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Abstract 

In this paper, the basic characteristics of the Differential Evolution (DE) are examined. Thus, one 

is the meta-heuristics, and the other is the global optimization technique. It is said that DE is the 

global optimization technique, and also belongs to the meta-huristics. Indeed, DE can find the 

global minimum through numerical experiments. However, there are no proofs and useful 

investigations with regard to such comments. In this paper, the DE is compared with the 

Generalized Random Tunneling Algorithm (GRTA) and the Particle Swarm Optimization (PSO) 

that are the global optimization techniques for continuous design variables. Through the 

examinations, some common characteristics as the global optimization technique are clarified in 

this paper. Through benchmark test problems including structural optimization problems, the 

search ability of DE as the global optimization technique is examined.   
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1. INTRODUCTION 

Global optimization techniques are roughly classified into two classes: Thus, 

deterministic and stochastic techniques
 [1]

. The Tunneling Algorithm (TA) that is a 

gradient-based optimization technique is one of the deterministic global 

optimizations 
[2]

. On the other hand, the GA which is population-based 

optimization technique belongs to the stochastic global optimization technique 
[3]

. 

The gradient-based global optimization techniques such as the TA often include 

the mathematical programming for local search, so that the search point always 

improves the objective function satisfying the constraints. The stochastic global 

optimization techniques, such as Simulated Annealing (SA), often accept the point 

at which the objective function is not improved. As the result, a global minimum 

can be found through the search iteration while escaping from local minimum.  

Nowadays, owing to the rapid progress of computers, population-based 

Evolutionary Algorithms (EA), such as the Genetic Algorithm (GA), the Particle 

Swarm Optimization (PSO) 
[4]

, the Differential Evolution (DE) 
[5]

, the Ant Colony 

Optimization (ACO) 
[6]

 and etc., have been widely developed in comparison with 

the gradient-based optimization techniques, and have been applied to the optimum 

design problems
[7,8,9,10,11,12,13]

. EAs are often called the meta-heuristics that are the 

framework of the optimization techniques based on the analogies in the life and 

experiences. For example, the idea of GA is based on the Darwin’s theory of 

evolution, and the PSO developed by Kennedy et al. obtain the basic idea from the 

social behaviors such as birds, fishes, and human society. The ACO is also an 

optimization technique that can obtain the hints from the behavior of ants. Most of 

EAs include the random elements in the algorithm, and then they belong to the 

stochastic optimization techniques. EAs also include the some parameters in the 

algorithm that the user determines in advance. For example, the GA should 

determine the parameters in advance, which are the mutation ratio and the 

crossover ratio. In the ACO, there are three parameters ( ,  , and  ) to update 

the pheromone, and we have to determine these parameters in advance.  

In the framework called meta-heuristics, it is difficult to explain the reason 

why these methods can find global minimum. In the gradient-based global 

optimization techniques, we can easily explain why these methods can find global 

minimum, since the local search methodology is often included into the algorithm. 
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On the other hand, for example, the GA cannot explicitly explain why the GA can 

find global minimum, in comparison with the gradient-based global optimization 

techniques. The idea of the survival of the fittest may be one of the reasons to find 

a global minimum, however, only such idea may not be enough to explain why 

the global minimum can be found. The PSO that is one of the meta-heuristics has 

the search direction vector implicitly, and the generation methodology of the 

search point at the next iteration is clarified. The neighborhood of the search point 

is also clarified. The PSO also has the similar structure in comparison with the 

gradient-based global optimization methods 
[14]

. Thus, it is easy to explain why 

the PSO can find a global minimum in comparison with the GA. The PSO is also 

analyzed from the anther aspect. Therefore, the PSO can be interpreted as the 

dynamics. It is noteworthy that the convergence of the PSO is determined from 

the stability of dynamics 
[15,16,17]

. From above discussions, it is important to 

consider the reason why global minimum can be found. We consider that there are 

two important factors for global optimization techniques as follows: 

(G1) It is preferable to include the search direction vector into the algorithm. 

The search direction is clarified by the search direction vector. It is expected that 

the search direction vector will turn to the direction that the objective is improved 

for local search, while the search direction vector will also turn to the direction 

that the objective is not improve for global search. The latter implies escaping 

from a local minimum.  

(G2) It is preferable to include the randomness into the algorithm. In general, 

a global minimum is unknown. In order to find a global minimum, the 

randomness is one of the powerful tools for global search. The randomness is 

included into the TA for determining the next start point, and is also included into 

the PSO, the GA, the SA, and the ACO. In the case of population-based 

optimization techniques, the randomness can be expected to provide the diversity 

among the particles. In addition, the randomness can often give the perturbation of 

a search point. The search point can sometimes escape from a local minimum by 

this perturbation.  

In addition, the stability analysis plays an important role for convergence. For 

example, the short convergence of ACO is discussed in Ref.[18].  

The DE is one of the population-based global optimization techniques for 

continuous design variables 
[19]

. In the DE, operations which are called the 
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mutation and the crossover are introduced like the GA, and then the DE may 

belong to the framework of meta-heuristics. The original DE mainly focuses on 

the single objective optimization problems, and several DE versions have also 

been proposed by many researchers 
[20]

. The DE has been applied to the multi-

objective optimization problems 
[21]

 and the discrete design variable problems 
[22]

. 

The DE is now taken notice as well as the PSO, and then the search ability of both 

the DE and the PSO is often compared through benchmark problems. However, 

the DE as the global optimization technique is not well examined. The stability 

and convergence of the DE have been well discussed in Ref.[23]. In Ref.[23], the 

stability and convergence are discussed under assumptions that particles have 

crowed into a small neighborhood around an optimum. Then the stability and 

convergence using the Lyapunov stability theorem are discussed. In this research, 

the DE is interpreted as the dynamics, as well as the PSO. In other words, the 

stability and the convergence are discussed with the eigenvalue problems. 

Ref.[23] plays an important role in the stability and convergence of DE. However, 

we would like to discuss on the convergence of DE from the mathematical 

optimization point of view. In the gradient-based optimization techniques, the 

search direction vector and the step-size play important roles for searching an 

optimum. If the DE has some similar structures to the gradient-based optimization 

techniques, it is also possible to discuss the convergence. In addition, the PSO and 

the DE are suitable for finding the continuous optimum, so that they will belong 

to the same category among global optimization techniques. If similar structures 

between them can be found, the characteristics of the DE will be more clarified. 

Thus, it is important to compare the DE with the gradient-based global 

optimization techniques and the PSO. The authors consider that the DE may have 

some common characteristics in comparison with the gradient-based global 

optimization techniques and the PSO.  

In this paper, the DE is compared with the PSO and the Generalized Random 

Tunneling Algorithm (GRTA) developed by the authors that is one of the 

gradient-based global optimization techniques 
[24]

. As we mentioned above, two 

important factors for global optimization techniques are considered. We focus on 

the GRTA, the PSO, and the DE, and clarify some common characteristics among 

three methods. Secondly, the DE is examined through eleven periodical function 
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problems and two structural optimization problems. Through these benchmark 

problems, the search ability and the characteristics of the DE are well examined.  

2. DIFFERENTIAL EVOLUTION 

2.1 Problem Definition 

   In this paper, the following single-objective optimization problem is 

considered. 

( ) minf x      (1) 

, ,i L i i Ux x x    1,2, ,i n   (2) 

( ) 0jg x   1,2, ,j m   (3) 

 where 1 2( , , , )T

nx x xx  represents the continuous design variables, and n is 

the number of design variables. ( )f x  is the objective function to be minimized, 

and ( )jg x  denotes the behavior constraints, and m is the number of behavior 

constraints. ,i Lx  and ,i Ux  denote the lower and upper bound on i-th design 

variable, respectively. 

2.2 Basic Algorithm of DE 

The DE developed by Storn and Price in 1995 is one of the population-based 

global optimization techniques for continuous design variables, such as the PSO. 

The DE is also the robust global optimization technique and is widely used. Many 

versions of the DE have been proposed, and DE/rand/1/bin is selected as the basic 

model in this paper, where “DE” represents the Differential Evolution, “rand” 

indicates that particles selected to compute the mutation are chosen at random. 

“1” is the number of pairs of particles, and “bin” means a binomial recombination.  

In DE/rand/1/bin, three particles in the design variable space are selected at 

random, and the operations that are the mutation and the crossover are introduced 

for generating the new particle at the next iteration. The roles of these operations 

are described in section 2.3 and 2.4, respectively. First, the basic algorithm of 

DE/rand/1/bin is described as follow: 

(STEP0) The number of particles popsize, the mutation ratio F, the crossover ratio 

Cr, and the maximum search iteration number, kmax, are set. The iteration counter 

k is initialized as k=1.  
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(STEP1) All particles are generated at random in the design variable space.  

(STEP2) The following procedure is applied to all particles.  

(STEP2-1) Particle d, denoted by xd
k
, selects three particles (xr1

k
,xr2

k
,xr3

k
) 

at random., where 1 2 3d r r r   . 

(STEP2-2: Mutation) New particle denoted by vd
k
 is generated by the 

mutation. The mutation in the DE is given by Eq.(4). 

1 2 3( )k k k k

d F  v x x x      (4) 

(STEP2-3: Crossover) New particle denoted by ud
k
 is generated by the 

crossover between xd
k
 and vd

k
.  

(STEP2-4) Objective function is evaluated at xd
k 
and ud

k
, and then the 

particle d is updated according to the following criteria. 

( ) ( )

( ) ( )

k k k k

d d d d

k k k k

d d d d

f f

f f

  


   

u x x u

u x x x
    (5) 

(STEP3) The iteration counter is increased k= k +1. 

(STEP4) If k is less than k max, return to STEP2. Otherwise, the algorithm will 

terminate.  

2.3 Mutation and Global Search 

  In general, the update scheme of gradient-based optimization techniques for 

unconstrained optimization problems is given by Eq.(6) 
[25]

. 

1k k k k  x x d      (6) 

where x
k
 denotes the current design point. d

k
 represents the search direction vector 

at k-th iteration, which is given by ( ) ( )k kf f x x . 
k  is the deterministic 

step-size. The objective function is always improved at the new point x
k+1

. Thus, 

f(x
k+1

) < f(x
k
). The terminal criterion of the gradient-based optimization techniques 

can be determined the following equations: 

1( ) ( )k k

k

f f 



   


 

x x

d
     (7) 

Convergence can be explained with Eq.(7) in the gradient-based optimization 

techniques. In the DE, convergence can be explained with Eq.(5), in which ud
k
 

represents the new search point generated by the crossover between xd
k
 and vd

k
. 

Here let us consider a case as shown in Fig.1.  
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x2

x1

1
k
rx

2
k
rx

3
k
rx

k
dx

2 3
k k
r rx x

2 3( )k k
r rF x x

k

dv

 

Fig.1 New point vd
k
 in two dimensions 

 

Compared with Eqs.(4) and (6), it is possible to consider that xr1
k
 represents the 

basis vector, xr2
k
-xr3

k
 denotes the search direction vector, and F in Eq.(4) also 

denotes the fixed step-size. F in Eq.(4) is applied to all design variables, but this 

parameter can be also applied to each design variable as follows: 

, 1, 2, 3,( )k k k k

d i i i i iv x F x x       (8) 

( (0,1) 0.5)iF F d rand       (9) 

2d F      (10) 

where xd,i
k
 ( 1,2, ,i n ) is the i-th design variable of particle d. rand(0,1) 

represents the random number between 0 and 1. Through above discussions, it is 

possible to consider that the update scheme of DE is similar to the one of 

gradient-based optimization techniques. On the gradient-based optimization 

techniques, new search point always improves the objective function. On the other 

hand, the DE chooses three points (xr1
k
, xr2

k
, xr3

k
), so that new point sometimes 

does not improve the objective function due to the randomness. Therefore, the 

search direction vector, xr2
k
-xr3

k
,turns to the direction that the objective function is 

not improved. This implies that it is possible to escape from local minimum, and 

then the global search ability will be enhanced. Let us explain the search direction 

vector in the DE with an illustrative example, as shown in Fig.2. In Fig.2, the 

arrow shows the search direction vector. Fig.2(a) shows a case where three 

particles locate in a same convex space. In addition, we assume the following 

relationship among three particles: 

 1 2 3( ) ( ) ( )k k k

r r rf f f x x x      (11) 
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In Fig.2 (a), vd
k
 will be generated between xr2

k
 and xr3

k
 when the mutation ratio F 

is smaller than the 2 3

k k

r rx x . The crossover is a stochastic operator in the DE, 

so let us assume that vd
k
 is replaced as ud

k
 by the crossover. In this case, the 

objective function at ud
k
 will be improved, and the following equation can be 

established: 

1 2 3( ) ( ) ( ) ( )k k k k

d r r rf f f f  u x x x    (12) 

Here, we consider Eq.(5). If ( )k

df u  is less than ( )k

df x , ud
k
 will become xd

k
. 

Therefore, new search point xd
k
 is generated into the same convex space. When 

Eq.(12) is established through the search iteration, the convergence will be 

expected.  

Next, let us consider a case where three particles locate in a non-convex space 

as shown in Fig.2(b). If 2 3

k k

r rx x  is nearly equal to zero, vd
k
 will be generated 

around xr1
k
. Otherwise, vd

k
 will be generated between xr1

k
 and xr2

k
, or between xr1

k
 

and xr3
k
. The crossover is a stochastic operator in the DE, so let us assume that vd

k
 

is replaced as ud
k
 by the crossover. In Fig.2(b), the search direction turns to the 

direction that the objective function is not improved. Therefore, it may be possible 

to escape from a local minimum. In addition, the crossover also plays an 

important role for escaping from a local minimum. If the relation by Eq.(11) is not 

satisfied, concentration among the particles cannot be expected. In this case, it is 

expected that the diversity will be maintained. 

xx1

k

rx 3

k

rx2

k

rx k
dv

Search direction

1

k

rx
2

k

rx
3

k

rx

Search direction
(a)

k
dv

(b)
 

Fig.2 An illustrative example 
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  2.4 Crossover and the Neighborhood 

  The crossover plays an important role in the DE. xd,i
k
 represents the i-th design 

variable of xd
k
, and vd,i

k
 also denotes the i-th design variable of vd

k
. In the 

crossover, the crossover point is determined at random. The element of crossover 

point is inherited from vd
k
, and the element of ud

k
 that is a new point is 

determined. Secondly, random number r between 0 and 1 is generated to each 

design variable, and r is compared with the crossover ratio, Cr. If r is less than Cr, 

the element of ud
k
 inherits from vd

k
. Otherwise, the element of ud

k
 inherits from 

xd
k
. Fig.3 is an illustrative example in eight design variables.  

vk
d

uk
d

[0,1)r Cr 

[0,1)r Cr 

vd,1
k

Crossover point

vd,2
k vd,3

k vd,4
k vd,5

k vd,6
k vd,7

k vd,8
k

xk
d xd,1

k xd,2
k xd,3

k xd,4
k xd,5

k xd,6
k xd,7

k xd,8
k

xd,1
k xd,2

k vd,3
k vd,4

k vd,5
k xd,6

k vd,7
k xd,8

k

 

Fig.3 Crossover in DE 

First, the crossover point is determined at random for determining the element of 

ud
k
. In this example, the crossover point is 4-th design variable of vd

k
. As the 

result, the element of ud
k
 inherits from vd

k
, as shown in Fig.3. Secondly, random 

number r is generated. If r is less than Cr that is predetermined, the element of ud
k
 

inherits from vd
k
. Otherwise, the element of ud

k
 inherits from xd

k
. As the result, all 

elements of ud
k
 are determined.  

  For simplicity, let us consider the role of crossover in two dimensions, as 

shown in Fig.4. 

x2

x1

1
k
rx

2
k
rx

3
k
rx

k
dx

2 3
k k
r rx x

2 3( )k k
r rF x x

k
dv

k
du

k
du
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Fig.4 Generation of the neighborhood by crossover in the DE 

  New point ud
k
 generated by the crossover may be denoted by triangle in Fig.3, 

or may be vd
k
 itself, stochastically. Thus, the crossover in the DE generates the 

point of neighborhood around xd
k
 directly. It is also possible to consider that the 

crossover gives the perturbation of vd
k
, and this perturbation plays an important 

role in the global optimization.  

2.5 Descent Property of Swarm 

  Descent property is an important character of the population-based optimization 

techniques. In the GA, many particles flock around the highest fitness through the 

generation, and then the global minimum can be found. Thus, one of the reasons 

to find the global minimum is the descent property of particles. In the DE, the 

descent property is given by Eq.(5).  

2.6 Diversity and Concentration of Particles  

  In the population-based optimization techniques, it is very important to possess 

the diversity and concentration among particles. The diversity leads to the global 

search, while the concentration among the particles result in the local search for 

finding a optimum with high accuracy. In the DE, basis vector xr1
k
 is selected at 

random, and this selection affects on the local/global search. If xr1
k
 is close to xd

k
, 

ud
k
 produced by the mutation and the crossover may be close to xd

k
, as shown in 

left hand side of Fig.5. ud
k
 is the trial point, as shown in Eq.(5). Considering the 

descent property of particles, the local search will be enhanced in this case. 

Otherwise, ud
k
 is generated faraway from xd

k
, as shown in right hand side of Fig.5. 

In this case, global search will be performed, and this implies that the search will 

proceed maintaining the diversity.  

x2

x1

1
k

x

2
k

x

3
k

x

k
dx

2 3
k kx x

2 3( )k kF x xk
dv

k
du

k
du

x1

x2

1
k
rx

2
k
rx

3
k
rx

k
dx

2 3
k k
r rx x

2 3( )k k
r rF x x

k
dv

k
du

k
du
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Fig.5 Local/Global search by the selection of basis vector x1
k
 

3. DIFFERENTIAL EVOLUTION AS THE GLOBAL 

OPTIMIZATION TECHNIQUE 

  In this section, the DE as the global optimization technique is considered. The 

DE is compared with two global optimization techniques. One is the Particle 

Swarm Optimization (PSO) which is one of the population-based optimization 

techniques, and another is the Generalized Random Tunneling Algorithm (GRTA) 

which is the gradient-based global optimization technique. In comparison with 

these two global optimization techniques, the DE is understood as the global 

optimization technique. Therefore, the DE possesses the desirable property of 

global optimization method. The aim of this section is to investigate the similarity 

between these global optimization methods, so that the algorithms of the PSO and 

the GRTA are not described in detail here. Please refer to Refs.[14] and [24]. 

3.1 DE and PSO  

The PSO, which mimics the social behavior, is one of the global optimizer for 

continuous design variables. In the PSO, each particle has the velocity and the 

position. When the position and velocity of particle d at k-th iteration are 

represented by xd
k
 and vd

k
, respectively, the position and velocity of particle d at 

k+1 iteration are calculated by the following equations. 

1 1k k k
d d d t   x x v      (13) 

2 21 1 1
( )( )

k kk k
g dk k d d

d d

c rc r
w

t t




  
 

p xp x
v v   (14) 

where t  represents the time-step and is set as unit. The coefficient w in (14) is 

called as the inertia term. The parameters r1 and r2 denote random numbers 

between [0,1]. The weighting coefficients c1 and c2 are recommended to keep the 

following relationship. 

1 2 4c c       (15) 

In general, c1=c2=2 are often used. pd
k
 in Eq.(14) is called the p-best, which 

represents the best position of particle d till k-th iteration. pg
k
 is called as the g-
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best, which denotes the best position in the swarm till k-th iteration. The g-best in 

the swarm is selected among the p-best. Thus, if the p-best is updated, it is 

examined whether the objective function at the g-best is improved or not. If the 

objective function is improved, then, the g-best is replaced. The descent property 

of the PSO has been well described in Ref.[14], and we consider the similarity 

between the PSO and the DE.  

  Combining Eqs.(13) and (14), the following equation is obtained. 

1 ( )k k k k
d d d dw     x x v q x      (16) 

where   and q are given as follows: 

1 1 2 2c r c r         (17) 

1 1 2 2

1 1 2 2

k k
d gc r c r

c r c r






p p
q      (18) 

From above equations, it is clear that the PSO has the search direction vector, q-

xd
k
, and the stochastic step-size, . In addition, it is possible to consider that 

xd
k
+wvd

k
 in Eq.(16) represents the basis vector. The similarities between the DE 

and the PSO can be summarized as follows:  

(1) Both methods have the search direction vector, implicitly. In the DE, the 

implicit search direction vector is given by xr2
k
-xr3

k
. On the other hand, q-xd

k
, 

represents the implicit search direction vector in the PSO. 

(2) Both methods have the basis vector. In the DE, xr1
k
 is the basis vector, which 

is selected at random. On the other hand, in the PSO, xd
k
+wvd

k
 in Eq.(16) 

denotes the basis vector, where it is clear from Eq. (14) that vd
k
 includes the 

randomness.  

(3) Bothe methods include the descent property in the algorithm. This is one of 

the common and important characteristics of population-based optimization 

techniques.  

3.2 DE and GRTA  

  The GRTA developed by the authors is one of the simple and effective global 

optimizers, which belongs to the gradient-based optimization techniques. The 

GRTA consists of three parts, which are called the minimization phase, the 

tunneling phase, and the constraint phase: The objective of minimization phase is 

to find the local minimum by the mathematical programming. Tunneling phase 

tries to find the new search point, at which the objective function is improved. 
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Finally, the feasibility of new search point is examined in the constraint phase. If 

the new search point is feasible, this new search point is replaced the new start 

point. Through these parts, the global minimum can be found for the constrained 

optimization problem. The terminal criterion is determined by the minimum step-

size Tmin. The users can determine only three parameters: (1) Initial step-size,T. 

(2) Minimum step-size Tmin to terminate the algorithm, (3) Maximum search 

iteration itmax. The algorithm of GRTA is shown in Fig. 6.  

Setting of initial point

Transformation of random number [0,1] into [-π/2,π/2], and put pi

 tani ix T p 

minT T

Global minimum

Yes

Yes

No

No

Calculation of local minimum  xL by mathematical programming

1it it 
maxit it

Yes

Setting of initial step-size T. 0it  0out 

  0jg x

minT T

Yes

Yes

1out out 

No

1

T
T

out




No
No

( 1)T T k 

1k k 

0k 

0, 0, 0k it out  

L  x x x

( ) ( )Lf fx x

 

Fig.6 The algorithm of GRTA 

 

In the GRTA, local minimum ,1 ,2 ,( , , , )T
L L L L nx x xx  can be found by the 

mathematical programming. Then, perturbation δx  at xL is provided, and new 

search point is generated as follow: 

, tan( )i L i ix x T p   1,2, ,i n    (19) 

where xi represents the i-th design variable of new search point, T is the step-size, 

and pi denotes the random number between 2  and 2  that are generated 

to the i -th design variable. The objective function at new search point by Eq.( 19) 

is compared with the one at xL. If the objective function at new search point is 
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improved, the feasibility is examined. If the new search point is feasible, this point 

is replaced the new start point.  

  Let us consider the similarity between the DE and the GRTA. In the GRTA, the 

improvement of the objective function is always examined when the new search 

point is generated. Therefore, it is clear that both methods have the descent 

property. The basis vector in the GRTA is the local minimum xL, the search 

direction vector is given by tan(pi), and T is the step-size from basis vector. It is 

clear from Eq.( 19) that the randomness provides the perturbation of xL. 

Compared Eq.( 8) with Eq.( 19), the methodology to generate the new search 

point is very similar. In addition, it is noteworthy that the search direction vector 

in both methods includes the randomness.  

3.3 Similarities of three global optimization methods  

  Table 1 shows the summary of three global optimization methods. Table 1 is 

summarized the following point of view: (1) Generation of the new search point, 

(2) Search direction vector, (3) Step-size, and (4) Basis vector.  

 

Table 1 Comparison of three global optimization techniques 

GRTA PSO DE

1 1 2 2

1 1 2 2

k k
d gc r c r

c r c r






p p
q

k
dq x

k k
d dwx v 1

k
rx

2 3
k k
r rx x tan ip

T

Lx

Generation of the 

new search point

Search direction 

vector

Step-size

Basis vector

ix 

, tan( )L i ix T p

, 1, 2, 3,( )k k k k

d i r i i r i r iv x F x x  

+

Mutation

1 ( )k k k k

d d d dw     x x v q x

1 1 2 2c r c r  

1 1 2 2c r c r ( (0,1) 0.5)F d rand 

 

  As described in introduction, we consider that there are two important factors 

for global optimization techniques. One is to include the search direction vector, 

and the other is to include the randomness. In the DE, the search direction vector 

is represented by the difference vector between xr2
k
 and xr3

k
. In the selection of 

three particles, the randomness is employed. New point ud
k
 is generated by the 

crossover. In order to generate ud
k
, the randomness is also employed. The 

randomness in the crossover is closely related to the neighborhood, as described 

in section 2.4. Therefore, the randomness provides the perturbation of ud
k
.  
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Finally, it is clear from Eq. (5) that the objective at ud
k
 is examined. In addition, 

Eq.(5) guarantees the descent property. The PSO has the search direction vector, 

implicitly. The randomness is employed in the search direction vector. In addition, 

the stochastic step-size is also included into the update scheme. The neighborhood 

of PSO is clarified in Ref.[14]. The descent property is also guaranteed by the g-

best. Finally, let us consider the GRTA. In the GRTA, the randomness is 

employed for generating new search point. The GRTA utilized the mathematical 

programming in the minimization phase. Therefore, the search direction vector is 

used for local search.  

  As described above, it is possible to consider that these three methods have 

some common characteristics. These common characteristics may be one of the 

reasons why the DE can find a global minimum.  

4. NUMERICAL EXAMPLES 

Through numerical examples, the search ability of the DE is examined in this 

section. In the DE, the mutation ratio F and the crossover ratio Cr are determined 

in advance. Considered the similarity of both the DE and the GRTA, Eqs.(8) and 

(9) are used. The following values are used in this paper. 

0.8F        (20) 

0.0001d        (21) 

In addition, crossover ratio Cr is set as 0.5. If different CPUs are employed, the 

computational time will be different. We consider that the efficiency of the 

algorithm should be measured by the function calls instead of the computational 

time. Therefore, the comparison with the function calls is a fair method for 

evaluating the efficiency. 

4.1 Numerical Example for Unconstrained Optimization Problems 

  Typical numerical example shown in Table 2 is considered here. 

 

Table 2 Benchmark problems for unconstrained optimization problems 
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No. Name
Number of

design variables
Objective Side constraints

Objective at global

minimum

1 2
n

 minima 10

2 Griewank 10

3 Ackley 10

4 Rastrigin 6

5 Michalewics 5

6 Branin 2

7
Six-Hump Camel-

Back
2

8 Shubert 2

9 Bohachevsky 2

10 Easom 2

11 Goldstein & Price 2

 4 2

1

1
( ) 16 5 min

2

n

i i i

i

f x x x


   x

2

1

1
( ) 22.71828 20exp 0.2

n

i

i

f x
n 

 
   

  
x

1

1
exp cos(2 ) min

n

i

i

x
n




 
  

 


2

1

( ) 10cos(2 ) 10 min
n

i i

i

f x x


     x

20
2

1

( ) sin( ) sin( ) min
n

i
i

i

ix
f x



  
    

  
x

5 5  x

10 10  x

30 30  x

5.12 5.12  x

10 10  x

3 3  x

   
5 5

1 2

1 1

( ) cos 1 cos 1 min
i i

f i i x i i i x i
 

            x

2 2 4 4 2
1 1 1 1 2 2 2

1
( ) 4 2.1 4 4 min

3
f x x x x x x x

 
       

 
x

10 10  x

2
2

2 1 1 12

5.1 5 1
( ) 6 10 1 cos 10 min

84
f x x x x

 

   
         
   

x

0  x

( ) 391.661Gf  x

( ) 0Gf x

( ) 0Gf x

( ) 0Gf x

( ) 0.397887Gf x

( ) 1.031628Gf  x

( ) 186.730909Gf  x

( ) 4.687658Gf  x

2

1 1

1
( ) 1 cos( ) min

4000

nn
i

i

i i

x
f x

i 

    x

2 2

1 2 1 2( ) 2 0.3cos(3 ) 0.4cos(4 ) 0.7 minf x x x x      x 50 50  x ( ) 0Gf x

2 2

1 2 1 2( ) cos( )cos( )exp[ ( ) ( ) ] minf x x x x       x 100 100  x ( ) 1.0Gf  x

2 2 2
1 2 1 1 2 1 2 2( ) [1 ( 1) (19 14 3 14 6 3 )]f x x x x x x x x         x

2 2 2
1 2 1 1 2 1 2 2[30 (2 3 ) (18 32 12 48 36 27 )] minx x x x x x x x        

2 2  x ( ) 3.000Gf x

 

The swarm population size is set to 30, and the maximum number of search 

iterations is set to 500 (From No.1 to No.5). The swarm population size is set to 

20, and the maximum number of search iterations is set to 200 (From No.6 to 

No.12). All particles are distributed randomly between xi
L
 and xi

U
 at k=1. In the 

PSO, the inertia term w decreases linearly as follow 
[26]

: 

max max min max( )w w w w k k        (22) 

where wmax=0.9 and wmin=0.4 are used. Twenty trials have been performed in 

order to examine the stability and the accuracy of solution. In addition, the 

function calls are also one of the important aspects in order to examine the 

efficiency. In the population-based optimization techniques, the function calls can 

be simply calculated by multiplying the total number of iterations by the 

population size when no convergence criterion is assigned. In this paper, the 

following convergence criterion to evaluate the function calls is used: (a) the 

objective function is not improved through 20 iterations. The numerical result is 

shown in Table 3. These numerical test problems presented in this sub-section are 

solved by Mathematica (version 6.0.3). Four global optimization techniques 
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(Nelder-Mead Method, Simulated Annealing, Random Search, and Differential 

Evolution) are included into the Mathematica, and the readers can use these global 

optimization techniques by NMinimize command. The PSO and the DE is 

programmed by the authors (Fortran 77 code is used to construct the programming 

code of the PSO and the DE), so that the DE included into Mathematica is not 

used. In addition, the function calls in Mathematica are not clear. As the result, it 

is impossible to compare the efficiency exactly.  

Twenty trials were performed with different random seed, and the results are 

listed in Table 3.  

Table 3 Results of benchmark problems in Table 3 

Name Methods
Objective at global

minimum
Best objective Worst objective Maen value of objective

Standard deviation of

objective

Average

function calls

Nelder-Mead Method -391.662000 -306.841000 -347.231886 20.034286 N/A

Simulated Annealing -377.525000 -335.115000 -357.733286 12.920243 N/A

Random Search -391.662000 -349.251000 -374.697600 10.733611 N/A

Particle Swarm Optimization -391.657830 -390.988150 -391.510196 0.200000 13014

Differential Evolution -391.662000 -391.662000 -391.662000 1.7302E-13 9729

Nelder-Mead Method 0.000000 0.243823 0.040340 0.062167 N/A

Simulated Annealing 0.000000 0.549409 0.084307 0.143626 N/A

Random Search 0.000000 1.56948E-32 4.51258E-34 2.65247E-33 N/A

Particle Swarm Optimization 8.930000E-04 7.300000E-02 2.910000E-02 2.52000E-02 11997

Differential Evolution 0.000000 4.95733E-19 4.57183E-20 1.13823E-19 11997

Nelder-Mead Method -1.82846E-06 13.010400 5.456291 2.969282 N/A

Simulated Annealing 11.699000 18.831700 16.983683 1.662878 N/A

Random Search 11.109400 17.867300 15.813129 1.674436 N/A

Particle Swarm Optimization 0.057838 0.098645 0.083662 0.012248 14919

Differential Evolution -1.82846E-06 1.82846E-06 -1.61949E-06 8.61220E-07 13527

Nelder-Mead Method 2.984880 39.798200 13.247134 9.063731 N/A

Simulated Annealing 2.984880 33.828500 12.337470 6.484971 N/A

Random Search 2.984880 14.924400 9.125183 3.241914 N/A

Particle Swarm Optimization 1.336274 3.167823 2.347625 0.566430 14856

Differential Evolution 7.3326E-26 4.974800 2.558468 1.305897 6591

Nelder-Mead Method -4.687660 -2.622520 -3.963637 0.564961 N/A

Simulated Annealing -4.687660 -2.693030 -3.962234 0.593549 N/A

Random Search -4.687660 -3.694590 -4.347061 0.286999 N/A

Particle Swarm Optimization -4.687521 -4.645192 -4.669190 0.020470 14547

Differential Evolution -4.687658 -4.687658 -4.687658 0 7578

Nelder-Mead Method 0.397887 2.791180 1.115875 1.156070 N/A

Simulated Annealing 0.397887 0.397887 0.397887 5.85139E-17 N/A

Random Search 0.397887 0.397887 0.397887 5.85139E-17 N/A

Particle Swarm Optimization 0.397887 0.397937 0.397892 1.55298E-05 3462

Differential Evolution 0.397887 0.397887 0.397887 0 1436

Nelder-Mead Method -1.031630 -0.215464 -0.940945 0.272055333 N/A

Simulated Annealing -1.031628 -1.031628 -1.031628 0 N/A

Random Search -1.031628 -1.031628 -1.031628 0 N/A

Particle Swarm Optimization -1.031628 -1.031621 -1.031627 2.62217E-06 3792

Differential Evolution -1.031628 -1.031628 -1.031628 2.34056E-16 1394

Nelder-Mead Method -186.731000 -123.577000 -167.784700 30.506211 N/A

Simulated Annealing -186.731000 -79.410900 -175.998990 33.937595 N/A

Random Search -186.731000 -52.553400 -154.367040 46.541084 N/A

Particle Swarm Optimization -186.730875 -186.268070 -186.594800 0.142103 3636

Differential Evolution -186.730909 -186.730697 -186.730882 6.65172E-05 2746

Nelder-Mead Method 0.000000 0.412927 0.041293 0.130579 N/A

Simulated Annealing 0.000000 0.469882 0.129574 0.209208 N/A

Random Search 0.000000 0.000000 0.000000 1.29927E-32 N/A

Particle Swarm Optimization 0.000000 0.000099 0.000023 3.17084E-05 3786

Differential Evolution 0.000000 0.000000 0.000000 0 1304

Nelder-Mead Method -1.000000 0.000000 -0.100000 0.316228 N/A

Simulated Annealing -1.000000 0.000000 -0.100000 0.316228 N/A

Random Search 0.000000 0.000000 0.000000 0 N/A

Particle Swarm Optimization -1.000000 -0.999042 -0.999832 3.00163E-04 3470

Differential Evolution -1.000000 -1.000000 -1.000000 0 1786

Nelder-Mead Method 3.000000 84.000000 11.100000 25.614449 N/A

Simulated Annealing 3.000000 3.000000 3.000000 0 N/A

Random Search 3.000000 3.000000 3.000000 0 N/A

Particle Swarm Optimization 3.000000 3.000035 3.000006 1.08335E-05 3444

Differential Evolution 3.000000 3.000000 3.000000 0 1150

Easom

Goldstein & Price

Branin

Six-Hump Camel-Back

Shubert

Bohachevsky

2n minima

Griewank

Ackley

Rastrigin

Michalewics

( ) 391.661Gf  x

( ) 0Gf x

( ) 0Gf x

( ) 0Gf x

( ) 4.687658Gf  x

( ) 0.397887Gf x

( ) 1.031628Gf  x

( ) 186.730909Gf  x

( ) 0Gf x

( ) 1.0Gf  x

( ) 3.000Gf x

 

 

It is clear from Table 3 that the DE is superior to the PSO through all 

benchmark problems. In particular, the DE can find the global minimum of all 
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benchmark problems. The standard deviation of objective is one of the important 

factors for evaluating the robustness of algorithm. Therefore, smaller standard 

deviation of objective implies the robustness of the algorithm. It is clear from 

Table 3 that the DE is more robust algorithm than other four optimization 

techniques under the parameter settings employed in this paper. The efficiency is 

also compared between the PSO and the DE. Through all benchmark problems, 

the DE could achieve smaller function calls the PSO. As mentioned above, 

smaller function calls implies the efficient search. It is clear from Table 3 that the 

DE is superior to the PSO under the parameter settings employed in this paper. 

The convergence of the objective function is examined on the Griewank function 

and the Ackley function. In particular, the relation between the standard deviation 

of objective function and the search iteration is examined for investigating the 

search performance of the DE. Fig.7 and Fig.8 show the convergence of the the 

Griewank function and the Ackley function, respectively. 
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Fig.7 Convergence of the Griewank function 
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Fig.8 Convergence of the Ackley function 
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From the Figs.7 and 8, the global search is performed till the medium search 

iteration. Random selection of three particles may leads to the global search. At 

the end of iteration, the descent property is very clear. This implies that all 

particles flock around the global minimum.  

4.2 Optimum Design of Tension/Compression Spring 

One of the most famous test problem proposed by Arora 
[27]

 was considered. 

Many researchers have tested as one of the benchmark problems in the structural 

optimization
 [27,28, 29]

. The design variables are (1) the wire diameter d (=x1), (2) 

the mean coil diameter D (=x2) and (3) the number of active coils N (=x3). The 

problem can be stated as follows: 

2

3 1 2( ) (2 ) minf x x x  x     (23) 

3

2 3
1 4

1

( ) 1 0
71785

x x
g

x
  x     (24) 

2

2 1 2
2 3 4 2

2 1 1 1

4 1
( ) 1 0

12566( ) 5108

x x x
g

x x x x


   


x   (25) 

1
3 2

2 3

140.45
( ) 1 0

x
g

x x
  x     (26) 

1 2
4 ( ) 1 0

1.5

x x
g


  x     (27) 

10.05 2.00x       (28) 

20.25 1.30x       (29) 

32.00 15.0x       (30) 

The penalty function approach to handle the behavior constraints, which 

are represented from Eqs.(24) to (27), is used. In this paper, the following penalty 

function is adopted, and the augmented objective function to be minimized is 

constructed. 

( ) ( ) minF f r penalty   x x     (31) 
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(1 ( ) )qr f  x       (32) 

1

exp(1 ( )) ( ) 0

0 ( ) 0

j j

j

j

g g

penalty

g



  


 
 

 x x

x

   (33) 

q in Eq.(32) is a real number greater than 1. In this paper, q is set as 2. The 

penalty parameter r in Eq.(32) is automatically determined by using the above 

penalty function approach. 

The population size is set to 20, and the number of maximum search iterations 

is set to 500. Eleven trials were performed for comparing with previous 

researches. The result by the DE is listed in the last column in Table 4, and it was 

found that the best result could be obtained by the DE.  

Table 4 Comparison of results of minimum weight design of 

tension/compression spring 

Design Variables

Arora Coello Ray Hu DE

x 1 (d ) 0.053396 0.05148 0.050417 0.051466 0.0516868

x 2 (D ) 0.39918 0.351661 0.321532 0.351384 0.3566636

x 3 (N ) 9.1854 11.632201 13.979915 11.608659 11.2878946

g 1(x ) 0.000019 -0.00208 -0.001926 -0.003336 -8.22116E-10

g 2(x ) -0.000018 -0.00011 -0.012944 -0.00011 -1.1952E-11

g 3(x ) -4.123832 -4.026318 -3.89943 -4.026318 -4.0555802

g 4(x ) -0.698283 -0.731239 -0.752034 -0.731324 -0.7277664

f (x ) 0.01273 0.012705 0.01306 0.012667 0.0126612

Function Call N/A 900000 1291 N/A 5696

Averege of f (x ) N/A 0.012769 0.013436 0.012719 0.0126612

Worst of f (x ) N/A 0.012822 0.01358 N/A 0.0126612

Standard

Deviation of f (x )
N/A 3.9390E-05 N/A 6.4660E-05 2.4087E-09

Best solutions found

 

4.3 Topology Optimization of Truss Structure in two dimensions 

  Let us consider the topology optimization problem of truss structure in two 

dimensions. This problem is taken from Ref.[24]. In general, topology 

optimization problem is multi-modal problem. The design variables are the cross-

section area of each member. The objective function is to minimize the total 

volume of structure, and the nodes displacements are constrained. The structural 

optimization problem is generally described as follows: 

 
1

min
n

i i

i

f A L


 A     (34) 

    1 0j k ag u u  A A  1,2, ,j m   (35) 
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,min ,maxi i iA A A   1,2, ,i n    (36) 

where 1 2( , , , )T

nA A AA  represents the design variables, which is the cross-

section area. ( )f A  is the total volume of truss structure to be minimized, ( )jg A  

denotes the nodal displacements , which are the behavior constraints, and ua is the 

allowable displacement.  

  The truss structure in two dimensions considered in this sub-section is show in 

Fig.9. This structure consists of 9-node, and 28-elements. As the result, the 

number of design variables is 28. The Node 1 and 3 are completely fixed, and two 

loads are applied to the Node 4 and 7. The magnitude of two loads is P=1000[N]. 

The distance a between nodes is set to 100[mm], and the allowable displacement 

ua is set to 1.50x10
-2

[mm]. Two nodes displacements, which are the Node 4 and 7, 

are constrained. Young’s modulus E in this structure is 210[GPa], and Ai,min and 

Ai,max are set to 1[mm
2
] and 1000[mm

2
], respectively.  

 31.00 10P N   31.00 10P N 

100[ ]a mm

100[ ]a mm100[ ]a mm

1

2
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4

5

6

7

8

9

x

y

 

Fig.9 Truss structure in two dimensions 

  This problem has been solved by many methods, and Table 5 shows the results. 

FC in table 5 represents the function calls. Please refer Ref.[24] on detailed some 

parameter settings. 

 

Table 5 Comparison of optimum topology by some global optimization method 
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Method Optimum topology Objective Function call

GRTA 2.35E+05 1,825

PSO 2.37E+05 200,000

Simple GA 2.56E+05 1,000,000

Distributed GA 2.40E+05 1,000,000

SA 2.60E+05 142,801
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525

107

99

253265

354
364

87
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260

103

362

102
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87

360

254

204

220

51
344
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557
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122

169

157

130

48 20
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107345

107

561

75

271

64

232
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127

172
225

115

474

75

247

109

157

108

84

55

 

  The population size is set to 50, and the number of maximum search iteration is 

set to 4000, in order to solve this problem by the DE. The result by the DE is 

shown in Fig.10. The design variables attained at the lower bound are omitted in 
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Fig.10, and the objective function at this result is 2.35x10
5
[mm

3
]. From Fig.10, it 

is clear that the optimum topology by the DE is almost same one by the GRTA. 

257 251
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Fig.10 Optimum topology by the DE 

  The relationship between the standard deviation of objective function and the 

search iteration is shown in Fig.11.  
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Fig.11 Convergence in the case of topology optimization problem 

 

It is clear from Fig.11 that the result by the PSO may be local minimum, while the 

DE can find the global minimum as the search proceeds. In this problem, the 

search ability of the DE is excellent in comparison with the PSO.  

5. CONCLUSIONS 

  As mentioned in introduction, we consider that two important factors are 

included into the global optimization algorithms. One is the search direction 

vector, and the other is the randomness. The search direction vector can clarify the 

search direction, and the randomness provides the perturbation. In addition, in the 
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case of the population-based optimization techniques, the randomness can be 

expected to provide the diversity among the particles. From these points of view, 

the characteristics of the DE as the global optimization method were examined. It 

is well known that the difference vector provides the search direction vector. 

However, the roles of the search direction vector are not well explained. We 

clarified the roles of the search direction vector. In addition, it was clear that the 

randomness commonly provided the perturbation. From investigations in this 

paper, the common characteristics among three methods were clarified. The DE 

was applied to eleven benchmark problems, and was also applied to two structural 

optimization problems. The function call was employed for measuring the 

efficiency. The standard deviation of objective was also employed for measuring 

robustness of the algorithm. The DE can find the global minimum of the 

benchmark problems with smaller function calls, compared with the PSO. It is 

also clear that the DE is more robust algorithm than other optimization techniques 

under the parameter settings employed in this paper. In addition, it was shown 

from numerical examples that the DE is a global optimization method that the 

descent property and the global search are well-balanced. In particular, the 

topology optimization of the truss structure is one of the most difficult problems 

for finding the global minimum. The DE could find the global minimum with the 

same function call of the PSO. However, it is also noted that the numerical results 

do not always imply that the DE is the best global optimizer. Therefore, the DE 

could obtain better results under the limited numerical examples.  
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