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On the values at zero of partial zeta functions

for ray classes of a real quadratic field II.

Hiroshi YAMASHITA

Abstract. Let k be a real quadratic field. Let a be an integer of k£ and m be a

positive rational integer. Denote by ((a, (m), s) be a partial zeta function associated

to a ray class a containing the principal ideal (@) defined with a conductor (m).

We give a formula of the value of {(a, (m),0) by applying the Shintani method to

compute special values of partial zeta functions in [2]. In this successive paper, we .

show a little improvement of the formula and several computational examples by

using Pari/GP system.

1. Introduction. We study the value
at zero of a partial zeta function on a real
quadratic field in [4]. The motivation and
aim of this work is to pursue an analo-
gous formula of the relative class number
of a cyclotomic field given as a determi-
nant of a rational matrix, which has been
studied by many authors. It is interpreted
as a product of values at zero of Dirich-
let L-functions for odd characters having a
same conductor. In other words, the value
at zero of the Artin L-function associated
with the induced representation of the non-
trivial character of the group H generated

by complex conjugation. This value is

described in terms of representation theory
of abelian groups, which means the matrix
representation afforded by multiplication
of a certain element of the group ring.

We need to study the formula to extend
it to the ray class field of a real quadratic
field. Since it is well-known that every ray
class fields on a real quadratic field are not
CM-fields, we can not talk about relative
class number formulas in general. Instead
of this, we consider a value of the Artin
L-function associated with an induced rep-
resentation. We consider in §2 which sub-
group and which character are adequate to

this purpose.
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Secondly, we make a little progress to
improve the formula in §3. We get sev-
eral examples by computing with using
Pari/GP System and some tables are in

§4.

2. Representation of a finite abelian
group. Let G be a finite abelian group
and H be a subgroup. We fix a complex
y Xn
the preimage of ¥ by restriction of charac-
ters of G onto H. Each character y; is a

character ¢ of H and denote by x1, - - -

character of a complex representation of a
subalgebra of the group ring of G over C.
Let A; be the subalgebra. It is of one di-
mension, where an arbitrary ¢ € G acts as
oz = xi(0)z. Let ¢ is the induced charac-
ter "
b=Tndfy =3 x:
i=1

This character is afforded with the G-
algebra

Ay = DL, 4;.
Let e be the unit of this algebra. We fix a
section of the canonical homomorphism of
G onto G/H. The cardinal number of the
section equals n. Let {0y, - ,0,} be the
section. We see {07 e, -+, 0. e} is a basis
of the algebra Ay,. Therefore, the matrix

xior) o Xalor?)

A= : :
xi(onh) o xn(ogh)

is regular. Let h(i,5) = h(os,0;) be the

factor system of extension of a group G/H

by H associated with the séction, that is
for o; and o, there are o, and h(i,j) € H
such that

(1) 0,05 = oih(i, j).

Here, the index [ is equal to one of n num-
bers 1,---,n such that (o;0;)H = oH
holds. We regard this [ as a variable which
is a function of two variables ¢ and 5. When
we fix a value of 7, the variable [ is a partial
function of a variable 7 and this correspon-
dence is bijective.

Let f be a complex valued function of G
satisfying a relation

(2) floh) = f(o)d(h)

for every 0 € GG and every h € H. We
make this function f correspond with an
element of the group ring defined by

Of = Zf(oj)oj_l.
j=1
We shorten notation in (1) and write as
o;0; = oth. With replacing o, Lo,k with

o;, we have

flo;taih) (o7 orh) ™!

D
[y

Il
(]

<.
Il
—

NE

f(oi_lol)z/)(h)h_loflai.
1

[
Il

Thus,

B)  6ro7t =3 f(o; to)p(h)h op

=1
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Let Dy be the matrix of representation ob-
tained by multiplication of §; on the alge-
bra Ay:

x1(05)
Df =

Xn(ef)

We denote by Ay the matrix (f(o,'0,))-
We write down the system consisting of the

equalities yielded by (3) as
AfA = AD;

We take determinants and divide both
sides by |A|.

THEOREM 1. We have J(Of) = |Ag|.

We are interested in this formula in
arithmetical context, which is familiar in
theory of cyclotomic fields. We recall the
relation between the values of a L-function
at non-positive integers and the values of
Bernoulli polynomials in the view point of
Theorem 1. Let m be a positive integer
which is greater than two. Set G to the
ray class group of @ defined with a con-
ductor m. By class field theory, there is an
exact sequence

15 {+1}=(Z/mZ)* xR*/(R*)*=G — 1

where the factor R*/(R*)? in the mid-
dle comes from the archimedian place. By
virtue of this sequence, we may identify
the ray class group with the multiplicative
group (Z/mZ)*. Hence, we regard G as
a subset

{a:1<a<m, (a,m)=1}

of minimal non-negative residue by m. To
avoid confusion, we write o, if the integer
a means an element of G. We take the sub-
group generated by o,,_1 as the subgroup
H. Let 1y be the non-trivial character of
H. We choose the Bernoulli polynomial
By(z) to define the function f:

foa) =B ().

Since Bi(1 — x) = (—1)*Bi(z), a reason-
able choice of the character ¢ is to be
1 = k. Namely, this character and the
function f satisfy the relation (2).
consider each character x; as a Dirichlet

If we

character with a conductor m, the value
of the Dirichlet L-function associated with
the character x; has values

mkvl
L(1—k,x;) = —-k—Xj(f)f)

for positive integers k£ = 1,2,---,
c.f. Theorem 2.9 in [3]. Since the Artin L-
function L(s, ) is a product of the Dirich-
let L-functions, its values at non-positive
integers are equal to the determinants of
the rational matrices in Theorem 1.

We will pursue an analogue of this rela-
tion between values of the Artin L-function
and certain rational matrices in a real
quadratic field. For this purpose, we study
the partial zeta function associated with a
ray class. Denote by a the ray class de-
fined with conducutor m which contains
a principal ideal (a). When we take real
quadratic field to the base field and apply
the formula of values of of the partial zeta
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function, we may be possible to set
floa) = —¢(a,m,1 — k).

Here, we write the partial zeta function fol-
lowing to notation in [2]. In order to study
this relation, we need to obtain valus of the
partial zeta function.

3. Review on ray class groups on a
real quadratic field. Let d be a square
free positive integer greater than one. Let
k = Q(+/d) be a real quadratic field. Let m
be an integral ideal generated by a positive
integer m. Denote by k(m) the ray class
field over k defined with a conductor m.
Put G, = Gal(k(m)/k). Let A be the sub-
group of the ideal class group of k gener-
ated by every prime ideals not dividing m.
The subset of every principal ideals con-
tained in A forms a subgroup. We denote
this subgroup by P. Let Hy be the princi-
pal congruent subgroup mod m, which is
a subgroup of P. There is the Artin map
of A/Hy, onto Gy, by class field theory. De-
note by ¢ the Artin map of A/H,. Let p
be a place of k. When the place is non-
archimedian, this symbol means the cor-
responding valuation ideal of the ring of
integers of k, simultaneously. Denote by
k, the completion of k at a place p. Let Uy
be the product of groups U, of local units
of every finite places such that their asso-
ciated valuation ideals contain m. Let Uy
be the product of multiplicative groups k

of every archimedian places. We have a

homomorphisms into G

wo : Uy — G, Yoo 1 Uso — Gy

by virtue of the Hilbert theory concerning
ramifications and local class field theory
at every p/moo. These three maps have a
relation

o((@) ™! = po(@)po(a)

for a € k™ by reciprocity law of class field
theory, where the ideal (@) is prime to m.
Put U = Uy X Uy. The kernel of pgp is
a subgroup of U generated by a subgroup
U(moo) defined in [4] and the image E of
the global unit group of k. Let L be the
Hilbert class field of k. We have an iso-
morphism "

U/U(moo)E = Gal(k(m)/L)

induced from these homomorphisms g
and ¢o. We set G = Gal(k(m)/L). Let
a be a ray class containing the principal
ideal (a). We define the function f from
values at zero of the partial zeta function
associated with ray class a:

f(a) = C(Cl, m,O).

We note that the ray class field k(m) is
not a CM-field in general. For example,
when k = Q(v2) and m = 8, we have
wo(—1) # 1. Hence, by reciprocity law, we
see Yoo(—1) # 1. This means the complex
conjugation maps on the two archimedian
places of k define different elements in G,
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which is equivalent to that k(m) is not a
CM-field. We expects the following holds

Let a and b be integers of k which are
prime to m and such that po(a) = @o(b).
Let (s1,82) be the sign of ab™! in Uy, /UZ..
Then, there is a relation f(a) = s1s2f(b).
If this holds, we may choose H as a sub-
group of Im(py).

We recall notation in [4]. We embed the
real quadratic field into the real numbers
by selecting one of two archimedian places
and fixing it once for all. Set

vd if d#1 mod 4,

1+vd
2

w =

if d=1 mod 4.

The ring of integers of &k is a free mod-
ule of rank two with a basis {1, w}. Since
the multiplicative group of totally positive
units is a free abelian group of rank one,
we denote by e; a generator such that
er=x+ywforz>0and y > 0. Let [ be
the order of ; mod m and put € = €,.
We see there is positive integers a; and b;

such that
e = (1+maj) +mbw.

Let a be an integer of k™ such that

(@), (m)) = 1.

product

a is decomposed into a

a=cdp, >0,
Let ¢ be the minimal non-negative residue
of ¢ by m. Denote by Ny the absolute
value of norm of 3. Let N be the product

ﬂ = f1+f2w7 (f17f2) =1.

of by and Ny. Namely,
mN = mbi Ny.

We see (f2, No) = 1 from §4 of [4]. Let
A1 be an arbitrary solution of a congruent
equation foxr = fi + foTr(w) mod Ny in
the variable z. We define a constant v to
be

ai if f2 = Oa
Y=1<a +bhTr(w) if fi =0,
a1 + b1 if fife #0

and put 6 = 1+m~y. We have (y,mN) =1
by Lemma 8, [4]. A rational number p, is
defined to be

r__c 0
s == T mN

for each integer s contained in the interval
[0,mN). We showed the following formula
of the value at zero of the partial zeta func-
tion holds in [4]:

THEOREM 2. We have

om0 =TT s (1-5),
where
mN—-1 , s
4 S= ; Bi(< ps >)B1 (m) .

The value of mN appearing in this formula
may be very large. This is an obstacle
when we try to calculate the value of the
partial zeta function by using this formula.

For example, the values of b = mN/N, are
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growing as we can observe in the following

table when k = Q(v/2):

l b

1 2
2 22 3
3 2 57
4 23317
5 2 29 41
6 22325711
7 2 132 239
8 24 3 17 577
9 257197 199
10 22 319 29 41 59
11 2 23 353 5741
122332571117 1153
13 279 599 33461
14 | 22 3 132 113 239 337
15| 252 7 29 312 41 269
16 | 2% 317 577 665857

Let &’ be an arbitrary integer satisfying
6'd =1 mod mN. Since 6§ = 1 mod m,
we see ' = 1 mod m. There is a unique
integer ¢ for each s in the interval [0, mNN)
such that

s=cN+ 6t mod mN.

We rewite the the right hand side in the
equality (4) by using this congruence and
obtain a formula

miN—1

5= 3 5 () 2 (G v o)

S () (2 o))

The following lemma is easily proved:

LEMMA 3. Let x and y be real numbers.

Then, we have
<zty>=<z>+<y>-[<z>+<y>

It follows from this lemma that the value
of B; (<ﬁ + ﬁ» equals

£+B _t_ _ £+_t_.
m "\mN m  mN|’

Applying this equality, we obtain

S = Sl—% T,
where
5= % () = (i)
n=% () [

R (C ol

Let N, be the greatest common divisor of
N = b;Ny and . Their quotients by N,
are denoted by N; and k, respectively. We
have N = N;N; and

b 14+my 1 + K
mN  mN  mN N
By applying Lemma 3 again, we can ex-
pand B ( St )) into four terms

o (e o ()42l (2]

We introduce sums

neS e (0] 2 (o)

t=0

5= % ((5) 5 (i)
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and modify S; to be
mN 1
S = ( ) — =+ 85 -1

Since By(z)? = Ba(z) + 75, we see

mN-—1 2
t mN
§ " Bi|—=) =(mN)'’B —_.
=0 ' (mN) (mN) 2(0) + 12

To reduce the sum Sy, we divide values of
the variable ¢ into two parts:

t = to + Nity,

where ¢, runs over a set of integers
{0,--- ,N; — 1} and t; dose over a set
{0,---mNy — 1}. By this decomposition,
the sum is converted to a double sum

to=

By virtue of the distribution relation, this
double sum is equal to

5= S ({50 b, (Lo
2 = Z 1 N1 1 N1
to=0

We collect all terms and put together.

THEOREM 4. The main term S in the
formula of Theorem 1 equals a sum

1 mN 3c 1
gmN T 1z om a2

COROLLARY 5. We have the value of

¢(a,(m),0

) is equal to a sum

- =S+ T+ T5.

8 () ()

We obtain val-
ues of partial zeta functions at s = 0

4. Some examples.

by making macro programs with Pari/GP
that run on Windows 10 and compute val-
ues of the formula of Corollary 5 for small
m’s. The item ”order” in the tables is that
consisiting of orders of corresponding ray
classes. The item + Ny in the following ta-
bles means the value of N(8)(= £N).

(1) k=Q(V2).
m=2,1=1

o jorder Ny ((a,m,0)

1 11 1/4

3+w 2 7 ~1/4
m=3,1=4

a|order Ny ((a,m,0)

1 1 1 1/3

44w 2 14 ~1/3
m=4,1=2

a | order Ny ((a,m,0)

1 11 1/8

5+ 3w 2 7 ~1/8

3 2 1 1/8

5+w 2 23 -1/8
m=5,1=6

a{order Ny ((a,m,0)

1 11 ~1/5

2 2 1 1/5

5+ 2w 4 17 3/5

5+w 4 23 -3/5
—6,1=4

order Ny ¢(a,m,0)

1 1 1 1/3

34w 2 7 1/3

7+ 2w 2 41 ~1/3

74w 2 47 ~1/3
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m=71=3
a | order Ny ((a,m,0)
1 1 1 2/7
6 2 1 2/7
7+ 2w 2 41 —2/7
14 + 5w 2 146 —2/7
2 3 1 17
4 3 1 4/7
3 6 1 4/7
5 6 1 1/7
7+ 4w 6 17 -1/7
7+ 3w 6 31 —1/7
T+w 6 47 —4)7
14 4+ 6w 6 124 —4/7
m=28,1=4
a|order Ny ((a,m,0)
1 1 1 5/16
3 2 1 -3/16
5 2 1 -3/16
7 2 1 5/16
3+w 2 7 3/16
9+ 3w 2 63 -5/16
9+w 2 79  -5/16
11+ 3w 2 103 3/16
m=9,1=12
a | order Ny ((a,m,0)
1 1 1 1/9
104+ w 2 98
2 3 1 ~5/9
4 3 1 7/9
2+w 6 2 ~7/9
44w 6 14 5/9
(2) k=Q(V3).
m=2,1=2
a|order Ny ((a,m,0)
1 1 1 1/6
142w 2 11 ~1/6

m=3,1=6

a |order Ny ((a,m,0)

1 1 1 1/6

1+3w| 2 -26  -1/6
m=4,1=4

a |order Ny ((a,m,0)

1 11 7/12

w 2 -3 5/12

d+w 2 13 -5/12

1+ 4w 2 47 —7/12
m=25,1=3

a |order £Ny ((a,m,0)

1 1 1 9/20

4 2 1 9/20

1+5w| 2 -74  —9/20

4+5w| 2 -39  —9/20

2 4 1 1/20

3 41 1/20

2+ 5w 4 -1 -1/20

3+ 5w 4 —66 —1/20

w| 8 -3 7/20

2w 8 -3 3/20

3w 8 -3 3/20

4w 8 -3 7/20

5+ w 8 22 -7/20

5+2w, 8 13  —3/20

10 + 3w 8 73  —3/20

10 + 4w 8 13 —7/20
m=6,l=6

a |order +Np ({a,m,0)

1 1 1 1/6

5 2 1 1/6

1+ 6w 2 -107 ~1/6

5+ 6w 2 -83  -1/6
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m=17,1=8
a | order +Ny ((a,m,0)
1 1 1 17/21
3+w 2 6  11/21
1+ 7w 2 —-146 -17/21
3+ 8w 2 -183 -11/21
1+w 6 -2 13/21
142w 6 -11 19/21
8+w 6 61 —13/21
24+ Tw 6 —143 —5/21
3+ Tw 6 —138 1/21
84 2w 6 13 -19/21
m=28,l=4
o |order Ny ((a,m,0)
1 1 1 19/48
3 2 1 —5/48
5 2 1 —5/48
7 2 49  19/48
1+ 8w 2 —191 —19/48
3+ 8w 2 -183 5/48
54 8w 2 -169 5/48
7+ 8w 2 —-143 -19/48
w 4 -3  —7/48
3w 4 -3 17/48
5w 4 -3 17/48
Tw 4 -3 —7/48
84w 4 61 7/48
84 3w 4 37 —17/48
16 + 5w 4 181 —17/48
16 + Tw 4 109 7/48

m=29,l=18
alorder =+=Ny ((a,m,0)
1 1 1
149w 2 —242
2 3 1
4 3 1
24+ 9w 6 —239
4+ 9w 6 —227
(3) k=Q(V5).
m=2,1=3
! ordef No ¢{a,m,0)
1 1 1 6
m=3,1=4
order Ny ((a,m,0)
1 1 1 1/3
34w 2 11 ~1/3
m=4,1=3
a|order Ny ((a,m,0)
1 11 1/4
3 2 1 1/4
d+w 2 19 ~1/4
4+ 3w 2 19 ~1/4
m=5,1=10
a | order Ny ((a,m,0)
1 1 1 1/5
2 2 1 ~1/5
m=26,1=12

o |order Ny ((a,m,0)

1 1 1 0

6+ w

2 41 0
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m=7,1=8 [3] L. C. WASHINGTON; Introduction to
a|order No ¢(a,m,0) Cyclotomic Fields Second Edition,
1 1 1 3/7 G.T.M. 83, Springer-Verlag New York,
T+ w 2 55 -3/7 (1996).
2 3 1 5/7 [4]H. YAMASHITA; On the values at zero
3 3 1 -1/7 of partial zeta functions for ray classes
7+ 2w 6 59 =5/7 of a real quadratic field. Bull. of the
7+ 3w 6 61 1/7 School of Teacher Edu., College of Hu-
m=28 1= man and Social Sci., Kanazawa Univ.
, a | order Ny ((a,m,0) No.8(2016), 13-24.
1 1 1 3/8
3 2 1 3/8
2+w 2 5  —1/8
3+w| 2 11 1/8
3+2w| 2 11 1/8
5+ w 2 29  —1/8
8+w 2 71 -3/8
8 + 3w 2 79  -3/8
m=9,1=12
a|order Ny ¢(a,m,0)
1 1 1 7/9
9+w 2 8  -7/9
2 31 1/9
4 3 1 -5/9
9+2w| 6 95  -1/9
19+4w| 6 101 5/9
References

[1] J. NEUCKIRCH; Algebraische Zahlen-
theorie, Springer-Verlag Berlin Heider-
berg, 1992.

[2] T. SHINTANI; On evaluation of zeta
functions of totally real algebraic num-
ber fields at non-positive integers, J. Fac.
Sci. Univ. Tokyo, Sec. IA, 23(1976),
393-417.



