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Abstract 

 

The coarsening theory of a spherical particle in a ternary alloy developed by 

Kuehmann and Voorhees (KV) has been generalized to any centro-symmetric particle. A 

classical thermodynamic analysis reveals that the generalized KV theory enables us to estimate 

the interface energy of a particle with a fixed shape, even if the shape of the particle is not 

controlled by minimization of the interface energy. Data on the coarsening of spherical, 

{001}-faceted cuboidal and {111}-faceted octahedral precipitates in a Cu-Co alloy, a Cu-Fe 

alloy, and three Cu-Co-Fe alloys with different Co and Fe contents during aging at 873 to 973 

K have been collected by transmission electron microscopy and electrical resistivity. By 

applying the generalized KV theory to the experimental data, the energies of sphere, {001} and 

{111} interfaces have been determined. Their energies increase with increasing the Fe 

composition in the alloys. 
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1. Introduction 

 

The first research on the asymptotic coarsening behavior of the size distribution of 

spherical particles, and on the associated power laws for the average radius of particles, matrix 

supersaturation and number density of particles has been carried out independently by Lifshitz 

and Slyozov [1] and Wagner [2] (LSW). They considered a two-phase system consisting of a 

vanishingly small volume fraction of a dispersed phase. Based on the LSW theory, Ardell [3] 

has derived a time law for the matrix supersaturation surrounding a spherical particle. Recently, 

Kuehmann and Voorhees (KV) [4] have developed a theory for the coarsening of a spherical 

precipitated phase having two chemical components in a ternary alloy. By formulating the 

Gibbs-Thomson equation for the ternary system, they found that the temporal power laws of 

the average particle radius, far-field-matrix supersaturation and particle number density were 

identical to those of the LSW theory but the amplitudes of these power laws were different 

from the LSW theory. The theories of LSW, LSW modified by Ardell, and KV have already 

been employed to study the Ostwald ripening processes of spherical second-phase precipitates 

in actual alloys [5-9]. However, the actual shapes of second-phase particles are usually 

non-spherical. It is thus useful to generalize the KV theory for any shape of particles. 

Several studies have been experimentally performed on the growth kinetics of 

spherical fcc Co and -Fe precipitates in Cu-Co [10-13] and Cu-Fe alloys [14]. The 

experimental studies by saturation magnetization measurements [10] and transmission electron 

microscopy (TEM) [11-14] have revealed that the average radii of Co and -Fe precipitates 

increase with t as t1/3, in accord with the prediction of the LSW theory. Using experimental 

values of the precipitate growth rate and literature data on the diffusivity and solubility limit of 

solutes, Seno et al. [12] and Matsuura et al. [14] have estimated the interface energies  of Co 

and -Fe precipitates as about 0.31 and 0.25 Jm-2, respectively. On the other hands, Oriani [15] 

and Ardell and Nicholson [16] have obtained  0.3 to 1.0 Jm-2 from analyses of Livingston's 
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data [10] with available values of the diffusivity and solubility limit of Co in Cu. 

Recently, we have examined the coarsening behavior of Co precipitates in Cu-1, 2 and 

4wt%Co alloys aged at temperatures of 873, 923 and 973 K by both of TEM observations and 

electrical resistivity measurements [17-19]. The shape of Co precipitates changes from a sphere 

to an octahedron faceted on the matrix {111} via a cube with {001} as the precipitates grow. 

For non-spherical precipitates, the radius of a sphere with volume identical to that of the 

non-spherical precipitate was calculated. The values of  0.15 Jm-2 for spherical Co 

precipitates and the diffusion coefficient of Co in the Cu matrix were derived independently 

from data on coarsening alone using the LSW theory. On the other hand, Monzen and Kita [20] 

have investigated the coarsening of -Fe precipitates in Cu-1.0 and 1.7wt%Fe alloys during 

aging at 873 to 973 K by the same method as above, supposing that the precipitate shape is 

spherical. By applying the LSW theory to the experimental data, the value of 0.25 Jm-2 was 

estimated. Watanabe et al. [18] have also studied the Ostwald ripening of -Fe precipitates in a 

Cu-2.0wt%Fe alloy aged at 773 and 973 K. The estimate of  was 0.27 Jm-2 from the same 

approach as Monzen and Kita [20]. The shape of -Fe precipitates changes from a sphere to a 

cube with {001} facets, similar to the observation of Cu-Co alloys. The radius of a sphere with 

the same volume as that of the cube was used to calculate .  

Aging of Cu-base alloys containing Co and Fe produces first spherical coherent Co-Fe 

precipitates with a fcc structure [21-23]. We have studied the coarsening of Co-Fe precipitates 

in a ternary Cu-1.47wt%Co-0.56wt%Fe alloy aged at 873 to 973 K [24]. Observations by TEM 

and electrical resistivity measurements were performed in order to describe the microstructural 

evolution and concentration of solute in the Cu matrix. The composition of Co-Fe precipitates 

was found to be 70at%Co-30at%Fe, which is consistent with the ratio of atomic amounts of Co 

and Fe in the alloy. As in the case of Cu-Co binary alloys, there existed three precipitate 

shapes: a sphere, a cube with {001} facets and an octahedron faceted on {111}. The cube or 

octahedron was reduced to an equivalent-volume sphere. Independent values of  and the 
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diffusivity of Co and Fe in the matrix have been determined using the KV theory. The obtained 

values of  were about 0.20 Jm-2, which lies between the reported values of   0.15 Jm-2 for 

Cu-Co alloys [17-19] and 0.26 Jm-2 for Cu-Fe alloys [18, 20]. 

In this study, we will first extend the KV theory to a general case of second-phase 

particle with any centro-symmetric shape. In the generalized KV (GKV) theory, it is assumed 

that the particle shape is determined by minimization of the interface energy. We will show 

from a thermodynamic analysis that a correct energy of any interface of the second-phase 

particle can be estimated by application of the GKV theory even when the particle shape is not 

governed by the interface energy minimization, that is, it is affected by the misfit strain energy, 

originating from misfit between the matrix and particle. In addition, the Ostwald ripening of 

Co-Fe precipitates in Cu-1.01wt%Co-1.04wt%Fe and Cu-0.63wt%Co-1.33wt%Fe alloys aged 

at 873, 923 and 973 K is examined by TEM and electrical resistivity measurements. Finally, 

the interface energies for spherical, cuboidal and octahedral precipitates in the two Cu-Co-Fe, 

the Cu-1.47wt%Co-0.56wt%Fe [24], the Cu-2wt%Co [19] and the Cu-1.7wt%Fe alloys [20] 

are determined using the GKV theory. 

 

2. Generalization of KV theory 

 

2. 1 Geometric description 

 

 A crystalline solid will, in general, have a specific interface energy which varies with 

the orientation of the surface relative to the crystal axes: if surface orientation is denoted by the 

unit normal to the surface n, the specific interface energy  is expressed as a function (n). The 

construction given by Wulff [25] determines the shape which, for given (n) and fixed volume, 

has the least interface energy. Wulff theorem states that the normal distance, measured from a 

fixed origin, of a surface element on a particle is proportional to (n) of the element. Supposing 
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that values of 0 (= n0)) and 0 (= n0)) are known, the Gibbs-Thomson equation (GTE) 

generalized to any particle with 3-dimensionally-point symmetric shape [26] is  

                      mm
0

0
m0m

22 VV
n
n                  (1) 

where nnln , l(n) is the vector drawn from the center of symmetry to a surface 

element, m( 0) is the chemical potential of the matrix or  phase in equilibrium with a  

particle of length 0, m( ) is that of the matrix in equilibrium with a flat surface of the same 

substance, and Vm is the molar volume of  phase. The unit of the chemical potential is joule 

per mole. A closed surface characterized by the vectors n and l(n) is so-called -plot. The 

particle shape is set to remain unchanged since the generalized GTE is derived under the shape 

equilibrium condition. The geometry of the system considered here is presented schematically 

in Fig. 1. Using a value of 0, the surface area aS  and volume V of the  particle are written as  

                                2
0aS                                (2) 

                                 3
0V                         (3) 

where  and  are particle-shape-dependent constants. For example, =4  and =4 /3 for a 

spherical particle. Hereafter the non-spherical particle illustrated in Fig. 1 is referred to as  

general particle. Though the (n) is not always coincident with the particle size as shown in 

Fig. 1, (n) will be called particle size. 

 

2. 2 Kinetic equation 

 

 Let us consider a ternary system, consisting of solvent (1) and two solutes (2 and 3). 

At first, the solute concentration profile should be defined. Since the ratio (n) / (n) in Eq. (1) 

is constant for all interface orientations of a general particle, the solute concentration in the 

matrix near a /  interface is the same over the whole surface of the  particle [26, 27]. Thus, 

we consider the equivalent-volume sphere (EVS) for the representation of the concentration 
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field. In this paper, the units of concentration terms will be taken as atomic fraction. The 

concentration field of the  phase can be written with respect to the 0 as 

                       0αα
iiii

CĈCC  (i = 2, 3)                 (4) 

where α
i

C  is the solute concentration of the component i in the matrix at distance   from 

the center of , 
i

C  is the composition of the component i in  phase at infinity and α
i

Ĉ  is 

the matrix concentration of the ith component at the /  interface. Here we neglect 

off-diagonal terms in the diffusion matrix. Eq. (4) is, of course, a harmonic function and is also 

obtained from the composition profile in the KV coarsening theory by replacing the radial 

variable and particle radius by  and 0. 

 The mass conservation at the non-spherical interface is 

                            iii
JS

dt
dVĈĈ a

αβ                        (5) 

where β
i

Ĉ  is the composition of the component i in the  phase at the /  interface, t is the 

time and Ji is the diffusion flux of the ith component. Eqs. (2) to (5) and Fickian law yield the 

relation between the growth rate d 0/dt of the general particle and the matrix concentration: 

                        
0

α
0αβ

3
i

iii

C
D

dt
dĈĈ                 (6) 

Here Di is the diffusion coefficient of the ith component in the  phase. Following KV [4], we 

assume to a good approximation during ripening that iiiii CCCĈĈ αβαβ , where α
iC  

and β
iC  are the equilibrium solubilities of the component i in the  and  phases. From Eqs. 

(4) and (6) with i = 2 and 3, we have  

                             
3

2

3

2

3
α
3

2
α
2

C
C

D
D

CĈ
CĈ                        (7) 

Eq. (7) is equal to the result obtained by Kuehmann and Voorhees [4].  

Next, we will develop the GTE for the general particle in the ternary system, to 
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express the d 0/dt as a function of the matrix far-field concentration and the size 0. The GTE 

for a spherical particle has already been obtained by KV [4]. According to KV, we have the 

GTE for the general particle as 

α
33

2

2α
22

3

3
α
333

α
232

0

m0

2

2α
2

α
2

12 CC
D
CCC

D
C

Λ
GCGC

Λ
V

D
CCĈ  (8) 

α
33

2

2α
22

3

3
α
233

α
222

0

m0

3

3α
3

α
3

12 CC
D
CCC

D
C

Λ
GCGC

Λ
V

D
CCĈ  (9) 

from Eqs. (1) and (7) and usual thermodynamic treatments. Here 

α
333

α
232

3

3α
233

α
222

2

2 GCGC
D
CGCGC

D
CΛ , αα

α
α

ji
ij CC

GG  (i or j = 2 and 3) and G  

is the Gibbs free energy of the  phase. The units of G  and α
ijG  are joule per mole, the same 

as that of the chemical potential. The capillary length iLc  of the component i is given 

by
Λ
V

D
CL

i

i
i

m0
c

2 . Using Eqs. (4) and (6) with i = 2 or 3 and Eq. (8) or (9), the particle 

growth rate d 0/dt ( 0
& ) is related to the size 0 and the supersaturations at infinity as 

0

m0α
33

α
333

α
232

α
22

α
233

α
222

0
0

21
3

VCCGCGCCCGCGC
Λ

&  (10) 

For a sphere, =4  and =4 /3, and 0 and 0 correspond to the radius and the isotropic 

interface energy of the sphere. 

 

2. 3 Asymptotic solution 

 

 As shown in the Appendix A, the mathematical treatments to obtain asymptotic 

solutions are quite similar to those found by Voorhees [28]. Thus, we will only state the results 

of this analysis. With replacements of 0 and 0 by (n) and (n)，in the limit t  

                                tKn
3n                        (11) 
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Λ
VKn 9

8
3

mn
                       (12) 

where n  is the average particle size and Kn is the coarsening rate constant. The far-field 

supersaturation for the component i is 

                               3
1α tkCC i,nii                        (13) 

              α
3

α
333

α
232

α
2

α
233

α
222

α3
1

3
2

m
3

1
33

CGCGCCGCGC
CΛVk i

i,n
n          (14) 

Here kn,i is the coarsening parameter. The number of particles per unit volume F is written as 

                               1eq

744
t

K.
tF

n

                       (15)                                      

where eq is the equilibrium volume fraction of particles. In the derivation of Eq. (15), the 

well-known size distribution g(u) (u= (n)/ n ) of the LSW theory [29] is required [28]. Thus, 

the size distribution of the general particle is identical to that predicted from the LSW theory 

for spherical particle. Finally, we now summarize the assumptions for application of the GKV 

theory: (i) the particle shape remains unchanged during coarsening, and (ii) the system is a 

dilute solution. 

 

3. Evaluation of (n) for non-spherical particles 

 

In the GKV theory, the Wulff construction is supposed to be valid: that is, (a) the 

shape of a particle is determined by the minimum interface-energy criterion and (b) (n) is 

proportional to (n). However, there generally exists the elastic strain energy due to misfit 

between  and  phases in crystalline solids. Onaka et al. [30] have theoretically and 

experimentally shown that the particle shape is determined so as to minimize the sum of the 

elastic strain and interface energies of a  particle, indicating that the above hypothesis (a) is 

not valid in actual alloy systems. We will show that even if the assumption (a) is incorrect, the 
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assumption (b) holds true and thus the proper (n) can be estimated from the GKV theory. 

It has been theoretically shown that the elastic interaction of two or more particles 

affects the coarsening kinetics [31, 32]. In the thermodynamic analysis below, however, the 

elastic interaction energy will not be taken into consideration since the GKV theory should be 

applied in dilute systems, where the volume fraction of  particles is very small.  

We will first obtain the local equilibrium condition for a system with the elastic strain 

energy. The general strategy [33] for finding conditions for the local equilibrium is applied to a 

system consisting of  and  phases, containing 3 components each and separated by curved 

interfaces. Here,  particles are set to have a given shape with a smooth surface. Let us define 

the superficial excess value for any properties. Using the symbol I for U, S, V and ni, the 

superficial excess value Is for I is given by  

                       
sys

βα
syss

A
III

I                        (16) 

where U, S, V and ni are the internal energy, entropy, volume and number of moles of the 

component i of the  or  phase, Asys is the surface area and Isys is the value I of the system. An 

expression for the change in entropy of the system is written as 

sys
s3

1

β

β

β

β
β

β
β

β

β

β3

1

α
α

α
α

α

α

α

α

sys dASdn
T

dV
T
EdV

T
P

T
dUdn

T
dV

T
P

T
dUdS

i i
i

i i
i  (17) 

where T, P and i  are the temperature, pressure and chemical potential of the ith component 

of the  or  phase, and E is the elastic strain energy per unit volume, dependent only on the 

shape of . When the  phase is elastically isotropic and the  phase has arbitrary uniform 

misfit strains, Eshelby [34] has revealed from the ellipsoidal inclusion problem that the total 

elastic strain energy in the system can be written in the form of EV . This problem has been 

extended to the case that the  phase is elastically anisotropic [30, 35, 36]. In this case also, the 

elastic energy can be expressed in the same fashion. The internal energy, volume and total 

number of moles of each component are constant in an isolated system with internal interfaces. 
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These constraints may be written as 

                          sys
sβα

sys 0 dAUdUdUdU                 (18) 

                          sys
sβα

sys 0 dAVdVdVdV                 (19) 

                          sys
sβα

sys, 0 dAndndndn
iiii                 (20) 

Here Vs is zero [33]. Let the curvature of the interface be defined to be positive when the 

interface is convex relative to the  phase. Assuming that the surface of the  particle is 

hypothetically divided into p small elements, the increment in surface area Ae of eth surface 

element as  grows is related to the increment in the volume β
eV  of the eth element and the 

local mean curvature He of the eth element as 

                                β2 eee VHA                        (21) 

Substituting Eqs. (18) to (21) into Eq. (17) and all the coefficients of the differentials in Eq. 

(17) being equal to zero with relations of sys1
dAA

p

e e  and αβ

1

β dVdVV
p

e e , we have 

the conditions for the local equilibrium. If  and  are maintained in the local equilibrium as 

the state of the system is altered, the conditions require that 

                               βα dTdT                               (22) 

                           p

e
e

p

e
ee

p

e
e

V

VdH
dPdP

1

β

1

β

1αβ
2

                  (23) 

                               βα
ii

dd                               (24) 

Here e is the interface energy of the eth element. The infinitesimal change in the Gibbs energy 

G of the  and  phases are given by  

                     α3

1

αααααα
i

i
i dndPVdTSdG                (25) 

β3

1

βββββββ
i

i
i dnEdVdPVdTSdG          (26) 

The units of G  and G  are not joule per mole but joule since we here focus on the transfer of 

molecules in the system. To consider the partial molar Gibbs energy for the ith component, we 

estimate the partial derivatives of G  and G  with respect to α
in  and β

in  from Eqs. (25) and 
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(26) under the condition that temperature, pressure and α
jn  and β

jn  ( ij ) are held constant. 

This leads to the following expression: 

                    β

1

β

1

β

13

1

β
c

βα
c

α
2

ip

e e

p

e
ee

p

e
e

i j,ijj,ij V
V

VdH
dCdC                (27) 

by using Eqs. (22) to (24), considering the minimal change in the partial molar Gibbs energy 

under the isothermal condition, and assuming that 0αdP . In this process, since the partial 

molar volume β
iV  for the component i in the  phase can be regarded as a constant value from 

its definition [33], the term β
iVEd =0. Here the coefficient 

j,

i
ij Cc

 (j = 1, 2 and 3) 

shows the change in chemical potential of the component i with composition Cc,j in the  or  

phase [33]. Eq. (27) means that the coarsening of the eth surface element at a constant 

temperature is driven by the e. From this result, together with the shape similarity of the  

particle during coarsening, we find that relative values of (n) are proportional to those of (n) 

even when the assumption (a) for the Wulff construction that the shape of a particle is 

determined by minimization of the interface energy does not hold true in actual systems. This 

result also indicates that the elastic strain energy has no effect on the coarsening kinetics, in 

agreement with our intuition. 

 

4. Coarsening of Co-Fe precipitates in ternary Cu-Co-Fe alloys 

 

4. 1 Experimental 

 

Ingots of Cu-1.01wt%Co-1.04wt%Fe and Cu-0.63wt%Co-1.33wt%Fe alloys were 

prepared by melting 99.99wt%Cu, a Cu-10.5wt%Co and a Cu-10.0wt%Fe master alloy. The 

atomic Co/Fe ratios of these alloys are 1:1 and 3:7. The total atomic amounts of Co and Fe in 
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the two alloys are about 2.2%, which is identical to 2.2% in a Cu-1.47wt%Co-0.56wt%Fe alloy 

used in our previous study [24]. Hereafter, the compositions of the alloys will be expressed in 

atomic percent. The alloy ingots were homogenized at 1173 K for 24 h in a vacuum. Specimen 

pieces were cut from the ingots and cold-rolled to a thickness of 3 mm. Then the specimens 

were solution-treated at 1303 K for 5 h in a vacuum, quenched into cold water (273 K), and 

subsequently aged at 873, 923 and 973 K in a vacuum.  

Thin foils, 0.2 mm thick, for TEM observations were prepared from the aged 

specimens by electropolishing using a 20vol% solution of a phosphoric acid in water. 

Microscopy was performed using a JEOL 2010FEF and a JEOL 2000EX or a HITACHI 

H-9000NAR microscope at an operation voltage of 200 or 300 kV, and equipped with an 

energy dispersive X-ray spectroscopy (EDX) system.  

The solution-treated specimens for electrical resistivity measurements were spark-cut 

to the size of 100 mm x 10 mm x 0.5 mm. After aging, resistivity measurements were made at 

293 K using a standard four-point potentiometric technique. The cross-sectional area of the 

specimen was measured at different positions and the average value was used. By applying the 

experimental data obtained by Linde [37], the Co and Fe concentrations in the Cu matrix were 

determined. 

 

4. 2 Experimental results 

 

4. 2. 1 Precipitated phase 

 

As in our previous paper [24], an EDX analysis was carried out to examine the 

chemical composition of Co-Fe precipitates in Cu-0.68at%Co-1.52at%Fe and 

Cu-1.09at%Co-1.16at%Fe specimens aged at 973 K for 10 min and 48 h, using the beam 

directed at Co-Fe precipitates. For each specimen, when the detected concentrations of Co and 
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Fe were plotted against Cu concentration, a linear relationship was observed, as shown in Fig. 

2. Cu atoms were always detected, as seen in Fig. 2. Thus, in order to exclude the effect of Cu, 

from the intercepts of the straight lines drawn by the least-squares method, the Co and Fe 

concentrations in the precipitates were determined. The Co and Fe concentrations in atomic 

fraction were 0.30 and 0.70 for the Cu-0.68Co-1.52Fe alloy, 0.50 and 0.50 for the 

Cu-1.09Co-1.16Fe alloy, and 0.70 and 0.30 for the Cu-1.58Co-0.64Fe alloy [24], independent 

of aging temperature and time. These ratios are consistent with the ratios of atomic amounts of 

Co and Fe in the alloys.  

 Figs. 3 and 4 depict bright-field images of Co-Fe precipitates in Cu-0.68Co-1.52Fe 

and Cu-1.09Co-1.16Fe alloys aged at 973 K, taken using the matrix [001] zone axis. The insets 

at the lower right in Figs. 3 and 4 are selected-area diffraction patterns (SADPs) taken from the 

areas containing Co-Fe precipitates. Extensive analyses of the SADPs of the 

Cu-0.68Co-1.52Fe specimen revealed that the precipitated phase had a disordered fcc structure 

with the cube-on-cube orientation relationship to the Cu matrix. In the SADPs in Fig. 4, there 

are extra reflections of precipitates, which possess a banded structure. Analyses of the SADPs 

taken using the {111} zone axis showed that the layered internal structure consisted of two 

twin-related bcc Co-Fe variants, and the Kurdjumov-Sachs orientation relationship was 

satisfied between both of these two variants and the Cu matrix. This relationship is in 

agreement with the reported relationship between the Cu matrix and -Fe martensite 

precipitates in deformed Cu-Fe binary alloys [38]. Monzen and Kato [23] have found that the 

ternary addition of Co to a Cu-Fe alloy tends to destabilize the fcc Co-Fe precipitates and, thus, 

the fcc-to-bcc martensitic transformation in Co-Fe precipitates can occur by simple cooling and 

the transformed precipitates are internally twinned. They have further shown that as the Co 

content in Cu-Co-Fe alloys increases, the transformation temperature increases, reaching a 

maximum for the Co/Fe ratio = 1:1 and then decreases again. The cooling temperature at which 

all Co-Fe precipitates larger than about 10 nm in diameter in a Cu-Co-Fe alloy with Co/Fe = 
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1:1 are martensitically transformed is about 323 K. Therefore, it is stated that the Co-Fe 

precipitates in the Cu-1.09Co-1.16Fe alloy have the fcc structure with the cube-on-cube 

relationship to the Cu matrix during aging at 873 to 973 K, and the fcc-to-bcc martensitic 

transformation occurs during cooling up to 273 K. 

 Small Co-Fe precipitates in the Cu-0.68Co-1.52Fe and Cu-1.09Co-1.16Fe alloys were 

spherical, as clearly recognized from a bright-field image inserted in Fig. 3(a), and a dark-field 

image inserted in Fig. 4(a), taken using a reflection of the bcc Co-Fe precipitates. The shapes 

of large precipitates in both the alloys were nearly cuboidal with flat interfaces parallel to 

{001}, as seen in Figs. 3(b) and 4(b). Fringes around the precipitates in Fig. 3(b) are noticed. 

Although we did not analyze the fringes in detail, they may be -fringe christened by Ardell 

[39]. The spherical-to-cuboidal shape transitions have been reported in aged Cu-Co-Cr [40], 

Cu-Co [17-19] and Cu-Fe alloys [18]. When r is taken as the radius of EVS, cuboidal 

precipitates existed above r 10, 10, 15, 20 and 25 nm for Cu-2.15Co [19], Cu-1.58Co-0.64Fe, 

Cu-1.09Co-1.16Fe, Cu-0.68Co-1.52Fe and Cu-1.93Fe alloys. There were octahedral 

precipitates above r 30 and 40 nm for Cu-2.15Co [19] and Cu-1.58Co-0.64Fe alloys. 

 

4. 2. 2 Kinetics of Co-Fe precipitates during Ostwald ripening 

 

 Eqs. (11) and (12) indicate that log-log plots of n  versus t yield time exponents. 

Fig. 5 displays the average precipitate size n  against aging time t on logarithmic scales for 

Cu-0.68Co-1.52Fe and Cu-1.09Co-1.16Fe alloys. Excepting at early times, the experimental 

slopes are almost identical to the value of 1/3 for spherical and cuboidal precipitates, predicted 

by the GKV theory. Log-log plots of n  versus t using data in the literature [19, 20, 24] 

reveal that the n  for octahedral precipitates in the Cu-2.15Co and Cu-1.58Co-0.64Fe 

alloys, and cuboidal precipitates in the Cu-2.15Co, Cu-1.58Co-0.64Fe and Cu-1.93Fe alloys 

obeys the t1/3 law. Fig. 6 shows the coarsening curves of Co-Fe precipitates in the 
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Cu-0.68Co-1.52Fe alloy aged at 873, 923 and 973 K. For each temperature and shape, a linear 

relationship exists between 3n  and t. It should be also noted in Figs. 5 and 6 that, for each 

alloy and temperature, experimental points for sphere and EVS lie on the identical straight line, 

even when the shape transition occurs. This held for the five alloys. This will be discussed in 

section 5. 1. Experimental values of the rate constant Kn were determined from the slopes of 

the straight lines by the least-squares method. The Kn for sphere and EVS, cube and octahedron 

will be referred to as Ks, K001 and K111, respectively. Table 1 lists the values of Kn for the 

present two alloys, together with the values calculated from size data for the Cu-2.15Co [19], 

Cu-1.58Co-0.64Fe [24] and Cu-1.93Fe [20] alloys.  

 For each alloy and temperature, the growth rate has decreased gradually with t at the 

initial stage of aging, and, after a certain time, a linear relationship has been observed between 

3n  and t, although the rate changes cannot be obviously seen in Fig. 6. In our previous 

papers, we showed evidence for a mixed stage of growth and coarsening of Co and Co-Fe 

precipitates in the Cu-1.08Co [17] and Cu-1.58Co-0.64Fe [24] alloys before the beginning of a 

coarsening stage. In addition, we found that the transitions from the mixed stage of growth and 

coarsening to the coarsening stage changed the growth rates of the Co and Co-Fe precipitates at 

early times. Similarly, the rate changes in the present study have been found to be caused by 

the transitions from the mixed stage to the coarsening stage. 

 As described in section 2. 3, the size distributions of 3-dimensionally-point symmetric 

particles in ternary systems follow the distribution function g(u) (u= (n)/ n ) of the LSW 

theory. A comparison between the measured and the theoretically predicted size distributions is 

shown in Fig. 7. The agreement between the experimental distributions of small spherical 

precipitates and the theoretical curves is relatively good. However, the distributions of larger 

cuboidal and octahedral precipitates are broader than the predicted curves. The broader 

bottom-shapes of histograms of larger precipitates are similar to those predicted by the theories 

of Ardell [41], Voorhees and Glicksman [42] and Wang et al. [43], considering the effect of 
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precipitate volume fraction on coarsening. The experimental broad distributions are also 

consistent with those in Cu-Co and Cu-Fe alloys reported by Seno et al. [12] and Matsuura et 

al. [14]. 

 

4. 2. 3 Change in solute concentration in Cu matrix 

 

 The atomic Co/Fe ratios of the precipitates are 3:7 and 1:1 for the Cu-0.68Co-1.52Fe 

and Cu-1.09Co-1.16Fe alloys, independent of aging temperature and time, as described in 

section 4. 2. 1. The solute concentrations of Co and Fe in the Cu matrix were obtained by the 

electrical resistivity method, taking the ratio of Co/Fe into account. 

 Following Eqs. (13) and (14), 
i

C  versus t 1/3 was plotted for the two alloys aged at 

873, 923 and 973 K. For each aging temperature and solute, 
i

C  exhibited a steep decrease in 

the initial stage of aging as illustrated by a dashed line, and, after a certain time, a linear 

relationship was seen between 
i

C  and t 1/3, as exemplified in Fig. 8. The slopes of these lines 

give experimental values of kn,i. Although kn,i depends on the precipitate shape, according to Eq. 

(14), clear shape dependence of kn,i was not detected. Table 2 lists the values of kn,i for the two 

alloys, determined by the least-squares fits, together with the reported values for the Cu-Co 

[19], Cu-Co-Fe [24] and Cu-Fe [20] alloys. Also extrapolation to t 
1/3=0 yields values of α

i
C . 

Table 3 summarizes these values, along with the reported values of equilibrium solubility for 

the Cu-Co [17], Cu-Co-Fe [24] and Cu-Fe [20] alloys. The obtained values of α
CoC  and α

FeC  

in the ternary alloys are smaller than the reported solubilities of Co and Fe in binary alloys. 

However, this is in agreement with the calculated result of the Cu-Co-Fe ternary equibrium 

diagrams [44] that the simultaneous dissolution of Co and Fe into Cu reduces the solubility of 

both Co and Fe in Cu. 

 Eq. (15) indicates that the number density F decreases with t as t-1. Log-log plots of F 

versus t for the Cu-0.68Co-1.52Fe alloy are presented in Fig. 9. The values of F were obtained 
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from F = 3 /(4 r3), where  is the volume fraction of the precipitated phase at time t. Values of 

 were calculated from α
i

β
ii

α
i0, CC/CC , where α

i0,C  is the matrix concentration of 

the component i after solutionizing. The time dependence of F in Eq. (15) is obtained in the 

long-time limit, namely a system with a constant . On the other hand, Ardell [45] has 

considered the temporal behavior of the precipitate number density during coarsening when  

varies with time. In this case, the relation between F and t in 3-dimension ripening and 

diffusion is written by the form 

                               341 /ΩtΞtF                            (28) 

where  and  are constants. The theoretical values of F calculated from Eq. (28), using eq  

0.018, our values of Ks and α
iC , available data on the diffusivity of Co in Cu [46] and 

appropriate constants in Ardell’s paper [45], are also shown by the straight lines in Fig. 9. The 

slopes of the straight lines are almost equal to -1. For each temperature, the data points for 

sphere and cube lie on the straight line, except for the initial stage of aging. It was recognized 

that, for each alloy and temperature, F decreased with t as t-1, irrespective of the precipitate 

shape.  

 

5. Discussion 

 

5. 1 Calculation of (n) from experimental data 

 

Combination of the Kn, kn,i α
CoC  and α

FeC  enables the matrix / precipitate interface 

energy (n) to be calculated without having to assume values of DCo and DFe, namely 

α
Fe

α
FeFeFe

α
CoFeCo

α
Co

α
CoFeFe

α
CoCoCoα

Com

Co
31

2
CGCGCCGCGC

CV
kK ,n

/
nn    (29) 

The value of Vm was calculated as 6.8 x 10-6 m3mol-1 from Vm=Naa3/4, where Na is the 

Avogadro’s number and a is the lattice constant of fcc Fe phase (=0.3562 nm [38]). The lattice 
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parameters of fcc Co [47], fcc Co-Fe [48] and fcc Fe [38] phases are almost identical. Using 

the subregular solution model, we have the following expressions during aging: 

FeCuCoFeCuCo
FeCoCo

α
CoCo 22

1
11 CLL

CCC
RTG           (30) 

FeCoCuCoFeFeCuCoFeCuCo
FeCo

α
CoFe 221

1
CCLLLL

CC
RTG    (31) 

CoCuCoFeFeCu
FeFeCo

α
FeFe 221

1
1 CLL

CCC
RTG           (32) 

where R is the gas constant, Lij is the interaction parameter between i and j atoms (i or j = Cu, 

Co and Fe), and LCuCoFe is the ternary interaction parameter. Values of LCuCo, LFeCu, LCoFe and 

LCuCoFe were calculated from the literature [44, 48-50]. For the later stage of aging where the 

coarsening of the precipitates only is taking place, CoC  and FeC  can be approximated to 

α
CoC  and α

FeC , respectively. The solute concentration in the Cu matrix is negligibly small 

compared to that in the precipitate phase at any time, and thus we obtain CoC =0.7 and 

FeC =0.3 for Cu-1.58Co-0.64Fe, CoC =0.5 and FeC =0.5 for Cu-1.09Co-1.16Fe and 

CoC =0.3 and FeC =0.7 for Cu-0.68Co-1.52Fe. 

 Table 4 lists the values of s, 001 and 111 for sphere, cube and octahedron, calculated 

by Eqs. (29) to (32), together with the calculated values using experimental data for the 

Cu-2.15Co [19], Cu-1.58Co-0.64Fe [24] and Cu-1.93Fe alloys [20]. The values of s for -Fe 

are in good accord with the value of  0.25 Jm-2 previously reported by Matsuura et al. [14]. 

However the values of s for Co are smaller than the values of  = 0.3 to 1.0 Jm-2, obtained by 

Oriani [15], Ardell and Nicholson [16] and Seno et al. [12]. The reason why our values of s are 

smaller than the reported values has already been discussed in our previous studies [17, 19]. 

For each alloy s> 001, and for Cu-2.15Co and Cu-1.58Co-0.64Fe 001 111. The values of s, 

001 and 111 increase with increase in the Fe composition of the alloys, namely Fe 

concentration in the Co-Fe precipitate. According to Becker [51], the energy of the coherent 
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interface is expressed in terms of the change in total bond energies across the interface. Thus 

the increase in (n) with Fe composition in Co-Fe precipitates may be attributed to increase in 

the Cu-and-Fe bonds at the interface.  

 It is well known that values of Ks and ks,i are influenced by finite  of precipitates 

present during coarsening in binary systems since the diffusion distance of solute atoms in the 

system with vanishingly small  becomes longer than that in the system with finite . 

Numerous models to correct Ks and ks,i have been developed [41-43]. It would thus be inferred 

that the present values of Kn and kn,i in Tables 1 and 2 are affected by . Since the mathematical 

treatment of the concentration field in the GKV theory is the same as that in the LSW and KV 

theories for spherical particles, we can correct the values of Kn and kn,i in Tables 1 and 2 by the 

developed models. However, it is unnecessary for the calculation of (n) using Eq. (29) to 

correct for  of precipitates, because the influencing factors cancel each other, as shown by 

Chellman and Ardell [5]. 

 As seen in Figs. 5 and 6, the coarsening rates of EVS precipitates show no changes 

with shape transitions from a sphere to a cube. Moreover, even in the cases that the precipitate 

shape changes from a sphere to an octahedron via a cube, we have found that the coarsening 

rate constants of EVS precipitates exhibit no changes [19, 24]. Since the coarsening rate of a 

surface element at a given temperature is dependent upon only the interface energy, as revealed 

in section 3, the relation s = g001 001= g111 111 must be satisfied between the three shapes. Here 

g001 and g111 (=gn) are the ratios of the interfacial areas of the cube and octahedron to that of 

EVS. Using the values of 001 and 111 in Table 4, and g001=1.24 and g111=1.18, we had the 

seventeen values of g001 001 and g111 111 for the five alloys, which are identical to the values of 

s in Table 4. Therefore, our conclusion that the assumption (b) for the Wulff construction holds 

true even when the assumption (a) is not valid is justified. 

 From application of the KV theory to the coarsening data of spherical Co-Fe 

precipitates in the Cu-1.58Co-0.64Fe alloy, Watanabe et al. [24] determined the 
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pre-exponential factor D0 and activation energy Q for diffusion of Co and Fe in Cu. In this 

study, from a similar approach using the Kn, kn,i α
CoC  and α

FeC  values, we have calculated 

values of D0s and Qs and D0c and Qc for spherical and cuboidal precipitates in the three ternary 

Cu-Co-Fe alloys, as summarized in Table 5. The resultant values of D0 and Q for Co and Fe in 

Cu are in agreement with those obtained by tracer diffusion technique [46, 52]. In this 

calculation of the diffusivities, the correction for  is theoretically necessary. In this study, 

however, the effect of  on the Kn and kn,i values is neglected because the present values of  

0.018 are very small. 

 

5. 2 Energy analysis on precipitate shape transition 

 

Onaka et al. [53] and Satoh and Johnson [54] have shown that, in some cases of 

coherent precipitates in cubic materials, the precipitate shape is controlled by minimization of 

the sum of the elastic strain energy and interface energy of a precipitate. Moreover, Onaka et al. 

[36] have calculated the elastic strain energies Es, E001 and E111 (=En) per unit volume of cubic 

materials containing spherical, {001}-cuboidal and {111}-octahedral precipitates with a purely 

dilatational misfit strain, using the supersphere concept. In their energy calculations, the elastic 

anisotropy of the Cu matrix has been brought into consideration. In the present and previous 

studies [17-19, 24], the spherical-to-cuboidal and cuboidal-to-octahedral shape changes with 

increase in size took place. We will consider the sum of the elastic strain and interface energies 

of a precipitate so as to analyze the shape transitions subsequently. 

 Assuming that the shapes of precipitates are perfect sphere, cube and octahedron, the 

total free energy n,Gt  of a precipitate can be written as [53] 

                        344 32
t /rEgrG nnn, n                  (33) 

According to Onaka et al. [36], nE C44
2, where  is a shape-dependant constant, C44 is the 

shear modulus of the matrix and  is the purely dilatational misfit strain of precipitate phase. In 
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the previous study [18], we obtained  = -0.018 and -0.016 for fcc Co and -Fe, respectively, 

from length-change measurements. When a linear relation is assumed between the composition 

and misfit strain of a Co-Fe precipitate, we have  =-0.0174, -0.017 and -0.0166 for 

Cu-1.58Co-0.64Fe, Cu-1.09Co-1.16Fe and Cu-0.68Co-1.52Fe. These values of , C44 = 7.54 x 

1010 Pa of Cu [55], and  = 2.56, 2.39 and 2.67 for sphere, cube and octahedron [36] are 

employed to obtain values of En. Using the averages of s, 001 and 111 for each alloy in Table 4, 

the values of g001=1.24 and g111=1.18, and the values of nE , values of n,Gt  are calculated 

from Eq. (33) as a function of r. Fig. 10 plots n,Gt  against r for the Cu-1.58Co-0.64Fe alloy. 

In the rage of 0<r<7 nm, st,G  for sphere is smaller than 001t ,G  for cube, but when r > 7 nm, 

this situation is reversed. This means that the spherical shape is energetically favorable when 

the precipitate is smaller than 7 nm in radius. This corresponds to our result that the 

spherical-to-cuboidal transition of Co-Fe precipitates in the alloy occurs at r 10 nm. Similar r 

dependences of st,G  and 001t ,G  were observed for Cu-2.15Co, Cu-1.09Co-1.16Fe, 

Cu-0.68Co-1.52Fe and Cu-1.93Fe. The calculated sizes for the spherical-to-cuboidal 

transitions are 7, 11, 14 and 20 nm for Cu-2.15Co, Cu-1.09Co-1.16Fe, Cu-0.68Co-1.52Fe and 

Cu-1.93Fe, which are in reasonable agreement with the experimentally obtained values of 

r 10 [19], 15, 20 and 25 nm. It is also seen from Fig. 10 that 111t ,G  for octahedron is the 

largest in the range of 0<r<60 nm. This is inconsistent with our result of the 

cuboidal-to-octahedral shape change at r 40 nm for Cu-1.58Co-0.64Fe. For Cu-2.15Co also, 

111t ,G is the largest in the range, and thus the cuboidal-to-octahedral shape change at r 30 nm 

cannot be explained.  

Takeda et al. [56] have reported the shape transitions of Co precipitates from a sphere 

to a {111}-faceted octahedron in Cu-1at%Co and Cu-3at%Co alloys aged at 873 and 1073 K 

by TEM observations. They have pointed out that magnetostriction plays an important role in 

determining the shapes of Co precipitates. In the present work also, it might be necessary for 

the cuboidal-to-octahedral shape change to consider the effect of magnetostriction. 
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6. Conclusions 

 

(1) The theory of Ostwald ripening of spherical particles in ternary systems developed by 

Kuehmann and Voorhees (KV) [4] has been generalized to particles with any centro- 

symmetric shape. The time exponents of the average particle size, supersaturation at infinity 

and particle number density, being a function of the anisotropic interface energy, are identical 

to those found by KV. 

(2) The Ostwald ripening of fcc Co-Fe precipitates in a Cu-1.01wt%Co-1.04wt%Fe and a 

Cu-0.63wt%Co-1.33wt%Fe alloy has been investigated by combined techniques of 

transmission electron microscopy observations and electrical resistivity measurements. Co-Fe 

precipitates smaller than 15 and 20 nm in radius in the former and the latter alloy are spherical, 

and larger Co-Fe precipitates have a cuboidal shape faceted on {001}. Coarsening data 

collected for fcc Co, Fe and Co-Fe precipitates having spherical, {001}-faceted cuboidal and 

{111}-faceted octahedral shapes in Cu-2wt%Co [19], Cu-1.7wt%Fe [20] and 

Cu-1.47wt%Co-0.56wt%Fe [24] alloys have been reexamined. The average sizes of the 

spherical, cuboidal and octahedral fcc precipitates increase with aging time t as t1/3, as 

predicted by the generalized KV theory. The kinetics of the decay of the matrix supersaturation 

follow the predicted t-1/3 law. The number densities of the spherical, cuboidal and octahedral 

fcc precipitates decrease with t as t-1, in accordance with the prediction of the generalized KV 

theory.  

(3) A classical thermodynamic analysis shows that usage of the generalized KV theory permits 

us to accurately determine the interface energy of any centro-symmetric particle even when the 

Wulff construction is not strictly valid in actual systems. By applying the generalized KV 

theory to the coarsening data of spherical, cuboidal and octahedral fcc precipitates in the 

Cu-Co, the three Cu-Co-Fe and the Cu-Fe alloys, the energies s, 001 and 111 for sphere, {001} 
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and {111} interfaces have been determined. The estimates of s, 001 and 111 are summarized in 

Table 4. Their values increase with increase in the Fe composition in the alloys. 
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Appendix A. Solving method for asymptotic behavior of the average particle size, 

far-field supersaturation and number density 

 

The time dependences of the average particle size 0 , the far-field 

supersaturation and the number density of particles can be determined by considering 

the behavior of the system in the long-time limit. Following the basic idea of Voorhees 

[28] and Marqusee and Ross [57], we will obtain asymptotic solutions for above three 

quantities.  

The distribution function f( 0, t) specifies the number of particles with size 0 

per unit volume and is related to the total number F(t) of particles per unit volume as 

000 dt,ftF    (A1) 

The distribution function can change by growth of particles, by dissolution of particles 

and by nucleation of particles. However, we focus on the coarsening stage of particles, 

where the nucleation rate is negligible. In this case, the evolution of the distribution 

function obeys a continuity equation 

0
0

0 f
t
f &

    (A2) 

The volume fraction of particles  is given by 
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0 0
3
0 fd     (A3) 

Considering the total mass, the solute concentrations in the matrix at infinity can then be 

expressed in terms of alloy composition Ci,a as 

β
a 1 ii,i CCC    (A4) 

 The system is now specified by the continuity equation (Eq. (A2)), the mass 

conservation constraint (Eqs. (A3) and (A4)) and the particle growth rate (Eq. (10) in 

the text). In order to reduce variables, we define 

2

0
0

CL
    (A5) 

t
ΛL

V

C

0
3

2

m2
3

   (A6) 

i,
i

i,i

C
CC

0α

α
a     (A7) 

i
i

ii

C
CC
α

α

    (A8) 

According to the method outlined by Voorhees [28] with above reduced variables, we 

have Eqs. (11) to (15) in the limit . Here, we can change 0 and 0 to (n) and 

(n) without losing the generality since the symbols 0 and 0 are representative 

variables for a certain orientation. 
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Figure and Table captions 

 

Fig. 1 Definition of the geometric parameters of a particle with 3-dimensionally-point 

symmetric shape. 

 

Fig. 2 Results of EDX analysis obtained from Co-Fe precipitates in a Cu-0.68at%Co- 

1.52at%Fe alloy aged at 973 K for 10 min and 48 h. The ordinate and abscissa are 

shown in atomic fraction. 

 

Fig. 3 Bright-field images of Co-Fe precipitates in a Cu-0.68at%Co-1.52at%Fe alloy 

aged at 973 K for (a) 30 min and (b) 48 h. The zone axis is [001]. 

 

Fig. 4 Bright-filed images of Co-Fe precipitates in a Cu-1.09at%Co-1.16at%Fe alloy 

aged at 973 K for (a) 30 min and (b) 48 h. The inset at the upper right in (a) is a 

magnified dark-field image of a bcc Co-Fe precipitate. The zone axis is [001]. 

 

Fig. 5 Variation in the average sizes n  of spherical (S) and cuboidal (C) 

precipitates with aging time t for (a) Cu-0.68at%Co-1.52at%Fe and (b) 

Cu-1.09at%Co-1.16at%Fe alloys aged at 873, 923 and 973 K. For cuboidal precipitates, 

radii of equivalent-volume sphere (EVS) are also shown. Lines with slope of 1/3 are 

superimposed.  

 

Fig. 6 Coarsening plots of spherical (S) and cuboidal (C) Co-Fe precipitates in a 

Cu-0.68at%Co-1.52at%Fe alloy aged at 873, 923 and 973 K. For cuboidal precipitates, 

data for equivalent-volume sphere (EVS) are also shown. 



Watanabe et al. 31 

 

Fig. 7 Size distributions of Co-Fe precipitates in a Cu-0.68at%Co-1.52at%Fe alloy aged 

at 973 K for (a) 30 min, (b) 48 h, in a Cu-1.09at%Co-1.16at%Fe alloy aged at 973 K for 

(c) 30 min, (d) 48 h, and in a Cu-1.58at%Co-0.64at%Fe alloy aged at 973 K for (e) 30 

min, (f) 32.5 h and (g) 334 h. The size distribution predicted by the LSW theory is 

superimposed on each histogram. The number of precipitates measured, the average 

precipitate size n  and the precipitate shape are also shown. 

 

Fig. 8 Variation in the far-filed concentrations 
Co

C  and FeC  of Co and Fe in the 

matrix of a Cu-0.68at%Co-1.52at%Fe alloy aged at 873, 923 and 973 K as a function of 

t-1/3. 

 

Fig. 9 Variation in the number density F of spherical (S) and cuboidal (C) precipitates 

with aging time t for a Cu-0.68at%Co-1.52at%Fe alloy aged at 873, 923 and 973 K. The 

dotted triangle indicates the slope of -1 predicted from Eq. (15). The values calculated 

from Eq. (28) are represented by straight lines. 

 

Fig. 10 Plots of the sum Gt,n of the interface energy and elastic strain energy, calculated 

from Eq. (33), of spherical, cuboidal and octahedral precipitates in a 

Cu-1.58at%Co-0.64at%Fe alloy as a function of radius r of equivalent-volume sphere.  

 

Table 1 Rate constants Ks and K001 for spherical and cuboidal precipitates in 

Cu-1.09at%Co-1.16at%Fe and Cu-0.68at%Co-1.52at%Fe alloys. Also shown are values 

of Ks, K001 and K111 for octahedral precipitates, calculated using coarsening data for 

Cu-2.15at%Co [19], Cu-1.58at%Co-0.64at%Fe [24] and Cu-1.93at%Fe [20] alloys. 
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Table 2 Coarsening parameters kn,Co and kn,Fe for Cu-1.09at%Co-1.16at%Fe and 

Cu-0.68at%Co-1.52at%Fe alloys containing spherical and cuboidal precipitates. Also 

shown are values of kn,Co and kn,Fe for Cu-2.15at%Co [19], Cu-1.58at%Co-0.64at%Fe 

[24] and Cu-1.93at%Fe [20] alloys containing spherical, cuboidal and octahedral 

precipitates. 

 

Table 3 Equilibrium concentrations α
CoC  and α

FeC of Co and Fe in the Cu matrix of 

Cu-1.09at%Co-1.16at%Fe and Cu-0.68at%Co-1.52at%Fe alloys, obtained from analysis 

of data on coarsening. The concentration is expressed in atomic fraction. Also shown 

are reported values of α
CoC  and α

FeC  for Cu-1.08at%Co [17], Cu-1.58at%Co-0.64at% 

Fe [24] and Cu-1.93at%Fe [20] alloys. 

 

Table 4 Energies s and 001 of sphere and {001} interfaces of Co-Fe precipitates in 

Cu-1.09at%Co-1.16at%Fe and Cu-0.68at%Co-1.52at%Fe alloys, obtained using Eq. 

(29). Also shown are values of s, 001 and 111 for {111} interface of precipitates, 

calculated using data for Cu-2.15at%Co [19], Cu-1.58at%Co-0.64at%Fe [24] and 

Cu-1.93at%Fe [20] alloys. 

 

Table 5 Pre-exponential factors D0s and D0c and activation energies Qs and Qc for 

diffusion of Co and Fe in Cu, estimated using data on coarsening of spherical and 

cuboidal precipitates in Cu-1.09at%Co-1.16at%Fe and Cu-0.68at%Co-1.52at%Fe alloys. 

Also shown are values calculated using coarsening data for a Cu-1.58at%Co-0.64at%Fe 

[24] alloy, and values of D0 and Q for impurity diffusion of Co [46] and Fe [52] in Cu 

obtained by tracer diffusion technique. 
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