On the values at zero of partial zeta functions for
ray classes of a real quadratic field.

5B eng

HhRE

~FH: 2017-10-03
*F—7—NK (Ja):
*—7— K (En):
YRR

X—=ILT7 KL AR:
FiT/:

http://hdl.handle.net/2297/44754




13

On the values at zero of partial zeta functions
for ray classes of a real quadratic field.

Hiroshi

Abstract.

YAMASHITA

Let k be a totally real quadratic field. Let o be an integer of &k

and m be a positive rational integer. Denote by (((a),(m),s) be a partial zeta

function associated to a ray class containing the principal ideal (a) defined with a

conductor (m). We give a formula of the value of {((a),(m),0) by applying the

Shintani method to compute special values of partial zeta functions, c.f. [4]. It is

an analogue to the formula of values of a partial zeta function corresponding to a
class contained in (Z/mZ)* of the field of rational numbers, c.f. Chap. 4, [5].

1. Introduction. We study the value
at zero of a partial zeta function on a real
quadratic field in the present paper. The
formula of values of a partial zeta function
of non-positive integers is given in [4]. We
follow it under analogue to the case of cy-
clotomic field. Namely, we consider the ray
class group defined by the conductor (m)
and a ray class («), where m is a positive
integer, and where « is an integer of the
real quadratic field. Let {((c), (m),s) be
the partial zeta function associated to the
integral principal ideal (). Our aim is to
give an explicit formula of {((a), (m),0).
If this value is described explicitly, we can

obtain the Stickelberger element

Y- (@), (m), 0)e((e))

on the real (giladratic field of the class num-
ber one in a similar manner how we do in
the theory of cyclotomic fields, where ¢ is
the Artin map of the ray class group onto
the Galois group of the ray class field de-
fined with a conductor (m). T. Shintani
showed a method to calculate special val-
ues of a partial zeta function using general-
ized Bernoulli polynomials. We write out
the formula for the ray class (o) on real
quadratic field. The point in the compu-
tation is to solve a certain Diophantine
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equation. The value of {((a),(m),0) is
given as a sum of values for these solu-
tions of generalized Bernoulli polynomi-
als. These polynomials are expressed by
Bernoulli polynomials B;(z) and Bs(z),
essentially.

In §2, we determine the set of the
complete system of representatives of the
principal ray classes as an analogue of
(Z/mZ)* in the theory of cyclotomic
fields. We review the Shintani method
in §3 and solve a Diophantine problem
in §4.
ceding sections, we calculate the value of
¢((e),(m),0) and show a formula.

In §5, by using the results pre-

2. Ray class groups over a real
quadratic field. Let m be an integral
ideal of a real quadratic field k. Let O
be the ring of integers of k. The set of in-
tegers of O which are prime to m forms a
multiplicative set. Hence, every fractions
constructing from elements of O whose
denominators belong to the multiplicative
set form a subring of k. This ring is
a semilocal ring. Denote it by On. We
easily verified O = O + mO,, and m =
ONmQO,,. Thus, an isomorphism O/mO =
On/mO,, is induced from the natural in-
clusion of O into On. Since the mul-
tiplicative groups of both quotient rings
are isomorphic, (O/mO)* is isomorphic to
OX/(1 4+ mOy). Let A be the ideal group
generated by every prime ideals which are
not dividing m. Let (1 + mOy,)+ be a sub-
group generated by every totally positive

elements contained in 1 + mQy,. Principal
ideals generated by elements contained in
this set belong to A, which form a sub-
group of A. We denote it by H and de-
fine a ray class group in narrow sense with
conductor m to be the factor group A/H.
An abelian extension of k corresponding
to A/H called the ray class field is de-
fined in class field theory. We denoted
it by k(m). The relation of the ray class
and the Galois group is given by the Artin
map. There is an automorphism of k(m)
defined for each prime ideal which is called
a Frobenius automorphism. Every Frobe-
nius automotphisms with respect to prime
ideals contained in a same ray class are
equal. Therefore, we send each ray class to
the automorphism and obtain an injective
map. The theorem of arithmetic progres-
sion is generalized in arbitrary algebraic
number fields and every ray classes con-
tain infinitely many prime ideals. Thus,
this map is an isomorphism and is called
the Artin map. We denote by ¢ the Artin
map:

(1) ¢:A/H — G = Gal{k(m)/k).

Let P be the subgroup of A consisting of
every principal ideals which are prime to
m. We note

P/H 2 0g/(1 +mOn)+.

A = P holds if and only if the class number
of k is one.

An equivalence class of valuations of the
field k is called a place of k. If a place
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contains a non-archimedian valuation, it is
called a finite place. A place containing an
archimedian valuation is called an infinite
place. An archimedian place p is written
asp | 0o, where oo means the unique archi-
median place of Q. On the contrary, a fi-
nite place is treated as if it is a prime ideal.
We identify it with its valuation ideal. For
each place p, there is a local field k,, which
is called the completion of the field & at p
and denoted by k,. When p is finite, the
multiplicative group of the valuation ring
of a place p is called the group of units
of the local field k, and is denoted by Uj.
The factor group ky /U, is isomorphic to
the value group of the valuation. It is also
isomorphic to a subgroup of A generated
by the prime ideal p. Hence, an isomor-
phism
(2) A @ kX JUp
Mmoo
is induced. We write the direct sum in the
right as I,. We choose an embedding of
k into k, for each p and fix it once for all.
Consequently, we obtain
E— I, ka;‘ X Hk;‘
plm ploo
through the diagonal embeddings into &,’s
of k. The Artin map (1) is a surjection
of I,, onto the Galois group G. By local
class field theory, there is a homomorphism
of k; into the decomposition group of the
place p. Denote by ¢, this homomorphism
of k) into G and set
Poo = H Pps

Yo = H‘Pm

plm ploo

where the product means that in images
of maps taken in the Galois group G. By
the reciprocity law in class field theory, a
relation

(3) 9(() ™! = wo(@)poo(a)

holds for every a € Oy;. Let
@ m=ppt - py

be the primary decomposition of m. The
kernel of ¢, contains the group of e;th prin-
cipal units. It is no more than a sub-
group 1.+ pf"@m of U, at a finite place,
where (”); is the valuation ring of k. This
group is denoted by U,Sfi). For an infinite
place p, we denote by U, the multiplica-
tive group k) and set Uél) = U?. Since
Oy is mapped into U; for every p | moo,
we restrict the mapping @y@., onto a sub-
group U = lemw U,. The kernel of this

restricted map contains a subgroup

P

(5)  Umoo) = [JUS = [JUs".

i=1 ploo

If o € O, we see p((a)) = 1 and the im-
age of O into U is contained in the kernel
of Y. The multiplicative group O is
said as the group of units of the field &
and we write it as E, usually. It is identi-
fied with the image of the embedding into
U. We notice the following commutative
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diagram exists:

(1 + mOm)+

!

0* — ox — P

J» !

U/U (moo) — P/H

where p is composition ¢! o (Pge). We
note the kernel of p is the image of E into
U/U(moo). Namely,

(6) U/U(moo)E = P/H.

There is a well-known formula giving the
order of P/H, c.f. Corollary 4.5.6 in [1]:

THEOREM 1. P/H is isomorphic to

U/Up(m)E and the order is equal to
(O/m0)*|2?
IE:ENU(moo)|’

Put Uy = [[._;Up. The canonical
homomorphisms of O/mO onto O/p;*O
induce an isomorphism onto &]_,0/p*O
along (4). Each ring O/p{* O is canonically
isomorphic to O,,/p;*0,,. Since 6:%— =
Op, 497 O,,, asubset OF +p7 0,, coincides
with Op,. Furthermore, since the kernel
of the canonical map Oy into U, /U, @) i
1+ p;O,,, the factor group O /1+p5O,,
is isomorphic to Up,/US™. Thus, an iso-
morphism

(O/mO)* 22 UpU (moo) /U (moo)

is arising by passing throught the multi-
plicative group of O, /mO,.

We study this isomorphism in connec-
tion with the homomorphism g in the
above diagram. Take an arbitrary positive
integer m from the ideal m. Let [1,w] be
an integral basis of 0. We take w so that
its signature is (1, —1), which means that
we give an order on the set consisting of
two archimedian places and fix it once for
all. w is embedded into the positive real
numbers concerning the first place and the
negative real numbers relative to the sec-
ond. Note 1+ mw is congruent to 1 with
modulo m and has the same signature as
w. Let w' be the conjugate of w. If an ele-
ment o of ON Oy has a signature (sq, s9),
we modify it and convert it to a totally
positive element as

ar =afl+ mw)l;zsz(l + mw') = ,
which belongs to the same congruent class
of a with modulo m. Let O, be the subset
of every totally positive elements contained
in ONO}. In the isomorphism

OX/1+mOy = (0/mO),

each element o(1 + mO,,) contains an ele-
ment o of Oy, which means to O, (1 +
m0) = OF. Hence, O,U(mo) =
UpU(moo). We have

O+(1 + mOm)+/(1 + m@m)+ = (O/mO)X

It is a preimage in U/U(moo) of
UsU(moo)/U(moo) by p in the above di-
agram.

We will determine an integral prin-
cipal ideal containing in each class of
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P/H. We do not study P/H but
UU(moo)/U(moo)E on account of (6).
The set of every totally positive units of &
forms a subgroup of E, which is denoted by
E*. This subgroup acts on O/mO by mul-
tiplication. Hence, its inultiplicative group
also becomes an E7-set. We decompose
this E*-set into disjoint union of orbits:

Uo

These orbits corresponds to elements of
the subgroup EU,U(moo)/U(moo)E of
UU(moo)/U(moo)E. We choose a repre-
sentative of each orbit and denote it by o;.

M (0/mO)

When norm of the fundamental unit of &
is bpositive, we add 1 4+ maw to obtain the
complete set. On the contrary, when the
norm is negative, we see EUgU(moo) =U
and ¢;’s form the complete set.

THEOREM 2. Let {oy,---
complete set of representatives of orbits in

,an} be a

(7) which consists of totally positive ele-
ments. If norm of the fundamental unit of
k is negative, a complete system of repre-
sentatives of P/H is just the set of n prin-
cipal ideals generated by them. If the norm
is positive, we need to add a principal ideal
(14 muw) to obtain a complete system.

4. The Shintani method. T. Shin-
tani developed a method to compute val-
ues of a partial zeta function over a to-
tally real number field at non-positive in-
tegers. We apply it to computing the value

at 0 of a partial zeta function on a real
quadratic field k. We summarize the Shin-
tani method with focusing on this purpose.

The R-algebra R ®q k is called the
Minkowski space over k in [3]. This algebra
is commutative and semisimple, and hence
it is a direct sum of subalgebras which are
fields. In fact, it is isomorphic to R @ R,
which is regarded as a two dimensional
space over R. Here, the isomorphism is
obtained from two archimedian places of
k. We denote the conjugate element of a
in the field k£ by o’ in the sequel. Then,

t®a— (ta,td') e Rx R

gives the isomorphism. We work on the
first quadrant in the Minkowski space. Let
(z1,22) be a point in the first quadrant.
The totally positive unit u of k£ acts on it
by u(z1, z2) = (uzy,u'z2). Abbreviate EN
U(moo) to E*(m). The first quadrant in
the Minkowski space becomes an E*(m)-
set. A fundamental domain by this action
is a union of two connected sets C; and Cs.
C is a half line {(z,z) : z > 0} and C; is
an open sector of infinite radius:

Co = {(z1,29) : 0 < ()21 < m2 < 11}

where ¢ is a generator of E¥(m). For a
positive integer m contained in m, we see
v; = (m,m) € C; and vo = (me, me’),
which exist on the boundary of C;. We

see

= {zv; : z > 0},
Co = {z1v1 + z2v2 : z; > 0}
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Let o, and o4 be coordinate functions on
C, and C, relative to the basis v; and
[v1,v2), respectively. We define bounded
subsets S; in C; to be

S1={azv1:0<z <1},
Sy ={z1v1 + 2v9 : 0 < z; < 1}.

Let a be an integral ideal of k. We may re-
gard each totally positive number o of k as
a point (e, o'} in the first quadrant of the
Minkowski space, simultaneously. Follow-
ing to notation in the book [3], we define

R(a, Cz) =1+ a"lm) ns;.

In [4], the set of coordinates of points be-
longing to this set is written as

R(i,a”'m+1) = {0i(y) : y € R(s, Cy)}.

We abbreviate notation and write this set
as R(1).

The partial zeta-function concerning a
ray class (a), where a is an integral ideal
which is prime to m, is defined to be

1
C(a,m7 5) = Z Wa

where g runs throughout over the set of
integral ideals contained in the ray class.
The sum in the right is absolutely conver-
gent in an open set ®s > 1 and meromor-
phically continued to the whole complex
plain with a pole at s = 1. We state an
explicit formula of values of {(a,m,1 — k)
for k=1,2,--- following to [4].

In general, when an r X n matrix A
(r < n) is given, we define the generalized

Bernoulli polynomial B,,(A,z) of r vari-
ables z = (z1,--- ,,) for m > 0 from a
system of linear forms

1] Li(ty, - tn)
Al ] = :
tn Li(t1,-+ ,tn)

We write ¢ for (¢, ,t,), shortly. We re-
gard a product

exp(uz; L;(t))
(8 N7
L exp(ul;(t)) — 1
5=1 tr=1
as a function on variables u, t,--- ,t,, and

expand it into a Laurent series. Let

1
(i)

B’r(rlf)(A;xly"',.'l?r), m:l,z,’

1<k<n

be the coefficients of terms concerning
u“(m‘l)(tl cootpoatppr o te)™ . We de-
fine the mth generalized Bernoulli polyno-
mial B, (4;z1,---,,) to be

1 n

= ZB,(,’f)(A;wl, ey Tp).

it
To apply this to a real quadratic field, we
define matrices A; and A, from v; and v,.
Let A; be the 1 x 2 matrix (m,m) corre-
sponding to v; and A, be the square matrix
of degree two corresponding to the basis

[u1, 9]
Ay = (m m,> :
me me

From Theorem 1 in [4], we obtain
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THEOREM 3. Let m be positive integers.
Then, we have

C(a) m, 1- m) =
Ngm—1
- 2 B (A1; )
z€R(1)
Nam™~1
s Y Bu(4g;z1,m).

(z1,22)€R(2)

Therefore, to know the wvalue of
¢(a,m,0), we need the generalized first
Bernoulli polynomials B;(A;; )
B1(Ag; 21, 72).

(1) B1(4;z). The product (8) is reduced
to

and

exp(uz(m(t; + t2)))
exp(um(t; +t2)) — 1 tp=1

in this case. B¥(A;; 7) is equal to the first
Bernoulli polynomial B, (z). Thus

1

Bl(Al;.'t) = Bl(:z;) =T — 5

(2) Bl(A2, Zy, .’L'z). ng)(AQ, Zi, .’132) is the

constant term of the Laurent series of the
following function:

exp(uzim(t; + £2)) ] y
exp(um(t; +1t3)) — 1 =1

exp(uzom(et; + €'ty)) ]
ezp(um(et: +e'tz)) — 1], _;

We obtain
B (Ag1,22) =

g €

532(331) + 532(:172) + Bl(:cl)Bl(wg)
B§2) (A;z1,22) =

ng(xl) + %IBZ($2) + Bi(z1)Bi(z2)

respectively, where Bs(z) is the second
Bernoulli polynomial. Thus, B;(As; 1, Z2)
equals

Tr(e)

1 (Ba(z1) + Ba(z2)) + Bi(z1)Ba(xz).

COROLLARY 4. The value of {(a,m,0)
is equal to

Tr(e)
el
: (z1,22)€ER(2)

+ Y Biz1)Bi(z)

(z1,22)€R(2)
- z Bl(m)a
z€R(1)

(Ba(z1) + Ba(z2))

where By(z) = z — % and Bo(z) = 2 —

1

T+ 5
4. Determining R(i). We suppose
the integral ideal m is a principal ideal gen-
erated by a positive integer m. We set
m = (m) in this section. Let € be a gen-
erator of E*(m). Let a and b be the co-
efficients of ¢ with respect to the integral
basis [1,w], where we choose w so that its
signature equals (+1, —1) and choose € so
that a > 0and b > 0. Sincee =1 mod m,
we see there is integers a; and b; such that
a=1+ma; and b = mb;. Let o be an
integer contained in O,;. We decompose
it as o = ¢f and B = f1 + fow such that
¢>0and (f1, f2) = 1. Let r be the mini-
mal non-negative residue of ¢ by m. Since
cr~t € 1+ mOy, r and ¢ belong to a same
ray class. We choose a from each ray class
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so that 0 < ¢ < m holds. Namely,

©) a=cf, 0<c<m, (¢,m)=1,
ﬁ=f1+f2w) (fl,fZ) =1
Set n- = cN(B), where N(B) is norm

f2+ fifoTr(w) + f2N(w). To determine
R(1), we need to solve an equation for two
variables z and z

1+ = z(m, m)
a

where z takes valuesin Q@ and 0 < z £ 1.
Since z(m,m) = (zm,zm) and since the
left hand side expresses a number of k, we
observe z is a rational number and f'z is
a rational integer. Let (5') = p5*---p2 be
a primary decomposition. By (9), we see
prime ideals p; are decomposed or ramified
in £/Q and r; = 1 when p; are ramified.
Moreover, p; and p; for a pair {i,j} are
not conjugate to each other. Hence, (8) |
(2), because f'z is an integer. There is an
integer I such that z = [3. We obtain

(10)

e~

+

=1
m

and z belongs to R(1,a 'm0 + 1) if and
only if

1
0<—+£Sl.
m c

Thus,

c c
—<i<e-—.
m m

Since c < m, we have 0 <1 <e¢—1.
The Bernoulli polynomial satisfies the
distribution relation:

ZBk (m+ > N'=*B.(Nz)

B8E FRBF
c.f. §2, [2]. We have the following theo-
rem:
THEOREM 5.
[
Z Bl(Al,.’IZ) = Bl- (E) .
z€R(1)

We begin to determine R(2). It is a
set of coordinates (z;, x2) which satisfy the
following equation:

p mz

1 a

mz
1472 —

where z takes values in O and real num-
bers z; and 2 belong to the interval (0, 1].
Taking account of (9), we modify them to

1 +ﬁ’z _
(11) $+ g;, ~
L -

may - mase

mzy + maxoe’

T + 28
1+ z08’

n
where n = cN(f). Set z =z +yw (z,y €
Z). We see
ﬂlz_ﬁzl
n

—f2w+f1y(
—Rrrny.
n

(12)

=zo(e — €')
w') = bxo(w — w').

Dividing w — w’, we have

~foz + fry

(13) Ty = bn

Put s = —fox + fiy.
Next, we add two equations and obtain

(14) L +f2TT(w))~'C+ faN(w)y

( fzw+f1y)Tr( )
2n

Tr(e)zs '

=21+ 2
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Set ro = (fi+ foTr(w))z+ foN(w)y. Since
€ = a + bw, the equality can be simplifies
by using (13).

1 T
(15 Lo tr(we,
m n 2
T
=z +azre + —%
Therefore
1
(16) 1 =—+ 2 azg.
m n

Since b = mb;, we see nbr; is an integer.
Put 81 = ’I’LbﬁL‘].

LEMMA 6. If the equation (11) has a so-
lution, there are integers z, y, s1, S2 and
7o satisfying the following three equations

fox — fiy =—82
A7) {(fi + foTr(w)z + foN(w)y= 7o
nby + bro — asy = 51.

Conversely, there is an integral solution

(z,y, $1, 82,72) for these equations satisfy-
ing 0 < % < 1 for i = 1,2, the equation

(11) has a corresponding solution.

Proof. We have only to verify that a set of
solution of (17) gives that of (11). Assume

there is a solution for (17). We see 2, =
£
nb

% implies (16), the equation (15) is valid.

Thus, the equation (14) also holds. (11)
follows from (12) and (14). O

satisfies the equation (12). Since z; =

By virtue of this lemma, we are able to
determine z, y, s1, and 75 for zo = % if we

give so so that z, belongs to the interval

(0,1]. We study in cases. Note z; = %

(i) Suppose f = +£1. We see a = +c,
n=c, fi = x1, fo = 0. The equation (17)
is reduced to

y = x5y
= :}:7"2
$1 = nby+bry—ass.

Hence, s; and 75 must be integers satisfy-
ing

0<z: <1,

(ii) Suppose 8 = tw. Then, a = *cw,
n=cN(w) <0, fi =0, fo = £1. The
equation (16) is reduced to

T = F82
Tr(w)z+ N(w)y = =£ro
nby+bro—asy = s3.

We solve this equation for = and y:

N(w) T\ _ FN(w)sy ‘
y +Tr(w)sy £ e
Thus, Tr(w)s, + 12 = 0 mod |[N(w)|.
There is an integer ¢ such that

ro = —~Tr(w)sz + N(w)t.

Therefore, s; and ¢ must be determined so
that

81 ' 1 i
= — = —— T —
1 = { - +{a+¥ r(w))x2}+c,

O0<z; <1,
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(ili) Suppose fifs # 0. Let p be an ar-
bitrary prime number dividing f,. Since

N(B) = f2 + f1foTr(w) + fEN(B),

f# is congruent to N(B) with modulo
p. Thus, p t N(B), because fi and fo
are prime to each other. This implies
(f2, N(B)) = 1. Let g» be an integer such
that gofo =1 mod |N(B)|. We choose an
integer A so that

A= —go(f1 + foTr(w)) mod [N(B)|.

We solve the equation (17) for z and y.
The solutions must satisfies

vo (B = Y@ &) (=)
y —fi=fTr(w) f2) \ 2
Hence, s; and 75 need to satisfy

(fi+ foTr(w))s2 + fara =0 mod [N(B)|.

By multiplying g», we see this congruent
equation holds if and only if

T2 = Asy  mod |[N(B)|.
There is an integer ¢ such that
(18) 9 = AS9 + N(ﬂ)t

By congruence equations

—foN(w)s2 + firg = — faN(w)s2 + fi)sy
= (—f2N(w) + fi))s2
=—pNB)s:
=0 mod [N(B)|,

we see there are integers z and y for s,

and ry satisfying (18). By substitution

of the right hand side of (18) for r, in
sy = nb; + bry — asy, we conclude there
are integers satisfying (17) for an arbitrary
integer so such that 0 < 23 < 1 if we de-
termine values of the integer ¢ so that

I S L
T == {m+(a b/\)xg}-{-c,

0<z <1

holds.
To put these observations together, we
introduce a constant defined to be

a if 8= +1,
6= a+bTr(w) ifB=+w,
a—bA if fifa #0.
Put N = b;|N(B)|. We note |bn| = mcN.
For each zo = ﬁ, (s = 1,--- ,meN),
we define a fraction u; to be
R

Then, (21,z2) € R(2) if and only if there
is an integer o such that the value of z; =
— s + % is contained in (0, 1].

LEMMA 7. Let z be a real number of a

form z = —p + % for integers o. Then,
0 < z <1 holds if and only if
x=w+l, §=0,1,--,c—1.
c (o

Here, < z > denotes the fractional part of
z, that is < £ >=z — [z].

Proof. Suppose 0 < z < 1. Since cx =
—cp+ o, we see i < 0 < cpu+ c. Hence,
o=leul+1+jfor0<j<c—1 The
converse is clear. O
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We conclude that the set R(2) is ex-
pressed as

1—<cus>+1 s )
\ c ¢’meN /-’

0§j§c—1,1§s§ch},

explicitly.

5. Summation formulae. We shall
compute the values of sums contained in
the formula of {((a),(m),0) in Corollary
4 concerning R(2) = R(2,a"'mO + 1) in

this section.

The value of 37, - \cp) Ba(@2) is eas-
ily computed. It equals

meN c—1 mcN ) s
> X8 (o) = 2 B ()
s=1 j=0 s=1
1
~6mN’

The rational number p; defined in (19)
contains a constant J depending on §.

LEMMA 8. (§,mN) = 1.

Proof. Since (§,b) = 1 is clear, we show
(6,|N(B)]) = 1. When § = +1, it is obvi-
ous. When 8 = tw, we have (6, N(w)) =

1, because of

ad + ¥’ N(w) = N(e) = 1.
Suppose f1f> # 0. We see
§=a+bg(fi + foTr(w)) mod [N(B)].

Set v = Be. Let fi and f; be integers such
that v = f] + ffw. We note f} = fi
mod |N(B)]. Since € is a unit, we have

(fi,f2) = (f1,f3) = 1. Let p be an arbi-
trary prime divisor of f;. Since

N(y) = f* + £ f5Tr(w) + f5°N(w),

we see p t N(7). Therefore, (6, N(B)) =1
follows from f; = f10 mod |N(B)|. ]
Now, we compute Z(x 22)€R(2) Bo(z1).

meN e—1

Y. ) B (——l S 2 Z)
s=1 j=0 . ¢ ¢
meN
= Z cIBy(1- < cus >)-
s=1
By By(1—1z) = By(x), the value of the sum
in the right hand side equals
mcN
Z c_le(< Cls >).
s=1

This sum is converted to a double sum

mN ¢c—1

fen(50)
()

Furthermore, by Lemma §,

(C)

s=1

c, § .
The value of —m TN s greater than —1

and less than 1. It takes a non-negative
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value if and only if s > ¢N. Hence, the [2] S.LaNg; Cyclotomic Fields I and II
sum equals Combined Second Edition, G.T.M. 121,
eN-1 Springer-Verlag New York, 1990.

Z B (1 “mtm ) Z B, (__ T ) "[3] J.NEUCKIRCH; Algebraische Zahlen-
= theorie, Springer-Verlag Berlin Heidel-
Using an equality By(1+z) = By(z) + 2z, berg, 1992.

it is modified to be
[4] T.SHINTANI; On evaluation of zeta

mN cN-1

Z B, (_ﬁ + LN ) 12 Z (_i + LN )7 functions of totally real algebraic num-

s= m miv. =1 & M. m ber fields at non-positive integers, J. Fac.
Sci. Univ. Tokyo, Sec. IA, 23(1976),

which is evaluated to be & N We have 393,417, Y (1976)

calculated every terms in Corollary 4 ex-
[56] L. C. WASHINGTON; Introduction

to Cyclotomic Fields Second Edition,
G.T.M. 83, Springer-Verlag New York,
meN ¢c—1

I-<cus> j { 8 1996.
S m (2 ) m ()

s=1 j=0

cept of the sum of a product B:(z1) B1(z2)-
We modify this remainder sum as follows.

meN

—;Bll <cus>)Bl( N)
mN ¢c—1
—ZZBll < cus >)B; (%)

s=1 =0

mN

| =ZBI(1_ <cps >)By (ms—N)

s=1

mN S
=- ;Blk chs >)B1 (m) '

THEOREM 9. The value of {((a), (m),0)

equals
Tr(e) cy X s
omN 7! (5)‘82 Bil< ons )1 ().
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