonstrates better scores by producing one 

unique pick whereas multiple picks appear using the raw 

LIDAR image. These picks are considered noise and they may 

affect the overall calculation of the posterior probability in (15). 

Moreover, this case indicates the scalability of the 

reconstruction strategy to be used commonly when the raw 

LIDAR image has a good quality.  

Covariance matrix C in (8) expresses the relationship 

between pixels in the blocks. This type of calculation models 

the geometrical structure and the texture patterns with respect 

to the pixel positions. As the map images represent only the 

road surface, these two modeled components dominate the 

eigenspace. Therefore, the first few eigenvectors are sufficient 

to express 75% of the total variance in each map image as can 

be observed in Fig. 4b. Each eigenvalue represents a Gaussian 

distribution boundary of the encoded features. This provides a 

generalization capability to the localization system to 

reconstruct, without any change, the LIDAR blocks that 

possess legal structure with different textures. Moreover, the 

reconstructed LIDAR images are ensured to be as similar as 

possible to the map images in terms of the patterns and intensity 

level.  

Figure 9 emphasizes the previous discussion by showing 

eigenvectors with corresponding map images. The images 

represent some road segments with different heading angles 

and structures. One can observe that the first eigenvectors 

almost describe the same dominant patterns of the pixel 

distribution. This indicates the robustness of dividing map 

images into smaller blocks to encode the curve and straight 

road segments sufficiently as well as to cover a wide range of 

environmental changes and reconstruct LIDAR images 

accordingly.    

Figure 10a shows the map image used to create an 

eigenspace and reconstruct the LIDAR image in Fig. 10b. The 

reconstructed blocks are replaced by the nearest map blocks in 

the created eigenspace as illustrated in Fig. 10c. We can 

emphasize two facts by this image: first, many blocks in the 

LIDAR image are represented by the same map block. This is 

because of the generalization capabilities of the eigenspace to 

distinguish the like-areas in LIDAR images. Second, different 

map blocks contribute to forming lane lines in the LIDAR 

image. This indicates the capability of figuring out the map 

context. Accordingly, the image matching in (3) becomes more 

robust to the change in the reflectivity of the laser beams on wet 

road surfaces.  

The edge profile provides very significant information to 

controlling the vehicle laterally. As the map data are usually 

collected in good weather conditions, the map edge profile is 

expected to represent the lane lines and road edges with 

dominant and sharp picks. On the other hand, snow lines create 

extra picks in the LIDAR profile. Based on the number and the 

distance between picks in the map profile, the effects of snow 

can be reduced significantly using (14). From a signal 

processing viewpoint, the map and LIDAR edge profiles can be 

considered two signals that share some common properties. 

The snow lines represented by some picks are considered noise 

in LIDAR profiles. As common features are expected to 

dominate the matching calculation, noise appearance (in some 

range) can be filtered out.  

Figure 11 illustrates the effectiveness of incorporating the 

edge matching calculation in the localization system by 

demonstrating three instances of the snow formation. Each 

instance is detailed by showing the front camera image in Fig. 

11a, the image matching probability (3) in Fig. 11b, the image 

matching result in Fig. 11c, the edge matching probability (14) 

in Fig. 11d, i.e., red represents the map profile, blue represents 

the LIDAR profile and multiple colors represent the matching 

profile, and the edge matching result in Fig. 11e. The first case 

illustrates the snow accumulation at the roadside with a 

freezing layer on the road surface. This layer influences the 

LIDAR reflectivity and increases the intensity level. 

Consequently, the image matching result produces a lateral 

shifting around 3 meters whereas the edge matching recovers 

this situation at 12cm. The second case shows a wet road 

surface with snow segments just beside the lane line. These 

segments change the road pattern and result in matching the 

side lane line with the middle line in the map image. In contrast, 

this situation is also recovered using the edge matching. The 

third case shows accumulated snow segments at the roadside 

 
Fig. 9. (a) Map images representing different road structure at different 

heading angles. (b) Eigenvectors. 
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Fig. 10. (a) Map image. (b) Reconstructed LIDAR image. (c) LIDAR image 

replaced by map blocks. Red rectangles indicate different blocks forming the 
lane line whereas blue rectangles indicate the same block at different 

positions. 
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and two snow lines inside the lane. The snow lines influence the 

image matching result with a considerable lateral shifting. 

These lines are represented by two noise picks in the LIDAR 

profile (blue) in Fig. 11d. The effects are eliminated by 

calculating the edge matching based on the common picks of 

the lane lines between the LIDAR and map profiles. 

Accordingly, the edge matching correctly localizes the vehicle 

as shown in Fig. 11e. 

Figure 12 shows a critical situation that occurred on 1st 

March 2016 because of the snow line existence. The vehicle 

was pulled two times towards the snow lines near the roadside 

barrier. The lateral error is approximately 1.2m using the old 

system (5) whereas it has been reduced significantly to 14cm 

using the improved system (15). Therefore, the improvement 

steps have increased the stability and smoothness of the 

localization system.  

As the immediate effects of snow lines and wet road surface 

are to shift the vehicle laterally, one can infer that the proposed 

improvements have also enhanced significantly the localization 

accuracy in the longitudinal direction. Furthermore, the 

improved system has shown an impressive performance against 

the environmental changes. Figure 13 highlights an example on 

changing a grass and vegetation area in Figs. 13a and 13b into a 

paved land in Fig. 13c. The old system has yielded a wrong 

lateral estimation in the opposite lane as indicated in Fig. 13d 

whereas the improved system estimates the vehicle pose 

accurately as illustrated in Fig. 13e. The error profiles of both 

the systems along this area are shown in Fig. 13f. This indicates 

the scalability of the improved system to work robustly in 

various environments with different weather conditions.  

 
Fig. 12. Localization performances using old and improved systems in 

snow environment. 
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Fig. 13.  Old and improved performances against environment changes. (a) 

Front camera. (b) Grass area. (c) Paved area. (d) Image matching 

probability. (e) Edge matching probability. (f) Lateral error profiles.  

 

 

 
Fig. 11. Edge matching effects. (a) Camera image. (b) Image matching probability. (c) Image matching results. (d) Edge process: red represents map profile, 

blue represents LIDAR profile and colorful represents matching profile. (d) Edge matching results. 

 

 

 

 



In the overall assessment, the improved system has 

performed lateral localization error of 20cm in an average of 

many hard situations of driving autonomously in snow 

environments and on wet road surfaces. Furthermore, the 

lateral error is less than 15cm on normal days with good 

weather conditions. Accordingly, the system is very compatible 

and robust to be used for autonomous driving under different 

environmental conditions.  

VI. CONCLUSION 

This paper focuses on the problem of autonomous driving in 

wet and snow environments using a probabilistic approach. The 

density of the online LIDAR image is increased using a frame 

accumulation strategy. This unique idea has enabled image 

matching to be more robust by enhancing the representation of 

the road structure and context. PCA is used to reconstruct 

LIDAR images by improving the image quality and recovering 

the missing areas due to the weak reflectivity of LIDAR on the 

wet road surfaces. Two conditions must be met to reconstruct 

LIDAR images properly. First, the reconstruction must retain 

the structure patterns of the unaffected regions with enhancing 

the intensity level. Second, the missing regions must be 

recovered with respect to the map context. PCA has satisfied 

these two conditions by creating an eigenspace that models the 

map structure and pixel distribution. The generalization 

capability of this space has provided a better interpretation of 

the map features. In addition, an edge matching technique is 

incorporated to increase the robustness of localizing the vehicle 

in the lateral direction. Edge profile was designed to encode 

most important features to provide a stable performance against 

the snow line existence. The effects of snow lines were reduced 

by filtering out their picks in the edge profile based on the 

number and distance between the picks in the map edge profile. 

Moreover, edge matching was proven to recover the matching 

error when the image matching fails to localize the vehicle. The 

lateral error obtained by the proposed method is approximately 

20cm at a speed of 60km/h. This error is reliable in conducting 

autonomous driving under hard weather conditions. 
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