
Abstraction refinement for non-zeno fairness
verification of linear hybrid automata

言語: eng

出版者: 

公開日: 2018-04-16

キーワード (Ja): 

キーワード (En): 

作成者: 

メールアドレス: 

所属: 

メタデータ

https://doi.org/10.24517/00050514URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Abstraction Refinement for Non-Zeno Fairness
Verification of Linear Hybrid Automata

Ryo Yanase
Graduate School of Natural Science and Technology,

Kanazawa University, Kanazawa, Ishikawa 920–1192, Japan
Email: ryanase@csl.ec.t.kanazawa-u.ac.jp

I. INTRODUCTION

Linear hybrid automaton is a specification language for hy-
brid systems. For verification of hybrid systems, it is important
to check fairness assumptions. For example, an embedded
system keeps running forever when it starts to move by turning
on the switch. Such a system has to be checked not only
system safety but also fairness and non-Zenoness.

The state space explosion is a fundamental problem in
model checking, since it is a method that performs an ex-
haustive search of states. To avoid state space explosion prob-
lem in model checking, CEGAR (CounterExample Guided
Abstraction Refinement) is an effective technique. In this
paper, we propose transition predicate abstraction and CEGAR
verification algorithm for linear hybrid automata.

II. RELATED WORK

Hybrid automaton is a specification language proposed by
R. Alur, et al [1], and linear hybrid automaton is a subset
of the language. R. Alur proposed predicate abstraction for
reachability analysis and CEGAR verification algorithm [2],
[3]. F. Wang specified non-Zeno fairness assumption by using
extended temporal logic TECTLf and proposed verification
method for timed automaton [4]. R. Kurki-Suonio formalized
a hybrid system as a discrete time system that has distributed
clocks, and he verified non-Zeno fairness for the system [5].
B. Cook, A. Podelski and A. Rybalchenko extended predicate
abstraction to transition predicate abstraction and proposed
an algorithm for checking fair termination of discrete systems
[6], [7].

In our work, we propose verification method by CEGAR
using transition predicate abstraction for linear hybrid automa-
ton. Our proposed CEGAR based on transition predicate is
quite different from existing CEGARs based on state predicate.

III. NON-ZENO FAIRNESS

Definition 1 (Non-Zeno fairness). Wang defined non-Zeno
fairness by using event predicate and TECTLf formula[4] as

∃[a1,...,am]
⟨b1,...,bn⟩2

εφ1,

where a1, . . . , am, b1, . . . , bn, ε are either event predicates or
TECTLf formulas, and φ1 is either null (not specified) or an
event predicate. [a1, . . . , am] denotes the strong-fairness and
⟨b1, . . . , bn⟩ denotes the weak-fairness, and ∃[a1,...,am]

⟨b1,...,bn⟩ means
that there exists a path satisfying them.

• The strong-fairness is a property that a transition sat-
isfying an event predicate occurs at least once if the
transition can be taken infinitely often.

• The weak-fairness is a property that a transition satisfy-
ing an event predicate occurs at least one if the transition
can always occur.

2εϕ1 means that the path always satisfies ϕ1 after a
transition satisfying ε. If ε is not assigned, it is equal to a
“globally” formula of typical CTL. In addition, the path must
satisfy that the sum of time for each transitions diverges to
infinity.

IV. TRANSITION PREDICATE ABSTRACTION FOR LINEAR
HYBRID AUTOMATON

We utilise Podelski’s predicate abstraction method and
extend it for linear hybrid automata.

A. Transition Predicate

Let a linear hybrid automaton be H = (L,X, F, I, A, T, θ),
a transition predicate p is a binary relation over states, and it
is described as an assertion over X and their primed variables.

1) Predicates of Transition Relations: A time transi-
tion in a location l of a linear hybrid automaton H =
(L,X, F, I, A, T, θ) corresponds to the following set P↑

l of
predicates:

P↑
l = {at l, at′ l} ∪ Preds(I(l))

∪Preds(∃d ∈ R≥0.
∧

{x′
i = xi + F (l)(xi) · d | xi ∈ X})

∪Preds(I(l)[X ′/X]), (1)

where Preds() is a function that symbolically evaluates a
formula and divides it into the set of atomic formulas with
conjunctions (e. g. Preds(p1 ∧ p2) = {p1, p2}), and [X ′/X]
denotes a formula computed by replacing xi ∈ X with the
primed variable x′

i.
A discrete transition τ = (l, ϕ, a, λ, l′) ∈ T of H is also

represented by the following set Pτ of predicates:

Pτ = {at l, at′ l′} ∪ Preds(I(l) ∧ ϕ ∧ λ ∧ I(l′)[X ′/X]).
(2)



2) Composition of transition predicates: Given two sets P1

and P2 of transition predicates, the composition P1 ◦ P2 is
computed by the following rules:

• If
∧

P1 = false, P1 ◦ P2 = {false}.
• If

∧
P2 = false, P1 ◦ P2 = {false}.

• Let P1 = {at l1, at′ l′1}∪P ′
1 and P2 = {at l2, at′ l′2}∪

P ′
2, If l′1 = l2,

P1 ◦ P2 = {at l1, at′ l′2} ∪ Preds((∃X ′.

(ρ2[X
′′/X ′])[X ′/X] ∧ ρ1)[X

′/X ′′]),

where ρ1 =
∧
P ′
1 and ρ2 =

∧
P ′
2.

Otherwise, P1 ◦ P2 = {false}.

Let P↑
τ be a set of transition predicates when a discrete

transition τ occurs after time transition from a location l, it
can be computed as P↑

l ◦ Pτ , where P↑
l is the predication set

of a time transition and Pτ is one of a discrete transition.
Given a sequence π = τ0τ1 . . . τk of discrete transitions, the

predicate set P↑
π considering time transitions is computed as

P↑
π = P↑

τ0 ◦ P
↑
τ1 ◦ · · · ◦ P

↑
τk
.

3) Transition Abstraction for a Linear Hybrid Automaton:
Given a linear hybrid automaton H = (L,X, F, I, A, T, θ) and
a set P of transition predicates, the predicate abstraction for
a predicate set Pτ with P is defined as

αP(Pτ ) = {p ∈ P | ρτ ⊆ p},

where predicates at l and at′ l for each location are implicitly
contained by P , and ρτ is an assertion of τ , that is, ρτ =

∧
P↑
τ .

A predicate abstraction α̂P(π) for a finite path π =
δd0τ0δd0τ1 . . . δdk

τk is recursively computed:

α̂P(π) = αP(P↑
τ0 ◦ α̂P(δd1

τ1 . . . δdk
τk)

α̂P(δkτk) = αP(P↑
τk
).

For a sequence π = τ0τ1 . . . τk of discrete transitions, the
abstraction α̂↑

P(π) considering time transitions is computed as

α̂↑
P(π) = αP(P↑

τ0 ◦ α̂
↑
P(τ1 . . . τk))

α̂↑
P(τk) = αP(P↑

τk
).

V. CEGAR FOR NON-ZENO FAIRNESS

We propose the approach of non-Zeno fairness verification
with CEGAR for a linear hybrid automaton based on Cook’s
method[7].

For proving the non-Zeno fairness ∃[a1,...,am]
⟨b1,...,bn⟩2

εϕ1, we
have to find the path satisfying the assumption. However, the
search will not terminate if the number of paths is infinite.
Avoiding this problem, we compress paths to check by using
the transition abstraction method.

The algorithm of non-Zeno fairness verification with CE-
GAR is shown in Fig. 1.

1: R := ∅ /* A set of ranking relations */
2: P := ∅ /* A set of transition predicates */
3: while exists π2 = τk . . . τl s.t. α̂↑

P(π2) ̸⊆ R for any R ∈ R do

4: if exists R ∈ R s.t. P↑
π2

⊆ R then
5: /* Refinement */
6: Ppath :=

∪
i∈{k,...,l} P

↑
ρτi ...τl

7: Ploop := R ∪
∪

i∈{k,...,l} P
↑
τi...τl ◦R

8: P := P ∪ Ppath ∪ Ploop /* Update P */
9: else

10: if π2 is well-founded by the ranking relation R then
11: R := R∪ {R}
12: else
13: if exists π1 = τ1 . . . τk−1 s.t. α̂P(π1π2) ̸= false then

14: if P↑
π1π2

̸= false then
15: if A cycle time of π2 diverges,
16: ∀i ∈ {1, . . . ,m}∃j ∈ {k, . . . , l}.

(∃X.P↑
π1τk...τj )[X/X ′] ∧ ai ̸= false,

17: ∀i ∈ {1, . . . ,m}.∀j ∈ {k, . . . , l}.
(∃X.P↑

π1τk...τj )[X/X ′] ∧ bi ̸= false, and
18: ∀i ∈ {1, . . . , l}. (∃X.P↑

τ1...τi)[X/X ′] ∧
ε ̸= false =⇒ (∃X.P↑

τ1...τi)[X/X ′] ∧ ϕ1 ̸= false. then
19: return SAT and the path π1π2

20: else
21: /* Refinement */
22: P := P ∪

∪
i∈{k,...,l} P

↑
τi...τl

23: return UNSAT

Fig. 1. Algorithm of CEGAR for Non-Zeno Fairness ∃[a1,...,am]
⟨b1,...,bn⟩ 2

εϕ1

VI. CONCLUSION

In this paper, we presented transition predicate abstraction
and CEGAR verification algorithm for a linear hybrid au-
tomaton. We are working on implementation of the algorithm.
Future work will focus on further practical experiments and
evaluation.

VII. ACKNOWLEDGEMENT

I wish to thank my advisor Professor Satoshi Yamane, for
his continuous support in the project. He was always there to
listen and to give advice.

REFERENCES

[1] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho, “Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems,” Lecture Notes in Computer Science, vol. 736, pp.
209–229, 1993.

[2] R. Alur, T. Dang, and F. Ivancic, “Reachability analysis of hybrid systems
via predicate abstraction,” Lecture Notes in Computer Science, vol. 2289,
pp. 35–48, 2002.

[3] R. Alur and T. Dang, “Counter-Example Guided Predicate Abstraction
of Hybrid Systems,” Lecture Notes in Computer Science, vol. 2619, pp.
208–223, 2003.

[4] F. Wang, “Model-checking distributed real-time systems with states,
events, and multiple fairness assumptions,” Lecture Notes in Computer
Science, vol. 3116, pp. 553–568, 2004.

[5] R. Kurki-Suonio, “Hybrid models with fairness and distributed clocks.”
Lecture Notes in Computer Science, vol. 736, pp. 103–120, 1992.

[6] A. Podelski and A. Rybalchenko, “Transition predicate abstraction and
fair termination,” Proc. POPL, vol. 40, no. 1, pp. 132–144, 2005.

[7] B. Cook, A. Podelski, and A. Rybalchenko, “Abstraction refinement for
termination,” Lecture Notes in Computer Science, vol. 3672, pp. 87–101,
2005.


