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Abstract—The finger movement has the information about
force, speed to bend and the combination of fingers. If these
information is estimated, the many degrees of freedom interface
can apply it. In this study, we aimed for the many degrees of
freedom finger movement classification. We tried each fingers
classification and the estimate of the flexural finger force using
surface-electromyogram signals. In the technique, amount of
characteristic are a cepstral coefficient of EMG signals and
an integral calculus EMG signals. A support vector machine
performs learning and classtification. Therefore, I propose
the classification technique and inspected a classification each
finger and the combination of fingers by offline data handling
using surface EMG signals.

Keywords-Surface-Electromyogram Signals(EMG); Finger
Motion Classification; Support Vector Machines(SVM);

I. INTRODUCTION

Entry tools of wearable computer expects to use surface-
electromyogram signals (EMG) in the ubiquitous computer
society. As a result of development of Internet and the com-
puter technology, the computer becomes indispensable for
our life. Therefore, recording and taking desired information
anytime or anywhere, instantly is demanded. Entry tools
that require the use of hands, such as the mouse and the
keyboard, are dangerous when we use the computer while
walking. Using EMG, we get the hand motion information
by placing the hand over the electrode. The hand motion
information from EMG results in the application of a new
human interface. We propose the wearable computer entry
device using EMG.

Surface-electromyogram signals are signals causing muscle
contraction on muscle fiber by movement command oc-
curred in a brain. The animals such as human beings hold a
great deal of muscle fiber and carry out various activities
by contraction each muscle fiber in various pattern. The
human movement has the information about force, speed,
the combination of fingers. If these information is estimated
from surface-electromyogram signals, the many degrees of

application can apply it. Application using electromyogram
signals was centered on the medical application such as
artificial hand. But the intuitive interface for everyday use
become an active area of research because it is not necessary
to learn how to use so that a controller uses own body. The
advantage of the interface using surface-electromyogram
is 1) allowing estimate of muscular tension 2) available
information if muscle consist 3) undelayed input signals 4)
measuring easily.

The hand finger is used for job the most and has compli-
cated movement in movement of the person. Extracting the
movement, the research which applies to human interface
and finds out traditional technical skill etc is advanced.
Until recently, extraction of movement is done with dynamic
picture image processing and motion capture and the data
glove. The delay is caused in the entry device because
they measure data after the movement. In addition, dynamic
picture image processing and motion capture are limited the
measurement place because the measurement equipment is
large. The data glove becomes obstacle of operation because
the measurement equipment is putted the hand using for
the work. In this research, we focus attention on surface-
electromyogram signals which can solve those problems.
Estimation of the hand finger operation is expected many
degree of freedom to apply myoelectroric hand and entry to
the computer and gesture recognition.

Purpose of this research is estimate of the finger move-
ment many degree of freedom from surface-electromyogram
signals. It is necessary to establish the hardware of elec-
tromyographic measure and the software which removes
the control signal from electromyogram signals. The latter
must estimate the hand finger movement. Pattern recognition
was used mainly to achieve it. The reason uses pattern
recognition is described below.



O can classify the numbers of more movements than the
electrodes

U can decrease the burden of training by adapting to an
individual variation of electromyogram signal

O can estimate steady the movements from electromyogram
signal fluctuate each the movement in an individual

Various pattern recognition techniques were used for the
motion estimate. There are researches which used primary
pattern recognition technique such as linear discriminant
analysis[1] and learned nonlinear map between electromyo-
gram pattern and the motion with neural net[2]. On the
other hands, there is support vector machine(SVM) which
is relatively new pattern recognition technique was proposed
to the nineties. The features of SVM is described below.

O guarantee general optimal solution

Oprovide better classification performance to unseen pattern
O easy to search of hyper parameter

0 have a low calculation amount about classification

O have the algorithm study efficiently

SVM becomes obvious availability in bioinformatics[3] and
image processing[4], text classification[5]. High classifica-
tion rate is obtained in case of the motion classification
uses electromyogram signals. Yoshikawa’s study[6] try real
time hand motion classification with SVM and compari-
son of classification efficiency of other pattern recognition
technique. Motions of classification are six motion to wrist
extension, wrist flexion, grasp, open, pronation of forearm,
supinaton of forearm. But, we propose SVM availability to
hand finger motion of many degrees of freedom is not clear
because the motion in that study are small in number and

unnatural. In this paper we present many degree of freedom
hand finger motion classification technique using surface-
electromyogram and do classification experimentation five
finger and combination pattern of all fingers.

II. SYSTEM DESCRIPTION

It is difficult to classify unprocessed EMG data because
EMG is complex and irregular waveform. It is general to
classify processed signals. Whole classification technique
is shown in Figure 1. First, Surface-electromyogram(later
EMG) is measured from the forearm, and Integral EMG
(later IEMG) form on the basis of integral calculus of EMG.
Next, feature vector make from EMG and IEMG. Feature
vector constitutes from the cepstrum coefficient of EMG and
IEMG. The cepstrum coefficient shows the envelope form
of the spectrum of EMG. IEMG which show the amplitude
of EMG. Discriminant function is calculated from the study
data which gives motion class with SVM. Feature vector is
classified on the basis of discriminant function, and motion
class is given.

A. Feature extraction

Feature vector makes the feature quantity in frame. The
frame is shifted with frame length 64[ms](128 samples)
during frame period 16 [ms](32 samples). Because, the
motion classification of 60[Hz] period is actualized while
guaranteeing the number of samples which are necessary
for feature extraction. EMG is done window processing by
hamming window.

Feature vector is two feature quantity which are extracted
Average IEMG feature and cepstrum coefficient feature in
frame. Two feature quantities is describe below.
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1) AIEMG:
1 N—-1
AIEMG)(p) = 7;) TEMG,(n) (1)

AIEMG feature is IEMG time average in frame, and rep-
resent ENG amplitude value. IEMG;(n) is IEMG sample
of n point in [ frame. N is number of sample in one frame.
L is number of electrodes.

2) CC: The frequency component of the signal is the
important component in motion classification using EMG.
Action potential of the motion unit which the minimum unit
of EMG is the electric potential like only barely several
milli-seconds the pulse is not continued. Because surface
EMG is measured with surface electrodes is the signal adds
countlessly, surface EMG becomes the electric potential like
the noise which occurs continually. Hence, it is the signal
add variety wavelength and frequency and phase AC signal
while time change. Small frequency component which is
computed with simple fourier transform is almost unrelated
information. Therefore, we use cepstrum coefficient can
outline it.

Cepstrum coefficient is obtained by cepstrum analysis for
EMG in frame. EMG)(n) is EMG sample of n point in [
frame. X; k(n) given with fourier transform becomes

N-1
Xf(p) =Y EMG(n)e 7?mkn/N )
n=0

Cepstrum coefficient follows that

N-1
1 i cn
CcCln) =+ > log| X[ (p)|e?*n/N ()
n=0

Cepstrum analysis can separate envelope shape and mi-
croscopic structure of the spectrum. Low dimensional coef-
ficient denote envelope shape and High dimensional coeffi-
cient denote microscopic structure. In this method, suppose
that CC feature is envelope shape.

B. SVM
O
D
f(z) = sign (Z Aiyi K (@i, @) + b) “
i=1
K (i, x) = exp(—lla; — z|?) Q)
Support vector machine is the method make the pattern
discriminant function of two class by separating the space
with hyperplane. Let y; be the class label for training data
x;. Let \; be Lagrange’s undetermined multipliers. Let b be

bias term. Let K (x;, x) be the kernel function and use Radial
basis function kernel. Using a kernel function, nonlinear

curve become linearly separable to mapping to hyperplane.

Furthermore, to give the discriminant function, we desire
A maximize convex quadratic program with large margin.
The nonzero desired )\; is called a support vector. Because
the discriminant function construct a few support vector, it
is evaluated a few amount of calculation.

III. MUSCULAR AND SKELETAL SYSTEM
A. hand skeleton

DiP distal phalanx

PIP middle phalanx carpal bone

HORO,

proximal phalanx

metacarpal bone

} finger bone

Figure 2. hand skeleton

The bone of the hand consists of 3 groups of carpal
bone, metacarpal bone and finger bone as pictured in the
figure 2. There are 14 tubuliform bones which support
5 fingers in one hand. Thumb has two bones and 2-5th
finger has each three bones. It is called proximal pha-
lanx, middle phalanx and distal phalanx from proximity,
the thumb don’t have middle phalanx. In this paper, each
joint of 2-5th finger is called MP(metacarpal-phalangeal
joint), IP(Proximal inter-phalangeal joint), DIP(distal inter-
phalangeal joint) from proximal. In the thumb it is called
MP(Metacarpal-phalangeal joint), IP(Interphalangeal joint)
from proximal.

B. muscle related finger motion

Proposition technique classify finger motion according
electromyogram input of a muscle which relates to finger
motion. The muscle is seen mainly in the forearm and the
hand. But, when application to interface and actual motion
is considered, the muscle in the hand disturbs those. The
classification is done with only the input of EMG from the
muscle of the forearm. Figure 3 show the muscle of the
forearm.

Forearm has multilayer structure that muscle overlap intri-
cately. Flexor digitorum superficialis muscle, flexor digi-
torum profundus muscle and flexor pollicis muscle is the
muscle directly control the finger motion. Flexor digitorum



(front)

Figure 3.

super ficialis muscular tendon stops 2-5th finger middle
phalanx. The muscle controls flexion of 2-5th finger PIP.
Flexor digitorum profundus musclar tendon stops 2-5th
finger distal phalanx. The tendon passes the respective wrist
bone trunk and reaches distal phalanx through between
the flexor digitorum superficialis musclar tendon split. The
muscle controls flexion of 2-5th finger DIP. Flexor pollicis
longus muscle stops distal phalanx of thumb and controls
floxion of IP.

Beginning and end of the muscle are not only bones but
also nearby fascia and tendon. These also control flexion of
the finger indirectly. It is called muscular connection, and
it is said that the tension due to the muscle contraction
of one side infect other muscle in the its case - namely,
the muscle can also control the finger motion indirectly.
Table 1 shows muscular connection to flecor digitorum
superficialis muscle, flexor digitorum profundus muscle and
flexor pollicis muscle.

Table I
MUSCULAR CONNECTION

flexor digitorum superficialis muscle pronator teres muscle
biceps brachii muscle

flexor carpi ulnaris muscle

flexor carpi radialis muscle

Palmaris longus muscle

flexor digitorum profundus muscle biceps brachii muscle
flexor carpi ulnaris muscle
extensor pollicis longus muscle
adductor pollicis longus

flexor pollicis longus muscle

flexor pollicis longus muscle

flexor digitorum profundus muscle

IV. EXPERIMENT AND EVALUATION

To substantiate availability proposed method, we per-
formed two types of finger motion classification experiments
using EMG. A subject is right-handed man in his twenties.

(back)

1: flexor digitorum superficialis muscle
2: flex pollicis longus muscle

3: pronator teres muscle

4: flexor carpi radialis muscle

5: flexor carpi ulnaris muscle

6: palmaris longus muscle

7:flexor digitorum profund muscle

8: extensor pollicis longus muscle

9: adductor pollicis longus

hand skeleton

A. experiment environment

EMG measured with easily-removable surface electrode.
To place the electrode a wide area on the forearm, we use
bipolar-lead electrocardiogram because single-lead electro-
cardiogram causes large noise. The electromyogram mea-
sured at electrode is increased by the amplifier. Measured
data is recorded by POWERLAB and taken a sample by
sampling frequency 2000[Hz], quantization bit rate 16[bit].

1) noise abatement regulation : There is a variety of
a noise in our living environment. The noise cause a
alternating current source and the electromagnetic wave
from mobile phone and PC. To reduce these noise in an
experiment, we use a shield room. But, we need to make
the experiment environment easily reduced noise everywhere
because a work in a shield room is not practical for everyday
use. Accordingly, we use the conductive cloth[7] that make
the environment like a shield room. Figure 4 show the
conductive cloth.

conductive cloth

Figure 4.

2) experiment system: The system character extraction
is written in the visual C++(Microsoft Corporation). The
training / classification algorithm of SVM is used SVM
library LIVSVM[8]. The program is executed by personal
computer(CPU : Core 2 Duo 2.4[Hz], OS : Windows Vista,
memory : 2[G byte]).



B. Experiment 1: classification each finger

We verify the classification precision of each finger on
this method. In one trial, the subject infect 30 times of 6
sets according thumb, index finger, center finger, ring finger,
little finger in 60 seconds. The subject push the desk with
each finger from state of neutral rank, pull out power and
reset to neutral rank and do the following operation. The
motion class is made from the pressure sensor. The motion
interval is predicted on the basis of the survey value which is
measured with the pressure sensor. Feature vector is given
identical motion class in the motion interval. The feature
vector is called the training data. Motion class is 6 types
of neutral, thumb, index, center, ring, little. Training data of
two trials is used SVM training. The neutral class is larger
than other class, and so the neutral class data reduce one-
tenth. Position of electrode is determined on the basis of the
anatomy knowledge explained in chapter 3. Figure 5 shows
position of electrode.

oo

00 pgo

Figure 5. electrodes

Table 2 show the result of classification. The correct
classification probability is 98 [I at neutral, 61 [ at center
finger, 80 O at other finger. But, the incorrect classification
probability to neutral is high and the incorrect classification
probability to other finger is low.

Table II
RESULT OF CLASSIFICATION EACH FINGER

estimate class

neutral index | center | ring | little

neutral 98.6 0.6 0.2 0.1 0.2 0.4

thumb 20.9 71.7 0.0 1.4 0.7 0.0

Actual index 11.7 0.1 83.7 3.6 0.0 0.4

class center 22.7 3.3 0.7 61.4 7.7 4.2

ring 8.7 0.4 0 5.6 81.9 3.5

little 15.7 0.0 0.0 5.5 5.7 | 73.1

C. Experiment 2: classification combination pattern of all
fingers

We verify the classification precision of combination
pattern of all fingers on the this method. The motion
class is made from the pressure sensor. Motion class is
32 types of the combnation. Considering classification class
increase, number of position of electrode increase 3ch over
experiment 1.

Table 3 shows result of classification. 1 denote thumb, 2
denote index finger, 3 denote center finger, 4 denote ring
finger, 5 denote little finger. 12 denote the combination of
thumb and index, 1234 denote the combination of thumb,
index, center, ring. Total classification probability is 57.3%.
The classification precision vary in whole. Beside, many
incorrect classification is the classification to motion involve
same finger for example combination of index and center to
index, center and ring.

Table III
RESULT OF CLASSIFICATION COMBINARION OF ALL FINGERS

sub 1 2 3 4

603 464 57.6 756

514

12 13 14 15

24 25 34 35 45

654 499 656 678

62.9

62 432 762 554 639

123 124 125 134

145 234 235 245 345

609 673 705 54 60.8 666 60.8 41 647 36
1234 1235 1245 1345 2345 12345 | total
719 30.1 575 465 476 | 573




V. DISCUSSION

From the result of experiment, this chapter show consid-
eration of effectiveness of proposition system.

A. Experiment 1: classification each finger

Classification ratio is high through the whole. The incor-
rect classification to neutral is many, but the incorrect clas-
sification to other motion is low. The incorrect classification
to neutral show there is many classification to the both ends
of motion section. Because, EMG wave shape provide the
value of the both ends is smaller than the value of center.
Beside, this is due to the short motion interval. When the
classification result of the both ends is neutral, the beginning
input to application delays. So, we must improve it.

B. Experiment 2: classification combination pattern of all
fingers

Many incorrect classification results are classification to
the combination involve same finger. Because, we presume
that saparable EMG pattern cannot be detected to be the
same muscle controlling each finger. The muscle in a
forearm is three laminar structure - shallow layer, middle
layer and deep layer. The muscle that controls the finger
motion places deep layer which is difficult to measure with
surface electrode. So that, we think that the finger motion
classification is difficult with only simple signal processing
and a pattern recognition. We expect the problem is soleved
due to the limit of the classification extent giving various
constraint. The various constraint is described as follows.

O the constraint of the application function

O the constraint of motion history, focusing on motional
continuity

Othe constraint of physiological information to range of joint
movement

VI. CONCLUSION AND FUTURE WORK

This paper presented two type of motion classification
experiment for many degrees of freedom finger motion
classification with support vector machine. The system has
character extractions are cepstrum coefficient and average
integral EMG, and do discriminative learning with SVM. In
each finger classification experiment, the incorrect classifi-
cation to neutral is many, but the incorrect classification to
other motion is low. Proposition technique precision can do
the each finger motion classification well. In all combination
patterns of fingers experiment, the incorrect classification to
the motion the same finger is included is many. Proposition
technique precision cannot do all combination patterns of

fingers classification well.

It is necessary to classify the finger motion in the ex-
pansion of EMG application. But, the experiment showed
because muscle of the forearm is complex in structure,
the complicate motion classification using EMG is difficult.
Future work should investigate application function using
EMG and motion history of finger motional continuity and
physiological information to range of joint movement. It
remains possible that these information limit the search
range. We will propose the technique and the application
which consider them.
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