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Abstract: 

The quantitative SEM-BSE image analysis was used to evaluate capillary porosity and pore size 

distributions in high strength concretes at early ages. The Powers model for hydration of cement was 

applied to the interpretation of the results of image analysis. The image analysis revealed that pore size 

distributions in concretes with an extremely low water/binder ratio of 0.25 at early ages were discontinuous 

in the range of finer capillary pores. However, silica fume-containing concretes with a water/binder ratio of 

0.25 had larger amounts of fine pores than concretes without silica fume. The presence of larger amounts of 

fine capillary pores in the concretes with silica fume may be responsible for greater autogenous shrinkage 

in the silica fume-containing concretes at early ages.   
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1. Introduction 

 

High strength concretes with extremely low water/cement ratios undergo significant self-desiccation if no 

external water is supplied to the concrete during the initial hydration process. Self-desiccation results in 

remarkable autogenous shrinkage, which may cause cracks in the premature concretes. Therefore, 

properties of mature high strength concrete with an extremely low water/cement ratio may be sensitive to 

the initial curing condition, compared to ordinary concretes with relatively high water/cement ratios [1]. 

However, effects of the insufficient water supply on the formation of microstructure in high strength 

concretes at early ages have not been fully understood. Taking into account that the autogenous shrinkage 

at early ages is usually explained by the evolution of capillary tension, it is significant for better 

understanding of the nature of autogenous shrinkage to reveal the characteristics of capillary pore structures 

in high strength concretes at early ages.  

In order to investigate pore structures in cementitious materials, the MIP (Mercury Intrusion Porosimetry) 

method has been used for many years. The results obtained from the MIP method suggest that large 

capillary pores are more significant in determining mechanical properties and permeability of concrete. The 

MIP measurements also showed that the total volume as well as the distribution and connectivity of pores 

were significant to control various properties of concretes. However, it has been criticized that the features 

of pore structure characterized by the MIP method are not representative of the real pore structure because 

of improper assumptions made on the shape of pores and their connectivity in concrete in the method [2]. 

Furthermore, in terms of practical experimental procedures, cement paste samples used in the MIP 

measurements must be dried in advance. Therefore, strictly speaking, the pore structures characterized by 
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the MIP method cannot be directly related to the shrinkage behaviors of cement paste.  

An alternative method to characterize pore structures in concrete is the SEM-BSE (Scanning Electron 

Microscope- Back Scattered Electron) image analysis technique. Taking advantage of its usefulness and 

wide applicability as a quantitative method, pore structures in cement pastes and concretes have been 

evaluated by this imaging technique [3]. The sizes of pore diameters detected by this method are much 

greater than those by the MIP method. However, as mentioned above, the volume of coarse pores 

quantified by the imaging may play a significant role in various properties of concrete. Furthermore, area 

fractions of unhydrated cement particles evaluated by the imaging method can be related to the degree of 

hydration which is an important parameter to characterize the hydration process [4,5]. Therefore, the 

SEM-BSE imaging technique can be expected to provide useful information for interpreting the behavior of 

concrete in terms of the evolution of microstructure at early ages. 

The purpose of this study is to examine capillary pores and solid structures formed in high strength 

concretes during the first 24 hours after casting. Quantitative SEM-BSE image analyses were made to 

evaluate the coarse capillary porosity, pore size distributions and the degree of hydration in concretes with 

an extremely low water/binder ratio of 0.25. We tried to interpret the results in terms of the Powers model 

for the hydration of cement. Effects of an extremely low water/binder ratio of 0.25 and the addition of silica 

fume on the characteristics of microstructure are also discussed relating them to the tendency of autogenous 

shrinkage in high strength concretes at early ages. 

 

2. Experimental 
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2.1 Materials and mix proportion of concretes 

The cement used was Ordinary Portland cement. Its chemical compositions and physical properties are 

given in Table 1. A commercial silica fume with specific surface area of 20m2/g was used. The replacement 

of silica fume for cement was 10% by mass. A river gravel with a maximum size of 10mm was used as a 

coarse aggregate. The fine aggregate was a river sand from the same river as the coarse aggregate. 

Polycarboxylic acid superplasticizer was used. The water/binder ratio of concretes was 0.25. The mix 

proportions of the concretes are given in Table 2. 

 

2.2 BSE image analysis  

Concrete cylinders of 100mm in length and 50mm in diameter were produced. They were sealed 

immediately after casting, and stored at 18ºC. At the age of 12 and 24 hours, slices with about 10mm 

thickness were cut from central portions of specimens. They were dried by ethanol replacement, and then 

impregnated with the epoxy resin. After the resin had hardened at room temperature, the slices were 

carefully polished with silicon carbide papers (~4μm). Then, the polished surfaces were meticulously 

finished with diamond slurry (3, 1 and 0.25μm) for a short time. 

The specimens were examined using the SEM equipped with a quadruple backscatter detector. The BSE 

images were acquired at the magnification of 500× by the use of high resolution acquisition system. In 

order to avoid influences of interfacial transition zones around fine aggregate particles on results, regions of 

interest for acquiring images in concretes were sufficiently away from surfaces of sand particles. It is of 

course probable that a region taken well away from a visible aggregate surface in a 2-D image is either 

right above or right below another aggregate surface that is not visible in the image. However, such a 3-D 
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stereological aspect was not taken into account in this study. Each image consists of 1148×1000 pixels, 

with one pixel representing about 0.22×0.22μm at that magnification. A dynamic thresholding method [6] 

for several neighbors of pixels was used to obtain the binary images of pores and unhydrated cement grains. 

In this method, the gray level histogram for the whole image as well as the local information on brightness 

at neighbor pixels are used to determine the threshold values for each pixel. 

In order to extract features of pore size distributions from a binary image, the equivalent diameter of a pore 

was used as a geometric measure [7,8]. Each pore cluster with irregular shape was labeled by the rule of 

8-neighbor connectivity. The labeled pore clusters whose areas are tallied by pixels, are converted to the 

equivalent circles with the same area as the original pores. Then, all the circle clusters were scaled by their 

diameters. The cumulative pore volume vs. the equivalent diameter curves were plotted by sorting and 

cumulating areas of those scaled circles. This procedure is essentially the same as the assumption of unit 

thickness for cylindrical pores representing the original pore cluster. However, it should be noted that large 

areas of pores are also derived from long continuous pores. Namely, the pore size distribution curve 

obtained by the image analysis can reflect not only the quantity of pore with a specific size, but also the 

continuity of capillary pores from qualitative geometric perspective, because a 2D section is exposed from 

a 3D random isotropic material.  

 

2.3 Calculation of volume fractions of constituent phases 

The volume fractions of constituent phases in cement pastes can be calculated using a model for the 

hydration of cement. In this study, the Powers model [9] was applied to the results of image analysis [10]. 

In the calculation, the volume of cement gel produced by the hydration of 1cm3 dry cement was assumed to 
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be 2.1cm3. The non-evaporable water content in the reacted cement is about 23% by mass. Chemical 

shrinkage was also assumed to be 0.254 of the volume of non-evaporable water. The porosity of cement gel 

used in the calculation was 28%; those pores saturated with gel water. The degree of hydration was 

determined by Eq. (1) [4,5].  

 

)1(1
0UH

UHi−=α
 

where 

UHi: area fraction of unhydrated cement particles at the age of ti 

UH0: initial area fraction of unhydrated cement particles (i.e. ti=0) 

 

Based on the stereology principles, area fractions in 2D cross sections are assumed to represent 3D volume 

fractions in a real porous material [11]. Volume fractions of hydration products (i.e. CSH and calcium 

hydroxide crystals) were estimated using the degree of hydration and the Powers model. For example, if the 

value of 2.5nm is assumed as the lower limit of size for capillary pores [12], the total volume of capillary 

pores greater than 2.5nm in diameter was obtained by subtracting the volume of unhydrated cement and the 

calculated volume of cement gel from the initial volume of the mixture. Thus, the difference between the 

capillary pore volume calculated based on the Powers model and the coarse pore volume obtained by the 

image analysis represents the volume of fine pores whose diameters are less than the resolution of the 

image analysis (0.2μm in this study). In this study, hereafter, capillary pores whose diameters are less than 

the resolution of the image analysis (i.e. range from 2.5nm to 0.2μm) are defined as “fine capillary pores”. 
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Correspondingly, the pores tallied in the image analysis are termed “coarse capillary pores”. An example of 

BSE micrograph for the cement paste phase in concretes is given in Fig.1. 

 

3. Results 

3.1 Capillary porosity and pore size distributions 

Figure 2 shows coarse capillary pore size distributions for the cement paste phase in high strength concretes 

with and without silica fume. Silica fume-containing concretes are found to have fewer coarse pores than 

ordinary concretes even at early ages of 12 and 24 hours. The threshold diameter at which porosity starts to 

steeply increase with decreasing pore diameter, is smaller in silica fume-containing concretes than in 

ordinary concretes at 12 hours. This smaller threshold diameter in silica fume-containing concretes 

indicates higher packing density of binder grains in the concretes.  

The difference in the initial porosity between ordinary concrete and 10 % silica fume-containing concrete is 

quite small by volume, as can be easily calculated using the densities of silica fume (2.2g/cm3) and ordinary 

Portland cement (3.15g/cm3). Furthermore, it has been pointed out that the total porosity estimated by the 

MIP method is not notably changed by the addition of silica fume at a given water/binder ratio [13,14]. 

Therefore, if there were little differences in the total porosity between concretes with and without silica 

fume at early ages also, the difference between the porosity obtained by the MIP and the image analysis 

(Fig.2) represents the amounts of finer pores than 0.2μm. Since the total porosity including the whole range 

of capillary pores must be greater than the porosity of only coarser pores tallied in the image analysis, the 

results in Fig.2 indicate that silica fume-containing concretes could have more fine pores than concretes 

without silica fume.   
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3.2 Volume fraction of various constituent phases 

Fig.3 shows the volume fractions of various constituents in concretes with and without silica fume. The 

standard deviation of values measured by the image analysis is given in Table 3. Experimental errors are 

greater in unhydrated cement than in coarse capillary pores. However, the errors of coarse capillary pores 

are quite small. It seems that the variations of those measured values are almost comparable to the results of 

Scrivener et al [4]. Therefore, the difference in phase constituents between concretes with and without 

silica fume (Fig.3) is significant even if the variation of unhydrated cement (i.e. the variation of the degree 

of hydration of cement ) is taken into account.  

Reductions in volume of silica fume due to the reaction are ignored in the calculation of the volume 

fractions of various phases in the silica fume concretes (Fig.3(b)). The volume fractions of hydration 

products in concretes with silica fume are slightly greater than those in concretes without silica fume at 12 

hours. However, at 24 hours, the ordinary concrete contains more hydration products than the silica fume 

concrete. In regard to the pore volume at 24 hours, silica fume-containing concretes exhibited greater 

capillary porosity of fine pores (< 0.2μm) than ordinary concretes. However, amounts of coarse pores have 

been reduced by the addition of silica fume. The results in Fig.3 also show that silica fume-containing 

concretes have greater numbers of fine pores than concretes without silica fume at 24 hours.  

 

4. Discussion 

4.1 Comparison in the total porosity between the MIP and the image analysis 

Park, Noguchi and Tomosawa [15] have measured the porosity of cement pastes at early ages by the MIP 
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method. According to their results, the total porosity of ordinary Portland cement pastes with a 

water/cement ratio of 0.25 is about 0.12 and 0.08cc per unit weight of cement paste at 12 and 24 hours of 

age, respectively. A direct comparison in pore size distributions between all the data obtained by the MIP 

and the imaging analysis is meaningless. However, if the intrudable pore volume in the MIP method is 

considered as a comparable index for a given concrete [2], and assumed to be a correct intrinsic value, it is 

significant to compare the total porosity obtained by the two methods. The total porosities of cement pastes 

obtained by both methods are given in Table 4. The data determined based on volume in the image analysis 

was converted to the data based on mass for comparing the results obtained by both methods. In the 

conversion, the density of hydration product was assumed to be 2.35g/cm3[16]. At the age of 12 hours, the 

porosity estimated by the imaging technique was almost comparable with the value obtained by the MIP 

method. As for the ordinary concrete at 24 hours, only a little difference was found in porosity between the 

image analysis and the MIP method. However, there existed a relatively large difference between the values 

obtained by the image analysis and the MIP method in silica fume-containing concretes at 24 hours. A part 

of this difference may result from the pozzolanic reaction of silica fume at early ages. However, if it is 

assumed that silica fume has reacted to some extent, and the pozzolanic reaction is expressed as the 

following equation [17], it is possible to obtain a modified phase constitution in silica fume concrete at 24 

hours.  

 

 

where, density of CH is assumed 2.24[16], 

The modified phase fractions obtained by assuming that 30% of silica fume has reacted within 24 hours, 
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are given in Fig.3(c). The mass based porosity converted from the result of image analysis (Fig.3(c)) is 

consistent with the value obtained by the MIP method (Table 4). Taking into account that considerable 

amounts of silica fume start to react within 24 hours [18], the reaction of 30% of silica fume during the first 

one day seems to be plausible. Thus, the SEM-BSE imaging technique can properly estimate the degree of 

hydration of cement. The total porosity estimated from the measured amounts of pores by the image 

analysis assuming the Powers model, was almost the same as the total porosity measured by the MIP 

method (Table 4).    

 

4.2 Effects of characteristics of the pore size distribution on the shrinkage behavior at early ages  

As mentioned previously, the difference between the coarse capillary porosity and the total porosity 

estimated by the image analysis represents the fine capillary porosity (2.5nm ∼ 0.2μm). Large pores could 

be connected to gel pores through the fine capillary pores. However, little porosity for fine pores means that 

large capillary pores detected in the image analysis are isolated so as to be directly connected with gel pores. 

Comparing bar graphs in Fig.3(a) with Fig.3(c), it is found that ordinary concrete has less amounts of fine 

pores at a given total porosity. Namely, the pore size distribution in ordinary concrete is almost absent in 

the range of fine pores; i.e. gap-graded.  In contrast with the discontinuous pore size distribution in the 

ordinary concrete, the pore size distribution in silica fume-containing concrete is found to be continuous. 

 

The presence of gap-graded capillary pores in ordinary concretes with an extremely low water/cement ratio 

of 0.25 may be related to the moisture conditions at early ages. The hydration of cement under such an 

insufficient water content in the concretes brings about the reduction in relative humidity in concretes even 
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at early ages. Water meniscus was generated in coarse capillary pores so that large empty pores must have 

been formed in the concretes. Hydration products by subsequent hydration of cement can grow in finer 

pores containing liquid water, but not in larger empty pores. The characteristic of volume fractions of 

phases in the concrete with a water/cement ratio of 0.25 (Fig.3) suggests the occurrence of self-desiccation 

in the process of hydration of cement at early ages.  

 

As shown in Fig.3, silica fume-containing concretes have more fine pores than concretes without silica 

fume at 24 hours. Little porosity in the range of 2.5nm to 0.2μm in concretes without silica fume means 

that the ordinary concretes have few pores which generate menisci in the range of relative humidity from 

0.99 to 0.44. Persson [19] has reported that the relative humidity was reduced by 5-10% for the first 24 

hours in cement pastes with a water/binder ratio of 0.25. Therefore, the ordinary concrete has less pores 

which induce the shrinkage due to the capillary tension during the initial decrease in the relative humidity. 

However, the silica fume-containing concretes can shrink continuously with time because it contains more 

pores equilibrium to the decrease in relative humidity. Furthermore, particle sizes of silica fume are 

approximately the same as those of hydration products [20]. Therefore, silica fume particles can take part in 

refining capillary pores. Silica fume particles themselves are also involved in forming more fine porous 

microstructures in concretes with silica fume. Such a refinement of pores by silica fume particles may 

increase the capillary tension force during the initial decrease in relative humidity. Differences in the 

autogenous shrinkage between ordinary Portland and silica fume-containing cement pastes may be partly 

explained by the differences in capillary pore structures. 
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4. Conclusions 

Pore structures and volume fractions of various constituents in high strength concretes at early ages were 

investigated by the BSE imaging technique assuming the Powers model. The major results obtained in this 

study are as follows; 

(1) Coarse capillary porosity in silica fume-containing concretes was lower than ordinary concretes 

without silica fume at early ages. 

(2) Characteristics of capillary pores in concretes can be estimated by the image analysis method assuming 

the Powers model for hydration of cement.  

(3) At very early ages, most of the capillary pores in ordinary concretes with an extremely low 

water/binder ratio of 0.25 are so coarse that their pore size distributions were discontinuous.  

(4) The pore size distributions in silica fume-containing concretes were continuous, compared to those in 

ordinary concretes. The presence of the pores equilibrium to the initial decrease in the relative humidity 

within concrete may bring about greater autogenous shrinkage in silica fume-containing concretes.   
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Table 1 Chemical and Physical Properties of Cement 
Oxide composition (wt.%) 
SiO2 Al3O3 Fe2O3 CaO MgO SO3 Na2O K2O Cl 

Loss on 
Ignition (%) 

Density 
(g/cm3) 

20.55 5.21 2.44 65.86 0.91 2.33 0.27 0.41 0.006 1.19 3.15 

 

 

Table 2 Mix proportion of concretes 

 Unit Content (kg/m3)  

 W/B Water Cement Silica Fume Sand Gravel SP (%wt. of binder)

PC 0.25 145 581 0 559 1086 1.7 

SF 0.25 142 510 57 559 1086 2.6 

        SP :Superplasticizer 

 

Table 3 Standard deviation and coefficient of variation of values measured by image analysis 
 

Standard Deviation (vol.%) Coefficient of Variation  Age 
(Hours) Unhydrated Cement Coarse Pores Unhydrated Cement Coarse Pores 

12 3.0 1.1 0.08 0.09 PC 24 3.3 0.6 0.12 0.06 
12 2.7 0.5 0.09 0.05 SF 24 3.1 0.5 0.11 0.07 

 

Table 4 Comparison between the total capillary porosity obtained by image analysis and the MIP method 
(cc/g) 

  Age=12 hours Age=24hours Age=24hours 
MIP [15] PC/SF 0.12 0.08 - 

PC 0.14 0.07 - Image 
Analysis SF 0.12 0.11 0.08* 

  *: Assuming that the degree of reaction of silica fume is 30% 

 
 



Figure captions 
 

 

 

Fig.1 BSE image for ordinary Portland cement concrete with a water/binder ratio of 0.25 at 24 hours. 

 

 

Fig.2 Coarse capillary pore size distributions at early ages (a) Portland cement concrete (b) Silica 

fume-containing concrete 

 

 

Fig.3 Volume fractions of constituent phases in concretes (Coarse pores :>0.2μm, Fine pores:0.2μm-2.5nm) 
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Fig.2 Coarse capillary pore size distributions at early ages
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