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Abstract 1 

 2 

During the Asian summer monsoon period, total ozone over the Tibetan 3 

Plateau is much lower than that over the surrounding areas when compared at 4 

the same lat itudes. This phenomenon called the “ozone valley”  was invest igated 5 

cont inuously with the use of ozonesondes and Earth Probe/Total Ozone Mapping 6 

Spectrometer (EP/TOMS). These measurements reveal that although relat ively 7 

low ozone mixing rat ios extend from the troposphere to the lower stratosphere, 8 

those near the tropopause (between about 150 and 70 hPa) largely contribute to 9 

lower total ozone over the Tibetan Plateau. Temperatures near the tropopause 10 

appear to be correlated with the observed ozone changes. Meteorological 11 

analyses show that this phenomenon is accompanied by the upper level monsoon 12 

ant icyclone, which is characterized by deep convect ion over South Asia. These 13 

results suggest that lower ozone mixing rat ios and colder temperatures near the 14 

tropopause are primarily due to convect ion, which is linked to the Asian summer 15 

monsoon.16 



 3 

1. Introduction 1 

 2 

Total column ozone over mountainous areas is relat ively low as compared to 3 

non-mountainous areas at the same lat itudes. The Tibetan Plateau has an average 4 

elevat ion of >4000 meters and occupies an area of about 2.5 million square 5 

kilometers in South Asia. Hence one would expect low total ozone over the 6 

Tibetan Plateau to be associated with missing the integrated ozone columns from 7 

the mountain to non-mountain ground surfaces. However, it  is evident that the 8 

negat ive deviat ions from the zonal mean total ozone are much larger in summer 9 

than in winter, indicat ing summert ime decreases in total ozone over the Tibetan 10 

Plateau [Zhou and Luo, 1994; Zou, 1996]. This regional phenomenon found in 11 

summer is dubbed the “ozone valley”. The ozone valley is small in scale as 12 

compared to the Antarctic “ozone hole”, but major in radiat ive effect; because 13 

the ozone valley is formed in summert ime when the Tibetan Plateau and its 14 

residents are exposed to extra strong sunlight. 15 

The mechanisms responsible for the low total ozone have been discussed for 16 

decades. In part icular, the possibility of linkages between ozone and the Asian 17 

summer monsoon circulat ion is of interest. During summer, the elevated surface 18 

heat ing and rising air over the Tibetan Plateau lead to anticyclonic circulat ion 19 

and divergence in the upper troposphere and lower stratosphere [Yanai et al., 20 

1992]. The upper level monsoon ant icyclone (i.e., Tibetan ant icyclone) exhibits 21 

intraseasonal variability and travels to and fro between two preferred regions,  22 

namely the Tibetan Plateau and the Iranian Plateau [Zhang et al., 2002]. Recent 23 

satellite measurements and model studies have focused on the importance of the 24 

Tibetan ant icyclone and its coupling to deep convect ion that has the potential to 25 

transport ozone-poor air from the boundary layer into the upper troposphere and 26 

also lower stratosphere [Gettelman et al., 2004; Randel and Park, 2006; Park et 27 

al., 2007]. 28 



 4 

The height dependence of the ozone changes is important for understanding 1 

mechanisms responsible for the occurrence of the ozone valley over the Tibetan 2 

Plateau; however, few in-situ measurements have documented it . In this study, 3 

we present total ozone and ozonesonde measurements of the ozone valley over 4 

the Tibetan Plateau in the summer of 1999. We show that minima in total ozone 5 

are linked to the development of the Tibetan ant icyclone, and relat ively low 6 

ozone mixing ratios extend to the lowermost stratosphere as well as troposphere.  7 

These results raise the possibility that deep convect ion could primarily affect 8 

ozone mixing rat ios and hence temperatures near the tropopause. 9 

 10 

2. Data and Analyses 11 

 12 

Time series of total column ozone are obtained from the Earth Probe/Total 13 

Ozone Mapping Spectrometer (EP/TOMS) version 8 operated by the Nat ional 14 

Aeronaut ics Space Administrat ion/Goddard Space Flight Center (NASA/GSFC). 15 

The EP/TOMS dataset uses a horizontal resolut ion of 1° lat itude × 1.25° 16 

longitude. The unit for total ozone is Dobson Unit (DU; 1 DU is defined as 0.01 17 

mm thickness at 1°C and 1 atmospheric pressure). More informat ion is available 18 

at http://toms.gsfc.nasa.gov/eptoms/ep_v8.html. 19 

In addit ion, a detailed analysis of the vert ical structure of the ozone changes 20 

is performed by using balloon-borne measurements in the summer of 1999 at 21 

Lhasa (29.7°N, 91.1°E, 3650 meters above sea level), located in the southern 22 

part of the Tibetan Plateau. The ozone and temperature profiles were measured 23 

with an electrochemical concentrat ion cell (ECC) ozonesonde and radiosonde. 24 

Here we use the results for 18-25 August 1999 (no available data on 20 August  25 

1999). For the purpose of comparison with non-mountainous areas at similar 26 

lat itudes, we refer to the monthly mean ozone and temperature profiles derived 27 

from systemat ic balloon-borne measurements at Kagoshima (31.6°N, 130.5°E, 28 
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31 meters above sea level), located in the southwestern part of Japan. Note that 1 

Japanese KC96 ozonesondes are used for ozone measurements at Kagoshima. 2 

According to Deshler et al. [2008], the KC96 ozonesondes tend to underest imate 3 

ozone while the ECC ozonesondes overest imate. The precisions are about 5-15% 4 

at pressures >30 hPa. 5 

This study also uses horizontal wind fields retrieved from the Nat ional 6 

Centers for Environmental Predict ion/Nat ional Center for Atmospheric Research 7 

(NCEP/NCAR) daily reanalysis data [Kalnay et al., 1996], available with a 8 

horizontal resolut ion of 2.5° lat itude × 2.5° longitude and 17 pressure levels 9 

from 1000 to 10 hPa. The NCEP/NCAR reanalysis data is used to invest igate the 10 

development and mot ion of the ant icyclone in the upper troposphere and lower 11 

stratosphere. In addit ion, the Hybrid Single-Part icle Lagrangian Integrated 12 

Trajectory (HYSPLIT) model (http://www.arl.noaa.gov/ready/hysplit4.html) is 13 

used to quantify the backward trajectories for the observat ion period. 14 

 15 

3. Specification of Low Ozone Event 16 

 17 

Figures 1a and 1b illustrate the geographical distribut ions of total ozone 18 

averaged for 18-22 August and for 23-27 August 1999, respect ively. Figure 1a 19 

shows observable minima in total ozone over the Tibetan Plateau at 80°-100°E, 20 

indicat ing the occurrence of the ozone valley.  Horizontal wind fields at 100 hPa 21 

(near-tropopause) are also plotted in the figures. The meteorological analysis 22 

indicates that a synoptic-scale ant icyclone was init ially located over the Tibetan 23 

Plateau and coherent with minimum total ozone there. After that, the ant icyclone 24 

started to move to the westward and then developed over the Iranian Plateau at 25 

50°-70°E (Figure 1b). The changes in total ozone were linked to the movement  26 

of the ant icyclone. Following the movement, total ozone in the vicinity of the 27 

Tibetan Plateau showed an increase and that of the Iranian Plateau exhibited a 28 
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decrease. 1 

Figure 2 show the vert ical profiles of ozone mixing rat ios at Lhasa during 2 

18-25 August 1999, along with the monthly mean profiles of ozone mixing rat ios 3 

at Kagoshima. There are some differences in the details of the shapes of these 4 

profiles. The balloon flights on 18-22 August 1999 were conducted within the 5 

Tibetan ant icyclone. In these cases, there were litt le differences in tropospheric 6 

ozone mixing ratios between Lhasa and Kagoshima (note that Kagoshima is 7 

surrounded by sea and therefore frequent ly influenced by ozone-poor air). More 8 

important ly, relat ively low ozone mixing ratios over Lhasa extended over broad 9 

layers ranging approximately to 70 hPa. 10 

The Tibetan ant icyclone occurs primarily as a response to diabat ic heat ing 11 

associated with deep convect ion over South Asia during summer [Yanai et al., 12 

1992]. In cases where the ant icyclonic circulat ion was formed over the Tibetan 13 

Plateau, temperatures from the ground surface to about 150 hPa over Lhasa was 14 

always higher than those over Kagoshima (Figure 2), suggest ing an increase in 15 

diabat ic heat ing and enhanced convect ion over the Plateau. This tropospheric 16 

warming leads to the reversal of meridional temperature gradient on the south of 17 

the Plateau [Yanai et al., 1992]. As a result, tropospheric ozone abundances over 18 

Lhasa during the low ozone event could be the result of the arrival of air masses 19 

transporting ozone-poor air from the Bay of Bengal and the Arabian Sea (see 20 

backward trajectories starting on 21-22 August 1999 in Figure 3). Also, given 21 

the occurrence of the ant icyclone during the low ozone event, it  is assumed that 22 

relat ively low ozone mixing rat ios near the tropopause are caused by the upward 23 

transport of ozone-poor air in deep convect ive systems. 24 

After 24 August 1999, the Tibetan Plateau was located at the eastern edge of 25 

the ant icyclone and thus it  is expected that convect ively suppressed condit ions 26 

prevailed over Lhasa. During this period, relat ively high ozone mixing rat ios 27 

were found from the ground surface to about 250 hPa (Figure 2). The air mass 28 
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trajectories changed to pass over inland China (see backward trajectories staring 1 

on 24-25 August 1999 in Figure 3), indicating that the tropospheric ozone-rich 2 

air originated from cont inental sources. Ozonesonde measurements at Xining 3 

(36.4°N, 101.5°E, 2296 meters above sea level), located in the northeastern part 4 

of the Tibetan Plateau, show tropospheric  ozone mixing rat ios of >60 ppbv 5 

under normal summert ime condit ions [Zheng et al., 2004]. Thus, the relat ively 6 

high ozone mixing rat ios measured at Lhasa on 24-25 August 1999 are similar to 7 

those at Xining. In addit ion, the 25 August flight showed ozone recovery in the 8 

lowermost stratosphere, and as a consequence, negat ive ozone anomalies near 9 

the tropopause extended only to about 90 hPa. The 18 September flight that was 10 

conducted at the eastern edge of the ant icyclone also indicated ozone recovery 11 

probably result ing from convect ively suppressed condit ions over the Plateau. 12 

Figure 4a shows the integrated column ozone between 600 and 70 hPa based 13 

on ozonesonde measurements at Lhasa during 18-25 August 1999. This figure 14 

also includes time series of the EP/TOMS total ozone over Lhasa in August 1999. 15 

These data show that the total ozone over Lhasa was largely influenced by ozone 16 

variat ions between 600 and 70 hPa. We further divide the integrated column 17 

ozone into three alt itudes and examine the local ozone anomalies (deviat ions 18 

from the monthly mean ozone at Kagoshima). The results shown in Figures 4b, 19 

4c, and 4d indicate the ozone valley to be a localized phenomenon that extends 20 

from about 150 to 70 hPa. 21 

 22 

4. Temperature Changes near the Tropopause 23 

 24 

The vertical profiles of temperatures at Lhasa during the observat ion period 25 

in this study are shown in Figure 2, together with the monthly mean data at 26 

Kagoshima. The local temperature anomalies (deviat ions from the monthly mean 27 

temperatures at Kagoshima) appeared most frequent ly over narrow layers near 28 
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the tropopause between about 130 and 70 hPa. When the ant icyclone developed 1 

over the Tibetan Plateau, cold temperature anomalies of about 5-10 K occurred 2 

near the tropopause. On the other hand, when the ant icyclone shifted to the west, 3 

the anomalies were small. Thus, the temperature changes show patterns very 4 

similar to the observed ozone changes near the tropopause. Also, as shown in 5 

Figure 5, it  seems likely that the temperatures vary with changes in the ozone 6 

mixing rat ios. 7 

 8 

5. Summary and Discussion 9 

 10 

Synoptic analyses of total column ozone and meteorological condit ions have 11 

demonstrated that the occurrence of the ozone valley over the Tibetan Plateau is 12 

closely linked to the ant icyclone in the upper troposphere and lower stratosphere 13 

(Figure 1). In addit ion, ozonesonde measurements at Lhasa have provided new 14 

informat ion relevant to the vertical structure of the ozone valley. The vert ical 15 

profiles of ozone mixing rat ios within the Tibetan ant icyclone indicate relat ively 16 

low ozone mixing ratios extending to 70 hPa (Figure 2), suggest ing that the 17 

ant icyclone and its coupling to deep convection influences lower stratospheric 18 

as well as tropospheric ozone abundances over the Tibetan Plateau. The negat ive 19 

ozone anomalies near the tropopause between about 150 and 70 hPa largely 20 

contribute to a reduction in total ozone over the Tibetan Plateau (Figure 4). 21 

The relat ively low ozone near the tropopause is primarily attributed to the 22 

upward transport of ozone-poor air in deep convect ive systems. Other satellite 23 

and model studies have also suggested minima in ozone mixing rat ios within the 24 

monsoon ant icyclone [Gettelman et al., 2004; Randel and Park, 2006; Park et 25 

al., 2007], which they attribute to seasonal changes in dynamics in the monsoon 26 

region. On the other hand, it  has been reported that there are relat ively high 27 

values of water vapor [Gettelman et al., 2004; Fu et al., 2006; Randel and Park,  28 
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2006; Park et al., 2004, 2007], methane, and NOx (= NO + NO2) [Park et al., 1 

2004] near the summert ime tropopause. The occurrence of cirrus clouds has also 2 

been observed [Fu et al., 2006; Tobo et al., 2007]. Other processes related to 3 

these species may have an affect on ozone abundances in the upper troposphere 4 

and lower stratosphere, and thus further invest igat ions are needed to account for 5 

these sensit ivit ies. 6 

The present results have indicated that temperatures near the tropopause are 7 

strongly correlated with the observed ozone changes (Figure 5). It is likely that 8 

cold temperature anomalies within the ant icyclone at 100 hPa are primarily a 9 

dynamical response to enhanced convect ion [Park et al., 2007]. Although we 10 

consider that the ozone changes have only a small effect on the energy budget of 11 

the tropopause, the reduct ion in ozone mixing rat ios near the tropopause may 12 

reduce the radiat ive heat ing rate. Thus, comprehensive model studies as well as 13 

measurements of ozone and other greenhouse gases are needed to explain the 14 

mechanisms for the coupled temperature-ozone changes.15 
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Figure 1. EP/TOMS total ozone maps averaged for 5 days; (a) 18-22 August 1 

1999, (b) 23-27 August 1999. Also shown are NCEP/NCAR horizontal wind 2 

fields at 100 hPa. 3 

 4 

Figure 2. Vert ical profiles of ozone mixing ratios and temperatures at Lhasa 5 

obtained from ozonesondes on 18-25 August 1999 (without 20 August 1999) and 6 

18 September 1999. Monthly mean ozone mixing ratios and temperatures at 7 

Kagoshima are also shown. 8 

 9 

Figure 3. HYSPLIT backward trajectory analyses from the measurement site 10 

starting at 450 hPa on 21, 22, 24, and 25 August 1999 at 06:00 UTC. Dots on 11 

each trajectory are plotted every 12 hours. 12 

 13 

Figure 4. (a) Time series of column ozone integrated between 600 and 70 hPa 14 

from ozonesondes and EP/TOMS total ozone at Lhasa in August 1999. Also 15 

shown are the ozone anomalies (deviat ions from the monthly mean ozone data at 16 

Kagoshima) divided into three alt itudes; (b) 150-70 hPa, (c) 300-150 hPa, (d) 17 

600-300 hPa. 18 

 19 

Figure 5. Scatter diagram of ozone mixing ratios with temperatures at 100, 90, 20 

and 80 hPa from ozonesondes at Lhasa for 18-25 August 1999 (without 20 21 

August 1999). Data on 24 and 25 August 1999 are shown as shaded points. 22 
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