Weighted estimates for maximal functions associated with Fourier multipliers

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-02
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/24039

WEIGHTED ESTIMATES FOR MAXIMAL FUNCTIONS ASSOCIATED WITH FOURIER MULTIPLIERS

SHUICHI SATO

ABSTRACT. We prove some weighted estimates for maximal functions associated with certain Fourier multipliers of Bochner-Riesz type.

1. INTRODUCTION

Let $\gamma(t,\xi)$ be a continuous function on $(0,\infty) \times \mathbb{R}^n$ such that $\gamma(t,0) = 0$ and $\gamma(t,\xi) > 0$ for all $\xi \neq 0$ and t > 0. Also, we assume the following: (1.1)

 $\lim_{t \to \infty} \gamma(t,\xi) = 0 \quad \text{for all } \xi \in \mathbb{R}^n, \quad \lim_{|\xi| \to \infty} \gamma(t,\xi) = \infty \quad \text{for all } t > 0;$

(1.2)
$$\{\xi \in \mathbb{R}^n : 1/2 \le \gamma(t,\xi) \le 1\} \subset \{\xi \in \mathbb{R}^n : c_1 t < |\xi| < c_2 t\}$$

for all t > 0 with some constants $0 < c_1 < c_2$;

(1.3)
$$|\{\xi \in \mathbb{R}^n : \gamma(t, t\xi) \in [1 - \delta, 1]\}| \le c\delta$$

for all $\delta \in (0, 1/2]$ and t > 0, where |E| denotes the Lebesgue measure of a measurable set E.

Let $\hat{f}(\xi) = \int f(x)e^{-2\pi i \langle x,\xi \rangle} dx$ be the Fourier transform, where $\langle x,\xi \rangle$ denotes the inner product in \mathbb{R}^n . We also write $\hat{f} = \mathcal{F}(f)$. Throughout this note we assume that $n \geq 2$. We consider the Bochner-Riesz mean of order λ with respect to γ defined by

$$S_t^{\lambda}(f)(x) = \int_{\mathbb{R}^n} \left(1 - \gamma(t,\xi)\right)_+^{\lambda} \hat{f}(\xi) e^{2\pi i \langle x,\xi \rangle} d\xi,$$

where $s_{+}^{\lambda} = s^{\lambda}$ if s > 0, $s_{+}^{\lambda} = 0$ if $s \leq 0$. When $\gamma(t, \xi) = (|\xi|/t)^2$, this is the ordinary Bochner-Riesz mean. Define the maximal function

$$S_*^{\lambda}(f)(x) = \sup_{t>0} |S_t^{\lambda}(f)(x)|.$$

In this note we generalize some known results on weighted estimates for the maximal functions associated with the ordinary Bochner-Riesz means by considering the generalized Bochner-Riesz means $S_t^{\lambda}(f)$. In

²⁰⁰⁰ Mathematics Subject Classification. 42B15, 42B25.

Key words and phrases. Bochner-Riesz means, Fourier multipliers.

particular, we shall prove some weighted inequalities for S^{λ}_{*} in the cases when $\gamma(t,\xi) = t^{-1}|\Phi(\xi)|$ and $\gamma(t,\xi) = |\Phi(t^{-1}\xi)|$, where Φ is a mapping from \mathbb{R}^{n} to \mathbb{R}^{n} satisfying certain regularity conditions. It will be shown that if h is a positive homogeneous function of degree 1 which is infinitely differentiable away from the origin, we can find a suitable Φ such that $|\Phi(\xi)| = h(\xi)$.

Now, we further assume that $\gamma(t, \cdot) \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$ for all t > 0 and that there exists $\epsilon_0 > 0$ such that

(1.4)
$$|(\partial\xi)^{\alpha}\gamma(t,t\xi)| \le C_{\alpha}|\xi|^{\epsilon_0 - |\alpha|} \quad \text{in } U_{c_2} \setminus \{0\}$$

for all t > 0 and multi-indices $\alpha = (\alpha_1, \ldots, \alpha_n)$, where $(\partial \xi)^{\alpha} = (\partial/\partial \xi_1)^{\alpha_1} \ldots (\partial/\partial \xi_n)^{\alpha_n}$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$ and $U_r = \{\xi \in \mathbb{R}^n : |\xi| < r\}$ (c_2 is as in (1.2)). Then we have the following:

Theorem 1. Suppose that γ satisfies the conditions (1.1)–(1.4). Let $\lambda > (n-1)/2$ (the critical index). Then

$$\left\|S_*^{\lambda}(f)\right\|_{L^2(w)} \le C_{\lambda,w} \|f\|_{L^2(w)} \qquad (f \in \mathfrak{S}(\mathbb{R}^n))$$

for $w \in A_1(\mathbb{R}^n)$ (the Muckenhoupt class), where $S(\mathbb{R}^n)$ denotes the Schwartz space on \mathbb{R}^n and $||f||_{L^r(w)} = (\int |f(x)|^r w(x) dx)^{1/r}$.

This is a particular case of the following result.

Theorem 2. Let γ be as in Theorem 1. Suppose that $\lambda > (n-1)/2$, $(n-1)/\lambda and <math>1 < r \leq p$. Then

 $\left\|S_*^{\lambda}(f)\right\|_{L^p(w)} \le C_{\lambda,w} \|f\|_{\dot{F}_p^{0,r}(w)} \qquad (f \in \mathfrak{S}(\mathbb{R}^n))$

for all $w \in A_1(\mathbb{R}^n)$, where $\dot{F}_p^{0,r}(w)$ is the weighted (homogeneous) Triebel-Lizorkin space.

See [4] for the Triebel-Lizorkin space $\dot{F}_{p}^{s,r}$ (see also [14]). The definition of the norm for the weighted Triebel-Lizorkin space $\dot{F}_{p}^{s,r}(w)$ is the same as that for $\dot{F}_{p}^{s,r}$ except that the weighted measure w(x) dx is used in place of the Lebesgue measure (see [1]). Note that, if $1 < r \le p \le 2$, $w \in A_p$ and $f \in S(\mathbb{R}^n)$,

(1.5)
$$||f||_{L^p(w)} \approx ||f||_{\dot{F}^{0,2}_p(w)} \le c ||f||_{\dot{F}^{0,p}_p(w)} \le c ||f||_{\dot{F}^{0,r}_p(w)}.$$

Thus Theorem 1 follows from Theorem 2 with p = r = 2.

Let $\Phi : \mathbb{R}^n \to \mathbb{R}^n$ be a bijection. We define a space BL to be the space of all those bijections Φ which satisfy $\Phi(0) = 0$ and

$$c|\xi - \eta| \le |\Phi(\xi) - \Phi(\eta)| \le C|\xi - \eta|$$
 for all $\xi, \eta \in \mathbb{R}^n$

with some constants 0 < c < C. Note that if $\Phi \in BL$, $|\Phi(\xi)| \approx |\xi|$ and $|\Phi(E)| \approx |E|$ for a measurable set E.

Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a mapping with the components $F_1, F_2 \ldots, F_n$. We define a subspace D of BL. Let $F \in BL$. We say $F \in D$ if $F_j \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$ $(j = 1, 2, \ldots, n)$ and there exists a neighborhood U of the origin such that

$$\max_{1 \le j \le n} |(\partial \xi)^{\alpha} F_j(\xi)| \le C_{\alpha} |\xi|^{1-|\alpha|} \quad \text{in } U \setminus \{0\}$$

for all multi-indices α .

For a mapping $\Phi : \mathbb{R}^n \to \mathbb{R}^n$, we consider $\gamma(t,\xi)$ defined by either of the following two equations:

$$\gamma(t,\xi) = t^{-1} |\Phi(\xi)|, \quad \gamma(t,\xi) = |\Phi(t^{-1}\xi)|.$$

Then we have the following:

Corollary 1. Suppose that $\Phi \in D$ and let $\gamma(t,\xi)$ be as above. Suppose that $\lambda > (n-1)/2$. Then

$$\left\|S_*^{\lambda}(f)\right\|_{L^2(w)} \le C_{\lambda,w} \|f\|_{L^2(w)} \qquad (f \in \mathfrak{S}(\mathbb{R}^n))$$

for $w \in A_1(\mathbb{R}^n)$.

This follows from Theorem 1, since under the hypotheses of Corollary 1 $\gamma(t,\xi)$ satisfies the conditions (1.1)–(1.4) with $\epsilon_0 = 1$ in (1.4).

Let h be a positive homogeneous function of degree 1. By this we mean that $h(t\xi) = th(\xi)$ for all t > 0 and $\xi \in \mathbb{R}^n$, h(0) = 0 and $h(\xi) > 0$ for $\xi \neq 0$. Then, in fact, Corollary 1 is equivalent to the following:

Corollary 2. Suppose that $\Phi \in D$ and $h \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$. Let $\gamma(t, \xi) = t^{-1}(h \circ \Phi)(\xi) = t^{-1}h(\Phi(\xi))$ or $\gamma(t, \xi) = (h \circ \Phi)(t^{-1}\xi)$. Suppose that $\lambda > (n-1)/2$. Then

$$\left\|S_*^{\lambda}(f)\right\|_{L^2(w)} \le C_{\lambda,w} \|f\|_{L^2(w)} \qquad (f \in \mathfrak{S}(\mathbb{R}^n))$$

for $w \in A_1(\mathbb{R}^n)$.

We can derive Corollary 2 from Corollary 1 as follows. Define Λ : $\mathbb{R}^n \to \mathbb{R}^n$ by

$$\Lambda(\xi) = \begin{cases} |\xi| h(\xi)^{-1} \xi & \text{if } \xi \neq 0, \\ 0 & \text{if } \xi = 0. \end{cases}$$

Note that $\Lambda^{-1}(\eta) = h(\eta)|\eta|^{-1}\eta$ $(\eta \neq 0), \Lambda^{-1}(0) = 0$. We can easily see that $\Lambda \in D$. Define $\Gamma = \Lambda^{-1} \circ \Phi \in D$. Since $|\Gamma| = h \circ \Phi$, by applying Corollary 1 to $\gamma(t,\xi) = t^{-1}|\Gamma(\xi)|$ and $\gamma(t,\xi) = |\Gamma(t^{-1}\xi)|$ we get Corollary 2.

When λ is near 0, we have the following estimates with power weights:

Theorem 3. Let $\gamma(t,\xi) = t^{-1} |\Phi(\xi)|, \ \Phi \in D$. Suppose that $\lambda > 0$ and $-1 < \alpha \leq 0$. Then

$$\int_{\mathbb{R}^n} \left| S_*^{\lambda}(f)(x) \right|^2 |x|^{\alpha} \, dx \le C_{\lambda,\alpha} \int_{\mathbb{R}^n} |f(x)|^2 |x|^{\alpha} \, dx \qquad (f \in \mathfrak{S}(\mathbb{R}^n)).$$

When $\gamma(t,\xi) = (|\xi|/t)^2$, this is due to Carbery-Rubio de Francia-Vega [2]. A complex interpolation between Theorem 3 and Corollary 1 with $w(x) = |x|^{\alpha}$ $(-n < \alpha \leq 0)$ gives the following (see [2], [8]):

Corollary 3. Let $\gamma(t,\xi)$ be as in Theorem 3. Suppose that $0 < \lambda \leq (n-1)/2$ and $-2\lambda - 1 < \alpha \leq 0$. Then

$$\int_{\mathbb{R}^n} \left| S^{\lambda}_*(f)(x) \right|^2 |x|^{\alpha} \, dx \le C_{\lambda,\alpha} \int_{\mathbb{R}^n} |f(x)|^2 |x|^{\alpha} \, dx.$$

This result can be used to get the following:

Corollary 4. Let $\gamma(t,\xi)$ be as in Theorem 3. Suppose that $0 < \lambda \leq (n-1)/2$, $2 \leq p < 2n/(n-1-2\lambda)$ and $n(1-2/p) < -\alpha < 1+2\lambda$. Put $w_{\alpha}(x) = \min(1, |x|^{\alpha})$. Then

$$\left\|S_*^{\lambda}(f)\right\|_{L^2(w_{\alpha})} \le c \|f\|_{L^2(w_{\alpha})} \le c \|f\|_{L^p}.$$

The second inequality of the conclusion of Corollary 4 follows by Hölder's inequality. As in [2], by Corollary 4 we can see that

$$\lim_{t \to \infty} S_t^{\lambda}(f)(x) = f(x) \quad \text{a.e.}$$

for $0 < \lambda \leq (n-1)/2$ and $f \in L^p(\mathbb{R}^n)$ provided $2 \leq p < 2n/(n-1-2\lambda)$.

Remark 1. When $\gamma(t,\xi) = t^{-1}h(\xi)$, where *h* is a certain positive homogeneous function of degree 1, the $L^2(w)$ boundedness of S^{λ}_* for $\lambda > (n-1)/2$ and $w \in A_1$ can be derived from the estimates of Seeger for the Littlewood-Paley functions (see [10, 11]). The case where $h \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$ follows form Corollary 2.

Remark 2. Let a be a non-negative, continuous function on $[0, \infty)$. We assume that $a \in C^{\infty}((0, \infty))$, a(0) = 0, a(1) = 1, a'(s) > 0 for s > 0, $a(s) \to \infty$ as $s \to \infty$ and

$$\left| (d/ds)^{\ell} a(s) \right| \le c s^{\epsilon_1 - \ell}$$

for all $s \in (0, \gamma)$ and $\ell \geq 0$ with some positive constants γ , ϵ_1 . Then Theorem 3 and Corollaries 1–4 stated above still hold with $\gamma(t,\xi) = a(t^{-1}(h \circ \Phi)(\xi))$ and also Corollaries 1, 2 remain true with $\gamma(t,\xi) = a((h \circ \Phi)(t^{-1}\xi))$, where h is a positive homogeneous function of degree 1 in $C^{\infty}(\mathbb{R}^n \setminus \{0\})$ and $\Phi \in D$. In particular, this remark applies to the function $a(s) = s^m, m > 0$. In this case, $\gamma(t,\xi) = t^{-m}(H \circ \Phi)(\xi)$ or $\gamma(t,\xi) = (H \circ \Phi)(t^{-1}\xi)$, where H is a homogeneous function of degree m (see [3], [6], [7], [12] for related results). In Section 2, we shall prove Theorem 2. Suppose that h is a positive homogeneous function of degree 1 such that $h \in C^{\infty}(\mathbb{R}^n \setminus \{0\}), \nabla h(\xi) \neq$ 0 for $\xi \in \mathbb{R}^n \setminus \{0\}$. Put $\Sigma_h = \{\xi \in \mathbb{R}^n : h(\xi) = 1\}$. If the hypersurface Σ_h has non-vanishing Gaussian curvature and if $\lambda > (n-1)/2$, then

$$\left| \mathcal{F}\left((1-h)_{+}^{\lambda} \right)(x) \right| \le c(1+|x|)^{-n-\epsilon} \quad \text{for some } \epsilon > 0$$

(see Sogge [13]). Therefore, if $\gamma(t,\xi) = t^{-1}h(\xi)$, we have $S_*^{\lambda}(f) \leq c\mathcal{M}(f)$, where \mathcal{M} denotes the Hardy-Littlewood maximal operator, and hence S_*^{λ} is bounded on $L^p(w)$ for $1 and <math>w \in A_p$. Although pointwise estimates similar to those given above are not available in the present situation, we have the weighted L^q estimates for the kernels arising from a decomposition of the operator S_t^{λ} defined by the general functions $\gamma(t,\xi)$ (Lemma 2), which can be applied to prove Theorem 2.

In Section 3, we shall prove Theorem 3. The proof is based on the weighted L^2 estimates of [2] and [8] for certain Littlewood-Paley functions.

2. Proof of Theorem 2

To handle the singularity of $\gamma(t,\xi)$ at $\xi = 0$, we need the following pointwise estimates for Fourier transform.

Lemma 1. Let $g : \mathbb{R}^n \to \mathbb{R}$ be continuous and g(0) = 0. Let $\varphi \in C_0^{\infty}(\mathbb{R})$. Suppose that $g^{-1}(\operatorname{supp}(\varphi)) \subset U_{\epsilon}$ for some $\epsilon > 0$, where $U_{\epsilon} = \{x \in \mathbb{R}^n : |x| < \epsilon\}$. We further assume that $g \in C^{n+1}(U_{\epsilon} \setminus \{0\})$ and there exists m > 0 such that

$$|(\partial\xi)^{\alpha}g(\xi)| \le c|\xi|^{m-|\alpha|} \quad in \ U_{\epsilon} \setminus \{0\} \ for \ |\alpha| \le n+1.$$

Then

$$|\mathfrak{F}(\varphi \circ g)(x)| \le c(1+|x|)^{-n-\delta} \quad \text{for some } \delta > 0.$$

Proof. Take $\tilde{\varphi}(\xi) \in C_0^{\infty}(\mathbb{R}^n)$ such that $\varphi(g(\xi)) = \tilde{\varphi}(\xi)\varphi(g(\xi))$. Write $\varphi(g(\xi)) = \tilde{\varphi}(\xi)(\varphi(g(\xi)) - \varphi(0)) + \varphi(0)\tilde{\varphi}(\xi)$. Then it suffices to estimate the Fourier transform of $\Psi(\xi) := \tilde{\varphi}(\xi)(\varphi(g(\xi)) - \varphi(0))$. We have

(2.1)
$$|(\partial\xi)^{\alpha}\Psi(\xi)| \le c|\xi|^{m-|\alpha|}$$
 in $\mathbb{R}^n \setminus \{0\}$ for $|\alpha| \le n+1$.

Let $\psi \in C_0^{\infty}(\mathbb{R}^n)$ be such that $\operatorname{supp}(\psi) \subset \{1/2 \leq |\xi| \leq 2\}, \sum_{j \in \mathbb{Z}} \psi(2^{-j}\xi) = 1$ for $\xi \neq 0$, where \mathbb{Z} denotes the set of all integers. Write

$$\hat{\Psi}(x) = \sum_{j \le M} \int \psi(2^{-j}\xi) \Psi(\xi) e^{-2\pi i \langle x, \xi \rangle} d\xi$$

for some $M \ge 0$. We split the sum on the right hand side into two pieces: $\hat{\Psi}(x) = I + II$, where

$$I = \sum_{j \le N} \int \psi(2^{-j}\xi) \Psi(\xi) e^{-2\pi i \langle x,\xi \rangle} d\xi, \qquad II = \sum_{N < j \le M} \int \psi(2^{-j}\xi) \Psi(\xi) e^{-2\pi i \langle x,\xi \rangle} d\xi,$$

for $N \leq 0$, which will be specified below. We may assume |x| > 2. Applying integration by parts k times $(1 \leq k \leq n+1)$ and using (2.1), we have

(2.2)
$$\left|\int \psi(2^{-j}\xi)\Psi(\xi)e^{-2\pi i\langle x,\xi\rangle}\,d\xi\right| \le c|x|^{-k}2^{jn}2^{j(m-k)}$$

To estimate I we use (2.2) with k = n and to estimate II with k = n+1. Finally, choosing $N = \log_2(|x|^{-1})$, we can get the conclusion.

Now, we give a proof of Theorem 2. Decompose

$$(1 - \gamma(t,\xi))_+^{\lambda} = \sum_{j=0}^{\infty} 2^{-j\lambda} n_j(\gamma(t,\xi)),$$

where $n_j \in C_0^{\infty}(\mathbb{R})$ $(j \ge 0)$, $\operatorname{supp}(n_j) \subset [1-2^{-j}, 1]$ $(j \ge 1)$, $\operatorname{supp}(n_0) \subset (-1, 1)$ and $|(d/dr)^{\ell}n_j(r)| \le c_{\ell}2^{j\ell}$ for $\ell \ge 0$. Let $L_{j,t}^{\lambda}(x) = \mathcal{F}^{-1}(2^{-j\lambda}n_j(\gamma(t, \cdot)))(x)$ for $j \ge 0$ and $K_t^{\lambda}(x) = \mathcal{F}^{-1}((1-\gamma(t, \cdot))_+^{\lambda})(x) - L_{0,t}^{\lambda}(x)$, where \mathcal{F}^{-1} denotes the inverse Fourier transform. Put $G_t(\xi) = \gamma(t, t\xi)$. Note that $G_t^{-1}(\operatorname{supp}(n_0)) \subset U_{c_2}$ for all t > 0, where U_{c_2} is as in (1.4). This can be seen by using the second condition of (1.1), (1.2) and the intermediate value theorem. By (1.4) and Lemma 1 with $g = G_t$ and $\varphi = n_0$, we have $\operatorname{sup}_{t>0} |L_{0,t}^{\lambda} * f| \le c \mathcal{M}f$. Since

$$\left\| \sup_{t>0} |L_{0,t}^{\lambda} * f| \right\|_{L^{p}(w)} \le c \|\mathcal{M}f\|_{L^{p}(w)} \le c \|f\|_{L^{p}(w)} \le c \|f\|_{\dot{F}_{p}^{0,p}(w)}$$

(see (1.5)) to prove Theorem 2, it suffices to show

(2.3)
$$\int \sup_{t>0} |K_t^{\lambda} * f(x)|^p w(x) \, dx \le c \left(||f||_{\dot{F}_p^{0,p}(w)} \right)^p$$

Decompose $K_t^{\lambda}(x) = \sum_{j=1}^{\infty} L_{j,t}^{\lambda}(x)$. Then, by Hölder's inequality we have

$$|K_t^{\lambda} * f(x)|^p \le \left(\sum_{j=1}^{\infty} c_j^{-q/p}\right)^{p/q} \left(\sum_{j=1}^{\infty} c_j \left|L_{j,t}^{\lambda} * f(x)\right|^p\right),$$

6

where 1/p + 1/q = 1 and $\{c_j\}$ is a sequence of positive numbers such that $\sum_{j=1}^{\infty} c_j^{-q/p} < \infty$. Thus we have (2.4)

$$\int \sup_{t>0} |K_t^{\lambda} * f(x)|^p w(x) \, dx \le c \sum_{j=1}^{\infty} c_j \int \sup_{t>0} |L_{j,t}^{\lambda} * f(x)|^p w(x) \, dx$$
$$\le c \sum_{j=1}^{\infty} c_j \sum_{k \in \mathbb{Z}} \int \sup_{2^k \le t \le 2^{k+1}} |L_{j,t}^{\lambda} * f(x)|^p w(x) \, dx.$$

Note that (1.2) implies

(2.5)
$$\sup_{2^{k} \le t \le 2^{k+1}} \left| L_{j,t}^{\lambda} * f(x) \right| = \sup_{2^{k} \le t \le 2^{k+1}} \left| L_{j,t}^{\lambda} * \Delta_{k} f(x) \right|,$$

where

$$(\Delta_k f)^{\widehat{}}(\xi) = \Psi(2^{-k}\xi)\hat{f}(\xi)$$

with $\Psi \in C_0^{\infty}(\mathbb{R}^n)$ satisfying

$$supp(\Psi) \subset \{b_1 \le |\xi| \le b_2\}, \quad \Psi(\xi) = 1 \text{ if } a_1 \le |\xi| \le a_2$$

for some suitable numbers a_1, a_2, b_1, b_2 such that $0 < b_1 < a_1 < a_2 < b_2$. By (2.4) and (2.5), to prove (2.3) it suffices to show that there exists $\epsilon > 0$ such that

(2.6)
$$\int \sup_{2^k \le t \le 2^{k+1}} \left| L_{j,t}^{\lambda} * f(x) \right|^p w(x) \, dx \le c 2^{-j\epsilon} \int |f(x)|^p w(x) \, dx,$$

where the constant c is independent of k and j. Indeed, by (2.6) we have

(2.7)
$$\sum_{k\in\mathbb{Z}}\int\sup_{2^k\leq t\leq 2^{k+1}}\left|L_{j,t}^{\lambda}*\Delta_k f(x)\right|^p w(x)\,dx$$
$$\leq c2^{-j\epsilon}\sum_{k\in\mathbb{Z}}\int\left|\Delta_k f(x)\right|^p w(x)\,dx\leq c2^{-j\epsilon}\left(\|f\|_{\dot{F}_p^{0,p}(w)}\right)^p,$$

where the last inequality follows by a standard argument (see [1]); thus, using (2.5) and (2.7) in (2.4) and choosing $\{c_j\}$ suitably, we get (2.3).

To prove (2.6), we use the following estimates:

Lemma 2. Let $t \in [2^k, 2^{k+1}]$, $k \in \mathbb{Z}$. For any λ , p and δ satisfying $\lambda > (n-1)/2$, $(n-1)/\lambda , <math>1 < p$ and $0 < \delta < p\lambda + 1 - n$, there exists $\epsilon > 0$ such that

$$\int_{\mathbb{R}^n} \left| (L_{j,t}^{\lambda})_{2^k}(x) \right|^q (1+|x|)^{(n+\delta)q/p} \, dx \le c 2^{-j\epsilon},$$

where 1/p + 1/q = 1, $(L_{j,t}^{\lambda})_r(x) = r^{-n}L_{j,t}^{\lambda}(x/r)$ (r > 0) and the constant c is independent of t, k and j.

Proof. Fix $t \in [2^k, 2^{k+1}]$. Since (1.4) holds, integration by parts gives

(2.8)
$$|(L_{j,t}^{\lambda})_{2^k}(x)| \leq C_M 2^{-j\lambda} 2^{-j} (1+2^{-j}|x|)^{-M}$$
 for all $M > 0$,

where C_M is independent of t, k and j. Also, by (1.3) we have

(2.9)
$$|\{\xi \in \mathbb{R}^n : \gamma(t, 2^k \xi) \in [1 - \delta, 1]\}| \le c\delta,$$

where c is independent of $\delta \in (0, 1/2]$, t and k.

By (2.9) and the Hausdorff-Young inequality we have

$$(2.10)$$

$$\int_{\mathbb{R}^n} \left| (L_{j,t}^{\lambda})_{2^k}(x) \right|^q dx \leq \left(\int \left| \mathcal{F} \left((L_{j,t}^{\lambda})_{2^k} \right) (\xi) \right|^p d\xi \right)^{q/p}$$

$$\leq c \left(2^{-pj\lambda} | \{\xi \in \mathbb{R}^n : \gamma(t, 2^k \xi) \in [1 - 2^{-j}, 1] \} | \right)^{q/p}$$

$$\leq c 2^{-j(q\lambda + q/p)}.$$

This implies

(2.11)
$$\int_{|x| \le 2^j} \left| (L_{j,t}^{\lambda})_{2^k}(x) \right|^q (1+|x|)^{(n+\delta)q/p} dx \\ \le c 2^{j(n+\delta)q/p} 2^{-j(q\lambda+q/p)} = c 2^{-j(q-1)(p\lambda+1-n-\delta)}.$$

Let $0 < \tau < 1/2$. Then, by Hölder's inequality we have

$$\int_{|x|>2^{j}} \left| (L_{j,t}^{\lambda})_{2^{k}}(x) \right|^{q} (1+|x|)^{(n+\delta)q/p} dx$$

$$\leq \left(\int_{|x|>2^{j}} \left| (L_{j,t}^{\lambda})_{2^{k}}(x) \right|^{q} (1+|x|)^{(n+\delta)q/(p\tau)} dx \right)^{\tau} \left(\int_{\mathbb{R}^{n}} \left| (L_{j,t}^{\lambda})_{2^{k}}(x) \right|^{q} dx \right)^{1-\tau}.$$

By (2.8) we see that

$$\left(\int_{|x|>2^{j}} \left| (L_{j,t}^{\lambda})_{2^{k}}(x) \right|^{q} (1+|x|)^{(n+\delta)q/(p\tau)} dx \right)^{\tau} \\ \leq c (2^{-j\lambda}2^{-j})^{q\tau} \left(\int_{|x|>2^{j}} (2^{-j}|x|)^{-qM} |x|^{(n+\delta)q/(p\tau)} dx \right)^{\tau} \\ \leq c (2^{-j\lambda}2^{-j})^{q\tau} 2^{j(n+\delta)q/p} 2^{jn\tau} \left(\int_{|x|>1} |x|^{-qM+(n+\delta)q/(p\tau)} dx \right)^{\tau} \\ \leq c (2^{-j\lambda}2^{-j})^{q\tau} 2^{j(n+\delta)q/p} 2^{jn\tau},$$

where M and τ are chosen so that $n + (n + \delta)q/(p\tau) < qM$. By this and (2.10) we have

(2.12)
$$\int_{|x|>2^{j}} \left| (L_{j,t}^{\lambda})_{2^{k}}(x) \right|^{q} (1+|x|)^{(n+\delta)q/p} dx$$
$$\leq c (2^{-j\lambda}2^{-j})^{q\tau} 2^{j(n+\delta)q/p} 2^{jn\tau} 2^{-j(q\lambda+q/p)(1-\tau)}$$
$$= c 2^{-j(q-1)(p\lambda+1-n-\delta-\tau(n-1)/(q-1))},$$

where we further assume that $p\lambda + 1 - n - \delta - \tau(n-1)/(q-1) > 0$. Combining (2.11) and (2.12), we get the conclusion. This completes the proof of Lemma 2.

We can find in Sogge [13, pp. 70–71] an argument similar to the one used in the proof of Lemma 2. Now we can prove (2.6). By Hölder's inequality and Lemma 2

$$(2.13) \quad \sup_{t \in [2^{k}, 2^{k+1}]} \left| (L_{j,t}^{\lambda})_{2^{k}} * 2^{kn} f_{2^{k}}(x) \right|^{p} \\ \leq \sup_{t \in [2^{k}, 2^{k+1}]} \left(\int \left| (L_{j,t}^{\lambda})_{2^{k}}(x-y) \right|^{q} (1+|x-y|)^{(n+\delta)q/p} \, dy \right)^{p/q} \\ \times \int |f(2^{-k}y)|^{p} (1+|x-y|)^{-n-\delta} \, dy \\ \leq c 2^{-(\epsilon p/q)j} \int |f(2^{-k}y)|^{p} (1+|x-y|)^{-n-\delta} \, dy.$$

Since $w \in A_1$, we have

(2.14)

$$\int (1+|x-y|)^{-\delta-n} w(2^{-k}x) \, dx \le C_w w(2^{-k}y) \quad \text{for a.e. } y \in \mathbb{R}^n.$$

By (2.13) and (2.14) we see that

$$\int \sup_{t \in [2^{k}, 2^{k+1}]} \left| L_{j,t}^{\lambda} * f(x) \right|^{p} w(x) dx$$

= $\int \sup_{t \in [2^{k}, 2^{k+1}]} \left| (L_{j,t}^{\lambda})_{2^{k}} * 2^{kn} f_{2^{k}}(x) \right|^{p} 2^{-kn} w(2^{-k}x) dx$
 $\leq c 2^{-(\epsilon p/q)j} \int 2^{-kn} |f(2^{-k}y)|^{p} \left(\int (1 + |x - y|)^{-n - \delta} w(2^{-k}x) dx \right) dy$
 $\leq c 2^{-(\epsilon p/q)j} \int |f(y)|^{p} w(y) dy,$

which proves (2.6). This completes the proof of Theorem 2.

3. Proof of Theorem 3

To prove Theorem 3, we use the following.

Proposition 1. Let $\gamma(t,\xi) = t^{-1}|\Phi(\xi)|$, $\Phi \in BL$. Let $0 < \delta < 7/8$ and let $m_{\delta}(r)$ be a continuously differentiable function supported in the interval $[1 - \delta, 1]$. Suppose that $||(d/dr)m_{\delta}||_{L^1(\mathbb{R})} \leq 1$. Define

$$(U_t^{\delta} f) (\xi) = \hat{f}(\xi) m_{\delta}(\gamma(t,\xi)).$$

Then

$$\int_{\mathbb{R}^n} \int_0^\infty \left| U_t^\delta f(x) \right|^2 |x|^\alpha \frac{dt}{t} \, dx \le c\delta \int_{\mathbb{R}^n} |f(x)|^2 |x|^\alpha \, dx,$$

where $-1 < \alpha \leq 0$ and the constant c is independent of δ .

When $\gamma(t,\xi) = |\xi|/t$, this was proved in Carbery-Rubio de Francia-Vega [2] and Rubio de Francia [8] (see [9] for a related result).

To prove Proposition 1, we use the following result, which can be found in [5, 8].

Lemma 3. Let $0 < \beta < 2$. Then

$$\int_{\mathbb{R}^n} \int_0^\infty |g(t,x)|^2 |x|^\beta \, \frac{dt}{t} \, dx = c_\beta \iint_{\mathbb{R}^n \times \mathbb{R}^n} \int_0^\infty |\hat{g}(t,\xi) - \hat{g}(t,\eta)|^2 |\xi - \eta|^{-n-\beta} \, \frac{dt}{t} \, d\xi \, d\eta,$$

where $\hat{g}(t,\xi) = \mathcal{F}(g(t,\cdot))(\xi)$. We also have

$$\int_{\mathbb{R}^n} |g(x)|^2 |x|^\beta \, dx = c_\beta \iint_{\mathbb{R}^n \times \mathbb{R}^n} |\hat{g}(\xi) - \hat{g}(\eta)|^2 |\xi - \eta|^{-n-\beta} \, d\xi \, d\eta.$$

Now, we give a proof of Proposition 1. By duality, to prove Proposition 1 it suffices to show

$$\int_{\mathbb{R}^n} \left| \int_0^\infty U_t^\delta f_t(x) \, \frac{dt}{t} \right|^2 |x|^{-\alpha} \, dx \le c\delta \int_{\mathbb{R}^n} \int_0^\infty |f(t,x)|^2 |x|^{-\alpha} \, \frac{dt}{t} \, dx,$$

where we write $f_t(x) = f(t, x)$ for a function f in $C_0^{\infty}((0, \infty) \times \mathbb{R}^n)$. Define an operator L_F by

$$(L_F f)^{\widehat{}}(\xi) = \hat{f}(F\xi),$$

where F is a mapping from \mathbb{R}^n to \mathbb{R}^n . Let

$$(V_t^{\delta}f)^{\widehat{}}(\xi) = \hat{f}(\xi)m_{\delta}(|\xi|/t).$$

Then, by taking Fourier transform, we can see that

(3.2) $U_t^{\delta} f(x) = L_{\Phi} V_t^{\delta} L_{\Phi^{-1}} f(x).$

Since $\Phi \in BL$, by the second part of Lemma 3, (3.2) and a change of variables we have

(3.3)

$$\int_{\mathbb{R}^n} \left| \int_0^\infty U_t^\delta f_t(x) \, \frac{dt}{t} \right|^2 |x|^{-\alpha} \, dx \approx \int_{\mathbb{R}^n} \left| \int_0^\infty V_t^\delta L_{\Phi^{-1}} f_t(x) \, \frac{dt}{t} \right|^2 |x|^{-\alpha} \, dx$$

(see [8] for this argument). Since the estimates in (3.1) are known when $\gamma(t,\xi) = |\xi|/t$, by (3.3) we have

(3.4)

$$\int_{\mathbb{R}^n} \left| \int_0^\infty U_t^\delta f_t(x) \, \frac{dt}{t} \right|^2 |x|^{-\alpha} \, dx \le c\delta \int_{\mathbb{R}^n} \int_0^\infty |L_{\Phi^{-1}} f_t(x)|^2 |x|^{-\alpha} \, \frac{dt}{t} \, dx.$$

The first part of Lemma 3 implies

(3.5)
$$\int_{\mathbb{R}^n} \int_0^\infty |L_{\Phi^{-1}} f_t(x)|^2 |x|^{-\alpha} \frac{dt}{t} dx \approx \int_{\mathbb{R}^n} \int_0^\infty |f(t,x)|^2 |x|^{-\alpha} \frac{dt}{t} dx.$$

By (3.4) and (3.5) we get (3.1). This completes the proof of Proposition 1.

Put

$$\tilde{S}_t^{\lambda}(f)(x) = \int_{\mathbb{R}^n} \eta(\gamma(t,\xi)) \left(1 - \gamma(t,\xi)\right)_+^{\lambda} \hat{f}(\xi) e^{2\pi i \langle x,\xi \rangle} d\xi$$

where $\eta \in C_0^{\infty}(\mathbb{R})$ is such that $\eta(s) = 1$ if $3/4 \le s \le 2$ and $\eta(s) = 0$ if $s \le 1/2$. Define

$$\tilde{S}_*^{\lambda}(f)(x) = \sup_{t>0} |\tilde{S}_t^{\lambda}(f)(x)|$$

Then, by applying Proposition 1 we can prove the following result as in [2].

Proposition 2. Let $\gamma(t,\xi)$ be as in Proposition 1. Let $\lambda > 0$ and $-1 < \alpha \leq 0$. Then

$$\int_{\mathbb{R}^n} \left| \tilde{S}^{\lambda}_*(f)(x) \right|^2 |x|^{\alpha} \, dx \le C_{\lambda} \int_{\mathbb{R}^n} |f(x)|^2 |x|^{\alpha} \, dx$$

Now, we can finish the proof of Theorem 3. Let $\zeta \in C_0^{\infty}(\mathbb{R})$ be such that $\zeta(s) + \eta(s) = 1$ for $s \in [0, 2]$ and $\operatorname{supp}(\zeta) \subset [-1, 3/4]$, where η is as in the definition of \tilde{S}_t^{λ} . Put

$$M_t^{\lambda} f(x) = \int_{\mathbb{R}^n} \zeta \left(\gamma(t,\xi) \right) \left(1 - \gamma(t,\xi) \right)_+^{\lambda} \hat{f}(\xi) e^{2\pi i \langle x,\xi \rangle} d\xi$$

Then $S_*^{\lambda}(f)(x) \leq \sup_{t>0} |M_t^{\lambda}f(x)| + \tilde{S}_*^{\lambda}(f)(x)$. As in the first part of the proof of Theorem 2, by Lemma 1 we have $\sup_{t>0} |M_t^{\lambda}f(x)| \leq c\mathcal{M}f(x)$. Thus the conclusion follows from Proposition 2 and the $L^2(w)$ boundedness of \mathcal{M} for $w \in A_2(\mathbb{R}^n)$.

Acknowledgment. The author would like to thank Professor A. Seeger for valuable comments on an earlier version of this note.

References

- H.-Q. Bui, Weighted Besov and Triebel spaces: Interpolation by the real method, Hiroshima Math. J. 12 (1982), 581-605.
- [2] A. Carbery J. L. Rubio de Francia and L. Vega, Almost everywhere summability of Fourier integrals, J. London Math. Soc. (2) 38 (1988), 513–524.
- [3] H. Dappa and W. Trebels, On maximal functions generated by Fourier multipliers, Ark.Mat. 23 (1985), 241-259.
- [4] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley theory and the study of function spaces, CBMS Reg. Conf. Ser. Math. 79, Amer. Math. Soc., Providence, RI, 1991.
- [5] I. Hirschman, Multiplier transformations II, Duke Math. J. 28 (1962), 45–56.
- [6] J. Löfström, Some theorems on interpolation spaces with applications to approximation in L_p, Math. Ann. 172 (1967), 176–196.
- [7] J. Peetre, Applications de la théorie des espaces d'interpolation dans l'analyse harmonique, Ricerche Mat. 15 (1966), 3–36.
- [8] J. L. Rubio de Francia, Transference principles for radial multipliers, Duke Math. J. 58 (1989), 1–19.
- [9] S. Sato, Some weighted estimates for Littlewood-Paley functions and radial multipliers, J. Math. Anal. Appl. 278 (2003), 308-323.
- [10] A. Seeger, Uber Fouriermultiplikatoren und die ihnen zugeordneten Maximalfunktionen, Dissertation, Darmstadt 1985.
- [11] A. Seeger, A note on absolute Riesz summability for Fourier integrals, Alfred Haar memorial conference, Budapest 1985.
- [12] A. Seeger, Estimates near L¹ for Fourier multipliers and maximal functions, Arch. Math. 53 (1989), 188–193.
- [13] C. D. Sogge, Fourier integrals in classical analysis, Cambridge University Press, 1993.
- [14] H. Triebel, Theory of function spaces II, Birkhäuser Verlag Basel, 1992.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, KANAZAWA UNI-VERSITY, KANAZAWA 920-1192, JAPAN

E-mail address: shuichi@kenroku.kanazawa-u.ac.jp