Weighted estimates for maximal functions
associated with Fourier multipliers
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WEIGHTED ESTIMATES FOR MAXIMAL FUNCTIONS
ASSOCIATED WITH FOURIER MULTIPLIERS

SHUICHI SATO

ABSTRACT. We prove some weighted estimates for maximal func-
tions associated with certain Fourier multipliers of Bochner-Riesz

type.

1. INTRODUCTION

Let v(t, &) be a continuous function on (0, co) x R” such that v(¢,0) =
0 and v(¢,€) > 0 for all £ # 0 and ¢t > 0. Also, we assume the following:

(1.1)

lim v(¢,§) =0 forall £ € R*, lim v(t,&) =00 forallt > 0;
t—o0 |€]—o0

(1.2) {£eR" :1/2<~(t,§) <1} C{EeR" : ¢4t < [€] < et}
for all t > 0 with some constants 0 < ¢; < ¢o;
(1.3) {EeR" 1 y(t,t) € [1 —6,1]} < b

for all § € (0,1/2] and t > 0, where |E| denotes the Lebesgue measure
of a measurable set F.
Let f(&) = [ f(x)e ?™®8 dx be the Fourier transform, where (, &)

denotes the inner product in R*. We also write f = F(f). Throughout
this note we assume that n > 2. We consider the Bochner-Riesz mean
of order A with respect to v defined by

SHN@ = [ (=R FOem 0 de,

where s} = s*if s > 0, s} = 0if s < 0. When ~(¢,£) = (|¢|/t)? this
is the ordinary Bochner-Riesz mean. Define the maximal function

SH()(x) = Sup [SM) ().

In this note we generalize some known results on weighted estimates
for the maximal functions associated with the ordinary Bochner-Riesz
means by considering the generalized Bochner-Riesz means S} (f). In
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particular, we shall prove some weighted inequalities for S? in the cases
when y(t,€) = t71®(£)] and v(t, &) = |®(¢1€)|, where ® is a mapping
from R™ to R" satisfying certain regularity conditions. It will be shown
that if h is a positive homogeneous function of degree 1 which is infin-
itely differentiable away from the origin, we can find a suitable ® such
that |(¢)] = h(©).

Now, we further assume that y(¢,-) € C*°(R" \ {0}) for all ¢ > 0 and
that there exists ¢y > 0 such that

(1.4) (9€)* (1, £6)| < Calé]* ™ in U, \ {0}

for all t > 0 and multi-indices &« = (aq,...,q,), where (9§)* =
(0/0&1)* ... (0/0&)*, || = a1+ -+a, and U, = {£ € R* - [£] < r}
(cy is as in (1.2)). Then we have the following:

Theorem 1. Suppose that v satisfies the conditions (1.1)—(1.4). Let
A > (n—1)/2 (the critical index). Then

12 oy < CoruollFllizy (7 € SRY)

for w € A(R™) (the Muckenhoupt class), where S(R™) denotes the
Schwartz space on R" and || f||r@w) = ([ |f(2)]"w(z) dz)V/".

This is a particular case of the following result.

Theorem 2. Let v be as in Theorem 1. Suppose that A > (n —1)/2,
m—1/A<p<2,1<pandl<r<p. Then

12 |y < Conllflliory (€ SEY))

for all w € A;(R"), where Fﬁ”’(w) is the weighted (homogeneous)
Triebel-Lizorkin space.

See [4] for the Triebel-Lizorkin space F;”" (see also [14]). The defini-
tion of the norm for the weighted Triebel-Lizorkin space F’If”"(w) is the

same as that for Fps”‘ except that the weighted measure w(x) dz is used
in place of the Lebesgue measure (see [1]). Note that, if 1 <r < p < 2,
w e A, and f € S(R"),

@5) v ~ 1l snagy < ellfllgongy < ellfllinrg)
Thus Theorem 1 follows from Theorem 2 with p =r = 2.
Let & : R* — R” be a bijection. We define a space BL to be the
space of all those bijections ® which satisfy ®(0) = 0 and
€ —n| <|2(§) —d(m)| < Clg—n| forall{,neR"

with some constants 0 < ¢ < C. Note that if ® € BL, |®(§)] ~ |¢] and
|®(E)| ~ |E| for a measurable set E.
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Let F': R* — R” be a mapping with the components Fy, F5 ..., F,.
We define a subspace D of BL. Let F' € BL. We say F € D if
F; € C*(R*"\{0}) ( =1,2,...,n) and there exists a neighborhood U
of the origin such that

max |(96)F;(§)] < Col¢" 11 in U\ {0}

1<j<n

for all multi-indices a.
For a mapping ® : R* — R", we consider (¢, ) defined by either of
the following two equations:

vt E) =t ()], (€ = |2(tE)]:
Then we have the following:

Corollary 1. Suppose that ® € D and let (1, &) be as above. Suppose
that A > (n —1)/2. Then

[S20) oy < Crllfllizey (€ SRY))
for w € A;(R").

This follows from Theorem 1, since under the hypotheses of Corollary
1 y(t, &) satisfies the conditions (1.1)—(1.4) with ¢y =1 in (1.4).

Let h be a positive homogeneous function of degree 1. By this we
mean that h(t§) = th(€) forallt > 0 and £ € R*, h(0) = 0 and h(§) > 0
for £ #£ 0. Then, in fact, Corollary 1 is equivalent to the following:

Corollary 2. Suppose that ® € D and h € C*(R"\{0}). Let v(t,&) =
(o @)(E) = 1 h(®(E)) or 1(E) = (h o B)(tE). Suppose that
A> (n—1)/2. Then

1S20) | aguy < Coull Fllizy (€ S(RY)
for w € A;(R").

We can derive Corollary 2 from Corollary 1 as follows. Define A :
R* — R" by

h(€)7e if€#£0,
o {1 e

Note that A='(n) = h(n)|n|~'n (n # 0), A='(0) = 0. We can easily
see that A € D. DefineI' = A1 o® € D. Since [I'| = ho®, by
applying Corollary 1 to v(¢,&) = ¢t HT'(€)| and (¢, &) = |T(t1€)| we
get Corollary 2.

When A is near 0, we have the following estimates with power weights:
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Theorem 3. Let v(t,&) =t H®(E)|, @ € D. Suppose that X > 0 and
—1<a<0. Then

[ 18X0@ el do < o [ 1@l dr (7 € 8RY),

When ~(t,£) = (|€]/t)?, this is due to Carbery-Rubio de Francia-
Vega [2]. A complex interpolation between Theorem 3 and Corollary
1 with w(z) = |2]|* (—n < a < 0) gives the following (see [2], [8]):

Corollary 3. Let v(t,&) be as in Theorem 3. Suppose that 0 < XA <
(n—1)/2 and —2)A — 1 < a < 0. Then

2 [0 [0
[ 182 @) el do < o [ 5@l da,
Rn R®
This result can be used to get the following:

Corollary 4. Let v(t,&) be as in Theorem 3. Suppose that 0 < XA <
(n—1)/2,2<p<2n/(n—1-2X) and n(1l —2/p) < —a < 1+ 2\.
Put wy(xz) = min(1, |z|*). Then

S22y < ellflz2gway < ellfllee.

The second inequality of the conclusion of Corollary 4 follows by
Hoélder’s inequality. As in [2], by Corollary 4 we can see that

i SX)@) = S@) ae
for0 < A < (n—1)/2and f € LP(R") provided 2 < p < 2n/(n—1-2)).

Remark 1. When ~(t,£) = t7'h(€), where h is a certain positive ho-
mogeneous function of degree 1, the L?(w) boundedness of S} for
A > (n—1)/2 and w € A; can be derived from the estimates of
Seeger for the Littlewood-Paley functions (see [10, 11]). The case where
h € C*(R" \ {0}) follows form Corollary 2.

Remark 2. Let a be a non-negative, continuous function on [0, 00). We
assume that a € C*((0,00)), a(0) =0, a(l) =1, a'(s) > 0 for s > 0,
a(s) — oo as s — oo and

|(d/ds) a(s)| < s

for all s € (0,7) and ¢ > 0 with some positive constants 7, €;. Then
Theorem 3 and Corollaries 1-4 stated above still hold with v(¢,&) =
a(t™'(h o ®)(£)) and also Corollaries 1, 2 remain true with v(£,£) =
a((ho ®)(t71€)), where h is a positive homogeneous function of degree
1in C*(R" \ {0}) and ® € D. In particular, this remark applies to
the function a(s) = s™, m > 0. In this case, y(t,£) =t ™ (H o ®)(£) or
Y(t, &) = (H o ®)(t1€), where H is a homogeneous function of degree
m (see [3], [6], [7], [12] for related results).
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In Section 2, we shall prove Theorem 2. Suppose that h is a positive
homogeneous function of degree 1 such that h € C*(R*\{0}), Vh(§) #
0 for £ € R* \ {0}. Put 3, = {{ € R* : h(§) = 1}. If the hypersurface
¥, has non-vanishing Gaussian curvature and if A > (n — 1)/2, then

1F((1=h)2) ()| <c(Q+|z[)™  for some € >0

(see Sogge [13]). Therefore, if v(¢,€) = t~'h(£), we have S} f) <
cM(f), where M denotes the Hardy-Littlewood maximal operator, and
hence S is bounded on LP(w) for 1 < p < oo and w € A,. Although
pointwise estimates similar to those given above are not available in
the present situation, we have the weighted L7 estimates for the kernels
arising from a decomposition of the operator S} defined by the general
functions 7(¢,£) (Lemma 2), which can be applied to prove Theorem
2.

In Section 3, we shall prove Theorem 3. The proof is based on
the weighted L? estimates of [2] and [8] for certain Littlewood-Paley
functions.

2. PROOF OF THEOREM 2

To handle the singularity of v(¢,£) at & = 0, we need the following
pointwise estimates for Fourier transform.

Lemma 1. Let g : R* — R be continuous and g(0) = 0. Let ¢ €
CS°(R). Suppose that g~'(supp(p)) C Ue for some € > 0, where U, =
{z € R" : |z| < €}. We further assume that g € C" (U, \ {0}) and
there exists m > 0 such that

1(0§)“g(&)] < C|§|m7|a‘ in U\ {0} for Ja] < n+1.

Then
1F(pog)(zx)] <c(l+|z))™?° for some § > 0.

Proof. Take ¢(§) € Cg°(R™) such that p(g(§)) = ¢(§)e(g(£)). Write

v(9(8)) = 2(E)(2(9(€)) — #(0)) +©(0)A(€). Then it suffices to estimate
the Fourier transform of ¥ (&) := ¢(&)(¢(g(&)) — ¢(0)). We have

(2.1) (0€)* T (€)] < clg™ 1T in R\ {0} for Ja| < n + 1.

Let ¢ € C5°(R™) be such that supp(y) C {1/2 < [¢] < 2}, 35, 9(2776) =
1 for £ # 0, where Z denotes the set of all integers. Write

Wa) = Y [ulzgue e s

j<M
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for some M > 0. We split the sum on the right hand side into two
pieces: W(z) =1+ 11, where

1_2/¢ “IEV(€)e @O ge Z /z/) TIE)W(E)e ) de,

<N N<j<M

for N < 0, which will be specified below. We may assume |z| > 2.
Applying integration by parts k times (1 < k < n+1) and using (2.1),
we have

22) | oIOuOe 9 de| < claf Fpmai s

To estimate I we use (2.2) with £ = n and to estimate I with k = n+1.
Finally, choosing N = log,(|z|™"), we can get the conclusion. O

Now, we give a proof of Theorem 2. Decompose

o0

(1=t =D 277 n;(4(t,9)),

J=0

where n; € C°(R) (j > 0), supp(n;) C [1—-277,1] (j > 1) supp(ng) C

(—1,1) and |(d/dr)'n;(r)| < ¢2/* for £ > 0. Let L}, (x) = (2‘j’\ (vt ) ()
for j > 0 and K (z) = F71((1 —y(¢,-)})(z) — Lét(x) where ! de-

notes the inverse Fourier transform. Put G;(§) = 7(¢,t£). Note that

G (supp(ny)) € U,, for all t > 0, where U,, is as in (1.4). This can be

seen by using the second condition of (1.1), (1.2) and the intermediate

value theorem. By (1.4) and Lemma 1 with ¢ = G; and ¢ = ng, we

have sup,q |Lg, * f| < eMf. Since

sup LY, * £ < M f Nty < ell fllzrwy < ell Fll oo

Lr(w)

(see (1.5)) to prove Theorem 2, it suffices to show
P
23 [splR P d < e (1)
>

Decompose K} (x) = P L},(z). Then, by Hélder’s inequality we
have

0 p/q 0
K}« f(a)] < (Z c;q/”> (Z ¢ |1}, * f(x)\p> :
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where 1/p+1/¢ =1 and {¢;} is a sequence of positive numbers such
that 35, c;q/p < 00. Thus we have

(2.4)
/sup|KtA*f(x)|pw(x)dx < chj/sup‘L x f(x ‘ w(x) dx
>0 o >0

chch/ sup ‘Lt*f ‘w x)dz.

j=1 kez Y 2FSt<2kH!
Note that (1.2) implies
(2.5) sup |Ly, x f(z)| = sup |L}, « Apf(x)],

QkStS2k+1 QkStS2k+1
where R
(ALf) (&) =T (2 ) f(©)

with ¥ € C§°(R") satisfying

supp(W) C {br < [§] < b}, V() =1 ifar < ¢ <a
for some suitable numbers aq, as, by, by such that 0 < by < a1 < as < bs.

By (2.4) and (2.5), to prove (2.3) it suffices to show that there exists
€ > 0 such that

20 [ sw |Los@l v < [ i) d

where the constant ¢ is independent of k£ and j. Indeed, by (2.6) we
have

(2.7) Z/ sup ‘L  x A f(z ‘ w(x) dx

keZ 2k << ok+1

< JEZ/mkf (@) dr < 27 (|17l jar)

keZ

where the last inequality follows by a standard argument (see [1]); thus,
using (2.5) and (2.7) in (2.4) and choosing {c;} suitably, we get (2.3).
To prove (2.6), we use the following estimates:

Lemma 2. Let t € [2F,25Y] k € Z. For any \, p and § satisfying
A>n—=1)/2, n—=1)/A<p<2,1<pand0<§<p\+1—n, there
exists € > 0 such that

/\ 2 e ()| (L ) 9P de < 25

where 1/p+1/q =1, (L?,t)r(a:) =r~"L},(x/r) (r > 0) and the constant
¢ 1s independent of t, k and j.
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Proof. Fix t € [2%,2F+1]. Since (1.4) holds, integration by parts gives

(2.8) (L}

i ()] < Cp2792279(1 + 277 |z|) ™™ for all M > 0,

where C'); is independent of ¢, k and j. Also, by (1.3) we have
(2.9) {€ e R 1 y(t,2"¢) € [1 — 6,1]}] < ¢,

where c¢ is independent of § € (0,1/2], ¢ and k.
By (2.9) and the Hausdorff-Young inequality we have

(2.10)

I

il e (f o) oF )

<c(@PM{EE R A(1,2%) € [L -2, 1)}
< ¢2-ilarta/p),

This implies
(2.11) / ‘(L?,t)Qk (x)‘q (1+ |x|)(n+6)q/p dx
|z<2/
< I t0)a/po—ilarta/p) — o-ila-D)(pPA+1-n=0)

Let 0 < 7 < 1/2. Then, by Holder’s inequality we have

[ K@+ e
|| >29

< ( / @@ e dx)T ( / (@) dx)lT.

By (2.8) we see that
([ Kehmol s oo o)
|z|>27 ’
< ¢(27r99)m </ (2_j|x|)_qM|x|(n+5)q/(p7—) da:)
|]>27

< C(Q*J')\Q*j)lITQj(n+5)'I/P2jnT (/
\

|x|qu+(n+6)q/(pT) dx)
z|>1

< C(2*j)\2*j)q72j(n+5)Q/P2jnT,
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where M and 7 are chosen so that n + (n + d)q/(p7) < ¢M. By this
and (2.10) we have

(2.12) / (L2 )or (2)|* (1 + []) D97 ds
ol>2
< (27727 Qi(nHd)a/poinTo=i(ar+a/p)(1-T)

= 2@ DPAHLn=d=r(n=1)/(g-1))

where we further assume that pA+1—-n—-36 —7(n—1)/(¢—1) > 0.
Combining (2.11) and (2.12), we get the conclusion. This completes
the proof of Lemma, 2. O

We can find in Sogge [13, pp. 70-71] an argument similar to the one
used in the proof of Lemma 2. Now we can prove (2.6). By Holder’s
inequality and Lemma 2

(2.13) sup ‘(Lit)Qk 5 2M £ (x)‘p

te[2k 2k+1]

p/q
< S ([ 1@te = )l @ 1o = 90 ay)

te[Qk,2k+1
< [ 1 Pz = o)y
<2 @i [ 5@ ty)P e - ) dy

Since w € Ay, we have

(2.14)
/(1 + |z —y) O w2 Fx) de < Cpw(2Fy)  for ae. y € R™.

By (2.13) and (2.14) we see that

/ [sup ]‘L?,t*f(x)‘pw(x)dx
te

2k’2k+1

= / sup [ (L},)ax * 2" for (x)‘p 2 k(27 ) da
tef

2k,2k+1}

< e~ (/) / 2| (2 k)P ( / (L4 2 — ) " Pw(@ ) dx) dy
< et/ / F@)Puly) dy,

which proves (2.6). This completes the proof of Theorem 2.
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3. PROOF OF THEOREM 3
To prove Theorem 3, we use the following.

Proposition 1. Let y(t,&) = t7'®(£)|, ® € BL. Let 0 < § < 7/8
and let mg(r) be a continuously differentiable function supported in the
interval [1 — 0,1]. Suppose that ||(d/dr)ms||p@w < 1. Define

(U7 £) (&) = F()ms(v(t,€)).
Then

* dt
[ [P el Far < [ r@pip s
n 0 Rn

where —1 < a < 0 and the constant c is independent of 9.

When 7(t,€) = |€|/t, this was proved in Carbery-Rubio de Francia-
Vega [2] and Rubio de Francia [8] (see [9] for a related result).

To prove Proposition 1, we use the following result, which can be
found in [5, 8|.

Lemma 3. Let 0 < 8 < 2. Then

// txlle—dx—c,e/// ot )t m) Pl e,

R™ xR™
where §(t,&) = F(g(t,-))(€). We also have
9(a) o’ do = c; / / ~ gn) Pl — 7 de dn,
Rr Rann

Now, we give a proof of Proposition 1. By duality, to prove Propo-

sition 1 it suffices to show
(3.1)
dt|? o dt
/ U5ft() |ada:<cé// ft, )|z — dr,

J.

where we write ft(x) = f(t,x) for a function f in C§°((0,00) x R™).
Define an operator Ly by

(Lrf) () = f(FE),
where F'is a mapping from R” to R". Let

(V2F) 7€) = f(&)ms(I€1/t).-

Then, by taking Fourier transform, we can see that

(3.2) Up f(2) = LoV} Lg-1 f ().
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Since ® € BL, by the second part of Lemma 3, (3.2) and a change of

variables we have
2
|z| “dx ~
n

(3.3)
[ vtsn™ b
0

/| [Tt |

(see [8] for this argument). Since the estimates in (3.1) are known when
Y(t,€) = [€]/t, by (3.3) we have

(3.4)
o dt|? 00 dt
[ vin@ G e <o [ [T iLa @il S s
0 nJo

/.

The first part of Lemma 3 implies

(3.5) // Lo ()2l 2 dxw// tx||x|a—
n R™ JO

By (3.4) and (3.5) we get (3.1). This completes the proof of Proposition
1.
Put

5H0@) = [ n069) (L=t 0N Fe)eme de,

where n € C§°(R) is such that n(s) =1if 3/4 < s <2 and n(s) =0 if
s < 1/2. Define

SAf)(x) = Sup 1S3 (F)()]-

Then, by applying Proposition 1 we can prove the following result as
in [2].

Proposition 2. Let v(t,&) be as in Proposition 1. Let A > 0 and
—1<a<0. Then

J.

Now, we can finish the proof of Theorem 3. Let ¢ € C§°(R) be such
that ((s) +n(s) =1 for s € [0,2] and supp(¢) C [-1,3/4], where 7 is
as in the definition of S}. Put

MM @)= | CO) (1= ()L SO de.

Then S)M(f)(z) < supo | M} f(z)] + SN f)(z). As in the first part
of the proof of Theorem 2, by Lemma 1 we have sup,., | M} f(z)] <
¢Mf(x). Thus the conclusion follows from Proposition 2 and the L*(w)
boundedness of M for w € Ay(R").

)@)| laldr < €, / (@) 2| da.
R’VL
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