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Abstract— This paper deals with robust stabilization of
running self-sustaining two-wheeled vehicle. Recently, some
researches about stabilization of two-wheeled vehicle have
been reported. These researches have achieved the stabilization
running only by the steering control. However, an actual two-
wheeled vehicle is running while accompanying stabilization by
the rider. We have proposed the stabilization of two-wheeled
vehicle in the state of stillness, and have shown the effectiveness.
In this research, we compose the control system that aims at the
running stabilization of two-wheeled vehicle. We use H∞ mixed
sensitivity problem to design the controller to achieve stability
running even if the mass of two-wheeled vehicle changes. The
experimental results show stability running even if the mass of
two-wheeled vehicle changed.

I. INTRODUCTION

Recently, some researches about stabilization of two-
wheeled vehicle have been reported. Murakami et al.[1]
have utilized a bicycle on the market as an experiment
model. They install the actuator for the steering control
and for running in the model, and have achieved the run-
ning stabilization on the running roller. Yoshida et al.[2]
have achieved the running stabilization by using the model
considering the sideslip of the tire. Yi et al.[3] utilize the
model considering the motorcycle trail and caster angle. They
designed the control system aiming trajectory tracking and
balance stabilization. But, experimental verifications have not
been carried out. These models are stabilized only by the
handle operation.

On the other hand, Yamakita et al.[4] have achieved
stabilization in the state of stillness. They use the model
with the handle operation and the stabilization device which
is the center of gravity movement. They have achieved
stabilization in the state of running, but the numerical model
were not considered in the state of running. Sumida et
al.[5] use the model which is similar to Yamakita’s and
they are researching concerning the gyrating control, but an
experimental verification have not been carried out. Murata
boy[6] have achieved stabilization in the state of stillness
by controlling the rotor installed internally. It has achieved
running stabilization at low speed too. These models do not
consider that the two-wheeled vehicles are running, and an
experimental verifications are insufficient.

We have developed a stationary self-sustaining two-
wheeled vehicle which is a two-wheeled vehicle equipped
with a cart system to move a center-of-gravity of the vehicle

Fig. 1. Composition of experimental system

for stabilizing the system. We have derived a linear model of
two-wheeled vehicle via Lagrange method. As attitude con-
trol experiment results, the effectiveness of the independent
self-sustaining two-wheeled vehicle and the derived two-
wheeled vehicle model was able to be proven[7].

In this paper, we constitute a control system for stabiliza-
tion of running self-sustaining two-wheeled vehicle. And we
achieve stabilization of running even if the mass of two-
wheeled vehicle changes by using H∞ mixed sensitivity
problem to design the controller. Because the two-wheeled
vehicle is difficult to run actually, the running experiments
are carried out on the running roller. Experimental results
show effectiveness of the designed robust attitude controller.

II. COMPOSITION AND MODELING OF EXPERIMENTAL
SYSTEM

A. Composition of Experimental System

Figure 1 shows a composition of the experimental system.
The two-wheeled vehicle consists of three parts. There are a
cart system that corresponds to the rider’s center-of-gravity
movement, a steering system (a front part) for steering, and
a body (a rear part). The front part and the rear part are
structures that finish being movable through a steering axis.
A cart system and a steering system are driven by DC servo
motor, and DC motors are controlled by servo amplifier
which contains the velocity control system. Handle angle
and cart position are measured by encoders. Attitude angles
of the two-wheeled vehicle (roll angle and yaw angle) are
measured by gyroscopes.



(a) Top view

(b) Front view

Fig. 2. Two-wheeled vehicle model

A system’s length is about 70 [cm], width is about 57 [cm],
height is about 40 [cm], and weight is about 10 [kg]. Movable
ranges of a cart system is ±25 [cm], and a steering system
is ±0.5 [rad] respectively.

We used MATLAB, Simulink for a controller design and
used dSPACE DSP-CIT for control experiments. The running
experiments are carried out on the running roller in Figure
1.

B. Preliminary

Figure 2 shows a model of two-wheeled vehicle. We
assume that two-wheeled vehicle is stabilized by the cart
movement d(t) and the handle operation ψ(t). The control
inputs are the voltage uc(t), uh(t) to add to an amplifier.
We assume that cart position d(t), handle angle ψ(t), bike
angle φ(t), and yaw angle of a rear part θ(t) + Θ(t) can be
measured directly.

For modeling, we consider the following assumptions.

1) x - y - z axis are set as absolute coordinates.
2) x′ - y′ - z′ axis are set as relative coordinates on two-

wheeled vehicle. The contact points on the ground of
a front wheel and a rear wheel are set as the x′ axis,
the y′ axis is orthogonal to the x′ axis, the z′ axis is
vertical upward.

3) The bike angle φ(t), cart position d(t), handle angle
ψ(t), and yaw angle of a rear part θ(t) + Θ(t) can be
measured directly.

4) The tire does not slip horizontally.
5) Two-wheeled vehicle runs in the straight line on the

running roller.
6) The bike angle, cart position, handle angle, and bike

yaw angle are small enough.
7) The center-of-gravity movement x axially and z axially

by the handle operating are omitted.
8) Two-wheeled vehicle is a rigid body, and the twist is

not occurred.
9) A cart system and a steering system are driven by DC

servo motor, and DC motors are controlled by servo
amplifier which include the velocity control system.

10) The state variables which are differentiated twice are
small enough. They can be omitted.

Table I shows the definition of the symbols in the ex-
pressions. The modeling for the state of stillness are only
considering by the coordinates on the two-wheeled vehicle.

C. Modeling[7]

1) Center-of-gravity coordinate of each parts: The center-
of gravity coordinates of a front part (y′f , z

′
f ), a rear part

(y′r, z
′
r), and a cart system (y′c, z

′
c) on the relative coordinates

are obtained as next expressions.{
y′f = Hf sinφ(t) + LFf sin {ψ(t) − Θ(t)} cosφ(t)
z′f = Hf cosφ(t) − LFf sin {ψ(t) − Θ(t)} sinφ(t)

(1){
y′r = Hr sinφ(t) + Lr sin Θ(t) cosφ(t)
z′r = Hr cosφ(t) − Lr sin Θ(t) sinφ(t)

(2)

{
y′c = Hc sinφ(t) + {Lc sinΘ(t) − d(t) cos Θ(t)} cosφ(t)
z′c = Hc cosφ(t) − {Lc sin Θ(t) − d(t) cos Θ(t)} sinφ(t)

(3)
x′ − y′ − z′ coordinates were rotated from x − y − z

coordinates by only θ(t) around z axis. Here, because we
assumed that two-wheeled vehicle is a straight running, Yaw
angle θ(t) is small enough. Therefore we can consider that
the two coordinates is equivalent[8].{

y = y′

z = z′
(4)

2) Translation by Vehicle running: Figure 3 shows the
model that a stabilized two-wheeled vehicle is running. The
two-wheeled vehicle is running in the direction where θ(t)
shifts from x axis. There is a center-of-gravity of a stabilized
two-wheeled vehicle on the x′ axis. Here, l is a horizontal
length from a rear wheel rotation axis to a center-of-gravity
of two-wheeled vehicle, and L is a wheelbase.



TABLE I
DEFINITION OF SYMBOLS

Mf , Mr , Mc Mass of each part
Hf , Hr , Hc Vertical length from a floor to a center-of-gravity of each part
LF f , LF Horizontal length from a front wheel rotation axis to a center-of-gravity of part of front wheel and steering axis.
Lr , LR Horizontal length from a rear wheel rotation axis to a center-of-gravity of part of rear wheel and steering axis.
Lc Horizontal length from a rear wheel rotation axis to a center-of-gravity of the cart system.
l Horizontal length from a rear wheel rotation axis to a center-of-gravity of two-wheeled vehicle.
Jx Moment of inertia around center-of-gravity x axially.
Jz Moment of inertia around center-of-gravity z axially.
μx Viscous coefficient around x axis.
μz Viscous coefficient around z axis.
V Velocity of two-wheeled vehicle.
subscript f , r, c Part of front wheel, rear wheel, and cart system respectively

Fig. 3. The two-wheeled vehicle shifted from the course

When the handle angle ψ(t) = 0, two-wheeled vehicle
runs speed V in the direction of x′ axis. Then, the translation
at V sin θ(t) occurs in the direction of y axis. On the other
hand, because we assumed that the tire does not sideslip,
the gyration motion satisfies the relation of geometrical
of Ackerman. However, because two-wheeled vehicle is
running on the running roller, the translation will be done
in the direction of y axis where the handle was turned by
l

L
V sin {ψ(t) − Θ(t)}. Therefore, the two-wheeled vehicle

that runs speed V follows the next translation in the direction
of y axis.

ẏ(t) = V sin θ(t) − l

L
V sin {ψ(t) − Θ(t)} (5)

3) Derivation of the state space model: From (1) ∼ (5),
we derive the motion equation via Lagrange method. The
derived motion equation via Lagrange method are non-linear
equations. Therefore, we use the Taylor expansion in the
equilibrium (d(t) = φ(t) = ψ(t) = θ(t) = 0) neighborhood
and the variable differentiated twice or more are omitted.
Here, Θ(t) is replaced with the following approximation
expression.

Θ(t) =
LF

LF + LR
ψ(t) (6)

And, from the assumptions, the motion equation of a cart
system and a handle system are expressed by the following
equations[9]. {

d̈(t) + αḋ(t) = βuc(t)
ψ̈(t) + γψ̇(t) = δuh(t)

(7)

Where, α, β, γ and δ are physical parameters of the
motor systems. We obtained the final state space linear model
shown in the following expressions.{

ẋ = Ax+Bu

y = Cx
(8)

where,

x =
[
d(t) φ(t) ψ(t) θ(t) ḋ(t) φ̇(t) ψ̇(t) θ̇(t)

]T

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −α 0 0 0
a61 a62 a63 0 a65 a66 a67 a68

0 0 0 0 0 0 −γ 0
0 0 a83 a84 a85 a86 a87 a88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B =
[
0 0 0 0 β b61 0 0
0 0 0 0 0 b62 δ 0

]T

,

C =

⎡
⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 c43 1 0 0 0 0

⎤
⎥⎥⎦ , u =

[
uc(t)
uh(t)

]

den = MfH
2
f +MrH

2
r +McH

2
c + Jx

a61 = −Mcg

den
, a62 =

(MfHf +MrHr +McHc)g
den

a63 = − (MfLFfLR +MrLrLF +McLcLF )g
(LF + LR)den

a65 = −McHcα

den
, a66 = − μx

den

a67 =
MfHfLFfγ

den
+
lLR(MfHf +MrHr +McHc)V

(LF + LR)2den

a68 = − (MfHf +MrHr +McHc)V
den

a83 = − lLR(Mf +Mr +Mc)V 2

(LF + LR)2Jz

a84 =
(Mf +Mr +Mc)V 2

Jz
, a85 = −McV

Jz



TABLE II
PHYSICAL PARAMETERS OF TWO-WHEELED VEHICLE

Parameter Value Parameter Value
Mf [kg] 2.14 Hf [m] 0.0800
Mr [kg] 5.91 Hr [m] 0.161
Mc [kg] 1.74 Hc [m] 0.0980
LF f [m] 0.0390 LF [m] 0.133
Lr [m] 0.128 LR [m] 0.308
Lc [m] 0.259 l [m] 0.2112
Jx [kgm2] 0.2 Jz [kgm2] 0.3218
μx [kgm2/s] 0.333 μz [kgm2/s] 0.333
α 735 β 64
γ 111 δ 253
V [m/s] 1.0

a86 =
(MfHf +MrHr +McHc)V

Jz

a87 =
(MfLFfLR +MrLrLF +McLcLF )V

(LF + LR)Jz

a88 = −μz

Jz

b61 =
McHcβ

den
, b62 = −MfHfLFfδ

den

c43 =
LF

LF + LR
(9)

In the case of the state of stillness, there are no terms
related to the yaw angle of the two-wheeled vehicle. And
there are no terms related to the running speed because the
running speed V = 0. The state space model which was
considered above conditions coincides with the state space
model of the state of stillness.

Unknown parameters in above expressions were identified
by control experiments. Table II shows physical parameters
of the two-wheeled vehicle.

III. CONTROLLER DESIGN

A. Composition of generalized plant and problem setting

First, we consider the disturbance to the two-wheeled ve-
hicle. The behavior of the cart system and the handle system
affect the attitude of the two-wheeled vehicle. Therefore, the
large control values occur the large attitude changes. Then,
we define the disturbance w1 as the disturbance concerned
with the control values.

The uncertainty of model concerned with simplification
etc. for modeling and the external factors concerned with the
rider’s boarding and installing of luggage affect the attitude
of the two-wheeled vehicle. Then we define them as the
disturbance w2.

Next, we set the controlled values. Because the stability
running of the two-wheeled vehicle is a basic specification of
the control, we define the control values z1, z2 who weighted
the attitude of the two-wheeled vehicle (d(t), φ(t), ψ(t),
θ(t)). Similarly, we define the control value z3 who weighted
the controlled inputs u, because a large control inputs want
to be suppressed.

Finally, we collect the plant and the weight matrices
together and composed the generalized plant as shown in

Fig. 4. Generalized plant

Fig. 5. Multiplicative uncertainties

Figure 4. Then, W1, W2, W3 and W4 are the weight ma-
trices concerning the sensitivity function, the multiplicative
uncertainty, the controlled inputs and the input disturbances,
respectively.

B. Controller design

First, we calculate the multiplicative uncertainly of the
two-wheeled vehicle. Here, we set the two-wheeled vehicle
with no additional mass as the nominal model. Figure 5
shows the multiplicative uncertainty due to mass variations,
where, Pnominal is the nominal model, P̃m=∗∗ are the model
for mass variations.

The weighting matrix W2(s) has to be set to include this
uncertainty. Then, we set the weighting matrix W2(s) as the
following expressions.

W2(s) = diag (W21,W22,W23,W24) (10)

W21 = W22 = W23 = W24

=
1
80

× 0.2 × 2π
s+ 0.2 × 2π

× s+ 30 × 2π
30 × 2π

A dashed line in Figure 5 shows the weighting matrix
W2(s) which covers the multiplicative uncertainties.

We used H∞ mixed sensitivity problem for the stabi-
lization controller design. Here, we used the other weight



Fig. 6. Bode diagram of Controller

matrices shown in the following expressions.

W1(s) = diag (W11,W12,W13,W14) (11)
W3 = diag (75, 110) , W4 = diag (50, 10) (12)

W11 =
35000
s+ 50

, W12 = W13 = W14 =
20

s+ 0.001

We designed the running speed of the two-wheeled vehicle
as V = 1.0 [m/s]. Figure 6 shows the gain diagram of a
designed controller.

IV. ATTITUDE CONTROL EXPERIMENTS

We measured on the impulse disturbance responses for
the two-wheeled vehicle without additional mass (nominal
model) and with additional mass (perturbed model). Figure
1 shows the situation of the attitude control experiments.
The attitude control experiments were executed when the
two-wheeled vehicle run at V = 1.0 [m/s] on the running
roller. This running roller diameter is 50 [mm] and width is
420 [mm].

As a result, the stability running was achieved for the nom-
inal model. Moreover, even if the disturbance was input to
the perturbed model, the stability running was also achieved.

A. Impulse disturbance response for nominal model

Figure 7 shows the impulse disturbance response results
for the nominal model. The impulse disturbance voltage of
4.76 [V] was added to the operation voltage of the cart for
0.1 [sec]. The impulse disturbance voltage was inputted at
1 [sec] on the graphs. The above graphs show cart position,
bike angle, and handle angle, respectively.

Before disturbance was inputted, the two-wheeled vehicle
was able to achieve a better stabilization of running. A
cart position, a bike angle and a handle angle were within
± 9 [mm], ± 0.4 [deg] and ± 0.8 [deg] respectively. After
disturbance was inputted, the large attitude change occurred.
However, the two-wheeled vehicle didn’t get into unstable,
and the stabilization of running was achieved.

B. Impulse disturbance responses for perturbed models

The two-wheeled vehicle equipped with the additional
mass was used in this experiments. Figure 8 ∼ 10 show
the impulse disturbance response results for the additional
mass which are changed to 0.99 [kg] (weight ratio 10.1 %),
1.49 [kg] (weight ratio 15.2 %), and 1.98 [kg] (weight ratio
20.2 %). As well as the nominal model, cart position, bike
angle and handle angle are shown respectively. The impulse
disturbance voltage was inputted at 1 [sec] on the graphs.

In the case of additional mass is 0.99 [kg], the stabilization
of running can be achieved before disturbance was inputted.
In the case of additional mass are 1.49 [kg] and 1.98 [kg],
the two-wheeled vehicle was running by the handle operation
little by little before the disturbance was inputted. The
attitude changes after the disturbance becames larger when
the additional mass increases, and the convergency was
deteriorated. However, the stability was still kept sufficiently.

V. CONCLUSIONS

In this paper, we constituted a control system for stabi-
lization of running self-sustaining two-wheeled vehicle. A
motion equation of the running model was derived by the
Lagrange method. The controller was designed by the H∞
mixed sensitivity problem. This controller stabilized two-
wheeled vehicle even if the mass of two-wheeled vehicle
changes. Experimental results have shown effectiveness of
the designed robust attitude controller. The control system
design for varying running speed are underway, we are
designing the robust controller who can stabilize to the
varying running speed and the mass variations. We will
improve the robust performance for the wide perturbations.

REFERENCES

[1] Y. Tanaka and T. Murakami, Self Sustaining Bicycle Robot with
steering controller, Proceedings of the 2004 IEEE Advanced Motion
Control Conference, 2004, pp.193-197

[2] T. Saguchi, et al., Stabile Running Control of Autonomous Bicycle
Robot, Proceedings of Dynamics and Design Conference 2006, No.06-
7, 2006, CD-ROM (No.546) (in Japanese)

[3] J. Yi., et al., Trajectory Tracking and Balance Stabilization Control of
Autonomous Motorcycles, Proceedings of the 2006 IEEE International
Conference on Robotics and Automation, 2006-5, pp.25832-2589

[4] M. Yamakita, et al., Automatic Control of Bicycle with Balancer -
Experimental Validation-, Proceedings of the 2006 JSME Conference
on Robotics and Mechatronics, 2006-5, 2P2-E25 (in Japanese)

[5] Y. Sumida, et al., Research on the gyrating control of motorcycle
using gain scheduling, Proceedings of the 2005 JSME Conference on
Robotics and Mechatronics, 2005-6, 1P1-S-013 (in Japanese)

[6] Murata Manufacturing Co., Murata boy, http://www.murataboy.com/
2006

[7] H. Satoh and T. Namerikawa, Modeling and Robust Attitude Control
of Stationary Self-sustaining Two-wheeled Vehicle, Proceedings of
SICE Annual Conference 2005, 2005-8, pp.2174-2179

[8] M. Abe, Vehicle Dynamics and Control, Sankaido Publishing Co., Ltd.,
1992 (in Japanese)

[9] S. Takagi, Control Engineering, Corona Publishing CO., LTD., pp.68-
69, 2000 (in Japanese)

[10] S. Hosoe and M. Araki, Control System Design - H∞ Control and
Application -, System Control Information Library, Vol.10, Asakura
Publishing Co., Ltd., 1994 (in Japanese)



Fig. 7. Experimental results for running vehicle (nominal model)

Fig. 8. Experimental results for running vehicle on additional mass
(0.99 [kg])

Fig. 9. Experimental results for running vehicle on additional mass
(1.49 [kg])

Fig. 10. Experimental results for running vehicle on additional mass
(1.98 [kg])


