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(abstract) Let L/k be a Galois extension with Galois group G, and (¢) : 1 —
A — E - G — 1 a central extension. We study the existence of the Galois
extension M/L/k such that the Galois group Gal(M/k) is isomorphic to E and
that M /L is unramified outside S, where S is a finite set of primes of L. As an
application, we also study the class number of the Hilbert p-class field.
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INTRODUCTION

Let k be an algebraic number field of finite degree, and & its absolute Galois
group. Let L/k be a finite Galois extension with Galois group G, and (¢) : 1 —

A — E 2 G — 1 a group extension with an abelian kernel A, and S a set of
primes of L. Then an embedding problem (L/k,e,S) is defined by the diagram
&

o] (+)
(e):1 y A vy E—L 5 G y 1

where ¢ is the canonical surjection. A solution of the embedding problem
(L/k,e,S) is, by definition, a continuous homomorphism ¢ of & to E satis-
fying the conditions:(1) j ot = ¢, (2) M/L is unramified outside S, where M
is the Galois extension over k corresponding to the kernel of ¢. A solution v is
called a proper solution if it is surjctive. In case S is the set of all primes of L,
the embedding problem (L/k, ¢, S) is denoted by (L/k,¢). The Galois extension
over k corresponding to the kernel of any solution is called a solution field.




Neukirch[3] and Crespo[l] studied the sufficient conditions for (L/k, ¢, S) to
have a solution under the assumption that S containes all primes which are
ramified in L/k and are the divisors of the cardinarity of A. In the previous
paper [5], we studied some sufficient conditions for (L/k, ¢, ) to have a proper
solution in the case that p is an odd prime, (¢) is a non-split central extension
of kernel isomorphic to Z/pZ, and k is either the rational number field Q or an
imaginary quadratic field with the class number prime to p (p is not equal to
3 when & = Q(v/=3)). In the present paper, we shall study the case that k is
any finite number field and S is not necessary empty. And, as an application,
we shall give some sufficient conditions for the class number divisible by p.

Acknowledgements. The author would like to thank P.Roquette and
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1. Some lemmas

In this section, we quote some lemmas without proofs.

Let %k be an algebraic number field, and (L/k,e) an embedding problem
defined by the diagram (*) with a finite abelian group A of odd order.

For each prime q of k, we denote by kq(resp.Lq) the completion of k(resp.L)
by g(resp. an extension of q to L). Then the local problem (Lg/kq,eq) of
(L/k,¢) is defined by the diagram

&,

¢|®ql

Jle
a 7 Gq 7 1

(eq): 1 y A » Iy

where G is the Galois group of L /kq, which is isomorphic to the decomposition
group of q in L/k, & is the absolute Galois group of kq, and E, is the inverse
of Gq4 by j.

In the same manner as the case of (L/k,€), solutions, solution fields etc. are
defined for (Lq/kq,eq).

Let p be an odd prime.

Lemma 1 (Neukirch[3]) Let (¢):1 — Z/pZ — E — Gal(L/k) — 1 be
a central extension, and assume that (L/k,€) has a solution. Let T be a finite
set of primes of k, and M (q) be a solution field of (Lq/kq,eq) for q of T. Then
there exists a solution field of (L/k,€) such that the completion of M by q is
equal to M(q) for each q of T'.

Lemma 2 (Nomura[5]) Let(e):1—Z/pZ - E — Gal(L/k) > 1 bea
non-split central extension. Then every solution of (L/k,€) is a proper solution.

For a finite set T' of primes of k, let B,(T) = {a € k*|(a) = a? for some
ideal a of k, and « € k4" for any prime q of T' }. We shall denote by ¢(T) the
dimension of By (T)/k*? over Z/pZ.

Lemma 3 (Shafarevich[7;Theorem 1]) Let T be a set of primes of k, and
kr/k the mazimal p-extension unramified outside T. The number of generators



d(T) of Gal(kr/k) is given by
d(T) =¢(T) + XT) + o(T) — op,

where t(T') is the number of q € T for which (, € kg,

XT)= > n(a),n(a) = [kq: Qg alg

qlp,q€T

and o, is the p-rank of the unit group of k.

(sketch of the proof) Let J be the idele group of k, and 7 (resp. i) be the
T-idele group (resp. unit idele group) of k. We shall write Hy = J/Up - JP - k,
then d(T') = dimg/,zHr. Then the sequence

1 - Bi(T)/k" 33 BL(0)/k" 3 w/strer B3 Hy B Hy—1

is exact, where f;(i = 1,2,3,4) are defined as follows;
f1 is the natural map onto the factor group Hy = Hyp /(84 - J? - k/Ur JPE).
fo(a) = allp JPk, for a € 4.
fa(a) = aa PUFUP, where a? = a.
f4 is the natural injection.
We can easily proved that
dimz/pzﬂ/ﬂTﬂ = t(T) + )\(T), dimz/szk(Q))/kp = dimz/sz@ + Qp'
By the exactness of above sequence, we have thus proved.

2. Main theorem and applications

We denote by Py(L/K) (resp. P>(L/K)) the set of primes of L which is
ramified in L/K and not lying above p (resp. lying above p). Moreover, let g,
be the p-rank of the unit group of k and CIj, the ideal class group of k.

The following is a main theorem of the present paper.

Theorem Let p be an odd prime, and L/ K /k a Galois extension such that
L/K is a p-extension and thal the degree [K : k] is prime to p. Let S be a finite
set of primes of L, which containes the set Py(L/K) and disjoint to Py(L/K),
and (¢) : 1 =» Z/pZ — E — Gal(L/k) — 1 be a non-split central extension.
Assume that the following conditions (C1) (C2) (C3) are satisfied.

(C1) The embedding problem (L/k,e) has a solution.

(C2) For any prime p of k lying above p, the local problem (L, /ky,eyp)
has a solution v, such that My/L, is unramified, where M, is a solution field
corresponding to .

(C3)  Bi(So) = k*, where Sy is the set of prime q of k such that q is the
restriction of some prime contained in S.

Then, (L/k,e,S) has a solution, which is necessarily proper by Lemma 2.
That is to say, there exists a Galois extension M/k such that

(i) 1—- Gal(M/L) —» Gal(M/k) — Gal(L/k) = 1 coincides with (¢), and

(il) M/L is unramified outside S.

Remark (1) By using the theory of embedding problems, we can easy to see

the following.(Cf.Neukirch[3;Theorem 2.2, Theorem 3.2],Nomura[5;Theorem 8]). If any
prime lying above p is unramified in L/K, then the conditions (C2) hold. If L/K is



locally cyclic, and the exponent of the p-Sylow subgroup of E is p then the conditions
(C1) hold. In particular, if L/K is unramified, then (C1) (C2) hold.

(2) If k is either the rational number field Q or an imaginary quadratic field with
the class number prime to p (p # 3 when k = Q(v/=3) ), then By(0) = k™" and
therefore By (So) = k™* for any So.

(3) There exists a finite set So of primes of k satisfying the following condi-
tions:(i) So does not containe any prime lying above p, (ii) Bi(So) = k*P, (iii) |So| =
0p + p-rankCly.

Indeed, let F = k(¥/a;a € Bi(0)). Then the Galois group Gal(F/k((p)) is
an abelian p-group and isomorphic to (Z/}oZ)m7 where m = g, + p-rankCl,. By
Chevotarev’s density theorem, there exist primes qi, g2, - -, qm such that the Frobe-
nius of q; (i = 1,2,---,m) generate Gal(F/k((p)). Then So = {qi,---,qm} is a
required set.

(4) There does not always exist a non-split central extension (¢) : 1 — Z/pZ —
E — Gal(L/k) — 1. It is well-known that there is one-one correspondence between
the element of H?(Gal(L/k),Z/pZ) and the equivalent class of central extensions of
Gal(L/k) with kernel isomorphic to Z/pZ. For example, let [ and p be distinct odd
primes, and assume that the least positive integer f that satisfies the condition p/ =
1(mod 1) is even. Let L/K/k be a Galois extension such that L/K is a p-extension and
that K/k is an abelian l-extension. Then H*(Gal(L/k),Z/pZ) # 0. (Cf.Nomura[5]).

Proof of Theorem By Lemma 1 and the assumption (C1) (C2), there
exists a solution field M; /k of (L/k,e) such that any prime of L lying above p
is unramified in M; /L. By Lemma 2, M; /k gives a proper solution. If M; /L is
unramified outside S, then M /k is a required Galois extension. Suppose that
M, /L is not unramified outside S, and take a prime q of L ramified in M;/L
and not contained in S. Let q be an extension of q to My, and q the restriction
to k. Now we consider the local extension M;z/kq. Let J be a subgroup of
Gal(Lg/kq) such that the index of J in Gal(Lg/kq) is equal to [Lg : K], and
F be the fixed field of J in Lg/ky. Thus M;3/F is a split central extension
of Ly/F. Let qo be the restriction of g to F. Then qq is ramified in a cyclic
extension over F' of degree p. Therefore N(qo) = 1(mod p), where N denotes
the absolute norm. Since F'/k, is a p-extension, there exists a nonnegative
integer r such that N(qo) = N(q)?". Hence N(q) = 1(mod p). By Lemma 3,
d(So U {q}) = d(So) + 1, hence there exists a cyclic extension k(q)/k of degree
p which is unramified outside Sp U {q} and q is ramified.

Let q be an extension of q to M - k(q), and M, denotes the inertia field of g
in M; - k(q)/L. Since q is prime to p, M; - k(q)/M> is a cyclic extension. Since
q is ramified in My /L and L - k(q)/L, Ms is not equal to anyone of L, M;, and
M - k(q). Since Gal(M; -k(q)/L) is contained in the center of Gal(M; - k(q)/k),
M /k is a Galois extension and the Galois group Gal(M,/k) is isomorphic to
Gal(M, /k). Hence M, /k gives a proper solution of (L/k,e). By the choice of
k(q) and My, every prime of L which is not contained in S and unramified in
M; /L is unramified in M, /L, and q is also unramified in M,/L. By repeating
this process, we can take a required extension M /k. This proves the theorem.

Corollary 1. Assume the same conditions as Theorem. If the exponent
of the p-Sylow subgroup of E is equal to p, then (L/k,e,S — P(L/K)) has a
proper solution.



Proof. Let M/L/k be a Galois extension corresponding to a proper solution of
(L/k,e,S). Let q be a prime of L contained in Pi(L/K), and K(q) the inertia field
of gin L/K. Since the exponent of Gal(M/K(q)) is p, Gal(M /K (q)) is isomorphic to
Z/pZ x Z/pZ. By using the Hilbert’s theory of ramification, q can not be ramified in
M/L.

Corollary 2. Let p be an odd prime, and L/K/k a Galois extension such
that L/K is an unramified p-extension and that the degree [K : k] is prime
to p. If p-rank of the cohomology group H2(Gal(L/k),Z/pZ) is greater than
op + p-rank Cly, then the class number of L is divisible by p.

Proof. By Remark (3), there exists a finite set So of primes of k satisfying
the conditions:(i) So does not containe any prime lying above p, (ii) Bx(So) = k*F,
(iii) |So| = 0p + p-rankCly,. Let S be the set of primes of L which is an extension of
q € So. For each (¢) : 1 - Z/pZ — E — Gal(L/k) — 1, let M. be a Galois extension
corresponding to a proper solution of (L/k,¢e,S). Let M be the composite field of M.
for all e. Then by Remark (4), the Galois group Gal(M/L) is isomorphic to (Z/pZ)™,
where m is equal to the p-rank of H?(Gal(L/k),Z/pZ). For q € So, denote by M (q)
the inertia field of § in M/L, where § is an extension of q to L. Since Gal(M/L) is
contained in the center of Gal(M/k), M(q)/L/k is Galois. Then any prime of L lying
above q is unramified in M (q)/L. Let M* be the intersection of M(q) for all q of Sp.
If m > |So|, then M™/L is a non-trivial p-extension. Hence the class number of L is
divisible by p.

The idea of the above proof is similar to that of Lamprecht[2].

And the following Corollary is well-known, which has been proved by Golod-
Shafarevich.(Cf.Roquette[6]) We shall consider from the viewpoint of the theory
of central extensions.

Corollary 3. Let p be an odd prime, and L/k an unramified p-extension.
Assume that the p-rank of the ideal class group of k is greater than or equal to
24 2\/0p, + 1. Then the class number of L is divisible by p, and therefore the
p-class field tower is infinite.

Proof. Let k1 be the Hilbert p-class field of k. If k1 is not contained in L, then
k1 - L/L is unramified abelian p-extension. Hence, in this case, the class number of L
is divisible by p. For this reason, we assume that k; is contained in L. It is well known

1
that r(G) > Zd(G)2’ where G is a finite p-group, d(G) is the generator rank, r(G) is
the relation rank which is equal to the p-rank of H?(G, Z/pZ). By class field theory,
d(Gal(L/k)) is equal to the p-rank of Cl),. Then the condition +d(Gal(L/k))? > o,+p-
rankCl}, is equivalent to p-rankCl; > 2 + 21/p, + 1. By applying Corollary 2 we can
complete the proof of Corollary 3.

Corollary 4. Let p be an odd prime, and L the Hilbert p-class field of
k. Assume that the p-rank of the ideal class group of k is greater than %(1 +
\/W), then the class number of L is divisible by p.

Proof. Since Gal(L/k) is abelian, the p-rank of H?(Gal(L/k), Z/pZ) is equal to

1
M, where n is the p-rank of the ideal class group of k. By using Corollary 2,

we have thus proved.



1
Example Let p be an odd prime and m(k,p) = 5(1 + /14 80p).

If k is imaginary(resp. real) quadratic field (# Q(1/—3)), then m(k, p) is equal to
1(resp. 2). And if k/Q is cyclic of degree 3, then m(k,p) is 2.56- - -.

Remark In the previous paper [4], we have proved the following. Let p be an
odd prime and k a quadratic field. If p-rank Cl; > 2, then there exists an unramified
Galois extension M/k such that Gal(M/k) is isomorphic to the group < z,ylz” =
g’ =2F =1,z 'yr = yz, 12 = 2z, Y2 = 2y >.
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