Implementation of stereophonic acoustic echo
canceller on nVIDIA GeForce graphics
processing unit

S eng

HhRE
~EH:2017-10-03
F—7— K (Ja):
*—7— K (En):
YER

A—=ILT7 KL R:
Firi&:

http://hdl.handle.net/2297 /24447

2009 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2009) December 7-9, 2009

TA2-D-3

Implementation of
Stereophonic Acoustic Echo Canceller
on nVIDIA GeForce Graphics Processing Unit

Akihiro Hirano and Kenji Nakayama
Kanazawa University, Japan
E-mail: {hirano,nakayama} @t.kanazawa-u.ac.jp Tel: +81-76-234-4897

Abstract—This paper presents an implementation of a stereo-
phonic acoustic echo canceller on nVIDIA GeForce graphics
processor and CUDA software development environment. For
efficiency, fast shared memory has been used as much as possilbe.
A tree adder is introduced to reduce the cost for summing
thread outputs up. The performance evaluation results suggest
that Even a low-cost GPU’s with a small number of shader
processor greatly helps the echo cancellation for low-cost PC-
based teleconferencing.

I. INTRODUCTION

Echo cancellers are used to reduce echoes in a wide range
of applications, such as teleconference systems and hands-free
telephones. To realistic teleconferencing, multi-channel audio,
at least stereophonic, is essential. For stereophonic teleconfer-
encing, stereophonic acoustic echo cancellers (SAEC’s) [1],
[2], [3] have been studied.

Recent years, PC-based communication systems such as
Skype and Messenger becomes very popular. PC-based sys-
tems are useful not only for personal communications, but also
for business systems such as teleconferencing. For realistic and
comfortable teleconferencing, SAEC’s should be implemented
on PC-based systems.

Modern processors for PC’s have powerful instruction set
for multimedia processing. Intel IA-32 architectures[4] have
MMX (Multi Media eXtension) and also SSE (Streaming
Single instruction multiple data Extension, Streaming SIMD
Extension). Four-way vector operations are supported for 32-
bit floating-point (FP) data. Implementation of SAEC on [A-32
processor has also been reported[5].

Recent PC’s are also equipped with powerful graphics
processing units (GPU’s). These GPU’s are also capable of
numerical computations by using C/C++ language[6], [7],
[8] and have been used for computer simulations. Latest
GPU’s have computation performance over tera floating-point
operations per second (TFLOPS). Even some low-cost chipsets
consist of programmable GPU’s. An example is ION platform
by nVIDIA for Intel Atom processor.

In this paper, an implementation of SAEC’s on nVIDIA
GeForce family GPU and CUDA is discussed. Section II
describes SAEC’s. GeForce family GPU and CUDA is briefly
described in Sec. III. The proposed implementation is shown
by Sec. IV. Section V compares the performance.

978-1-4244-5016-9/09/$25.00 (©2009 IEEE

room A room B
x4(n) Echo Canceller
&) ?
s s
9 B -
8 N S h et
em) | X 4 1
€ B
() s(n) o+ ¥1(n)
4 =P
2] v: v; hz,1
Np tap 3 A8 Ng tap
Ottt
x9(n) Ny tap

Fig. 1. Teleconferencing using SAEC

II. STEREOPHONIC ACOUSTIC ECHO CANCELLER

Figure 1 shows a teleconferencing using an SAEC. This
echo canceller consists of four adaptive filters corresponding
to four echo paths from two loudspeakers to two microphones.
Each adaptive filter estimates the corresponding echo path.

The far-end signal x;(n) in the i-th channel at time index
n is generated from a talker speech s(n) by passing room A
impulse response g; from the talker to the i-th microphone.
x;(n) passes an echo path h; ; from the i-th loudspeaker to the
j-th microphone and become an echo d;(n). Similarly, adap-
tive filters w; ;(n) generates an echo replica y;(n). w; ;(n)
is so updated as to reduce the residual echo e;(n).

The SAEC generates the echo replica y;(n) by

yj(n) = wlTj(n)ml(n) + wQT](n)mg(n) (1)
the residual echo e;(n) is calculated by
ej(n) = dj(n) — y;(n). @)

Assuming the Normalized Least Mean Squares (NLMS)
algorithm[9], the filter coefficient vector w; j(n) is updated
by

pe;(n)xi(n)
|21 (n)[? + [@2(n)|?

3)

w; j(n+1) = w; j(n) +

where a positive constant 4 is a step-size parameter.

- 303 -

2009 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2009) December 7-9, 2009

Multiprocessor #N

Multiprocessor #1

Shared Memory (16~32KB)

Registers eeeo Registers
Instructi
Shader Shader H ns[;‘;;:tlon
Processor eoo Processor

(SP) #1 (SP) #8 —

Constant Memory (64KB)
GeForce GPU

Device Memory (MB~TB) Host CPU

Fig. 2. Computation model of GeForce GPU

III. NVIDIA GEFoRrCE GPU AND CUDA

In this implementation, nVIDIA GeForce 8000 family or
later GPU’s are assumed. Though GeForce 8800 GTS is used
as a benchmark platform, the results can be applied for other
GPU’s. Main features are listed below.

o Unified shader architecture

o Large number of shader processors (SP’s):

— 16 ~ 240 per chip.

— 8 SP’s execute the same instruction.

— The same instruction are executed in four successive
instruction cycles.

— 32 threads are executed simultaneously by 8-SP
block.

— 8192 data registers per 8 SP’s.

o Floating-Point (FP) support

— 32-bit FP multiply-add.

— Four-clock latency for 32-bit FP multiply-add.

— Some newer GPU’s support 64-bit FP (slower than
32-bit).

o Multiple data memories

— Shared memory: 16KB or 32KB read/write RAM per
8 SP’s.
Access latency is 4 instruction cycles.
— Constant memory: 64KB read-only RAM per chip.
— Device memory (off-chip RAM): ~ 1GB.
Very slow: Latency is 400 ~ 600 clocks.

o Compiler support
As a programmable processor, GeForce GPU’s can be regarded
as multiple sets of 8-way SIMD (single-instruction multiple-
data) processor array. In order to cover a four-cycle latency
for most operations, each SP repeats a single instruction by
four times. Therefore, a set of 32 threads is executed by
a set of 8 SP’s. A synchronization mechanism is prepared
between threads in a SIMD processor array, while there
are no synchronization mechanisms between different SIMD
processor arrays.

Shader Processor Array]

4) (4)

Shared Memory
e;(n)|(wy1(n) wyo(n)
ey(n)|| wy 1(n) wy 5(n)
(5) 5 [3)
e;(n)||wy1(n) wyy(n)
ey(n)||wg 1(n) Wy o(n)

Device Memory

(6) (1)

e(n)| |wy,(n) wyy(n)
ey(n)| |\ wg1(n) wyo(n)

Host Memory

x1(n) x9(n)

dl(n) dg(n)

x,(n) x9(n)

dq(n) do(n)

Constant Memory

1)

x,(n) x9(n)

dy(n) do(n)

"A

GPU Program

U

Fig. 3. Memory assignments and dataflow.

There are some classes for data memories on GeForce
GPU’s: shared memory, constant memory, texture memory and
device memory. 8 SP’s in the same group can access shared
memory. Though shared memory is the fastest memory, special
care is required for its lifetime. Shared memory is prepared at
the beginning of thread and is removed at the end. Users have
to save data which will be used after the end of thread into
device memory (off-chip memory).

Device memory is a large off-chip memory. The problem
of device memory is a very long access latency which is
400 ~ 600 instruction cycles. To hide this latency, multiple
groups of threads are commonly used; another thread starts
when a thread is interlocked by slow memory access. Con-
stant memory is an intermediate-speed memory. From GPU,
constant memory is a read-only memory, while host CPU can
read/write this memory.

“CUDA”[6], [7] is a software development tools and drivers
for GeForce family GPU’s, which is an abbreviation of “Com-
pute Unified Device Architecture.” Programs for both CPU and
GPU can be written in a single source file. Some extensions
to C/C++ language support parallel processing and multiple
memory classes.

IV. IMPLEMENTATION OF SAEC

In this implementation, only one SIMD processor array is
used. An implementation with one SIMD array is useful for
low-cost GPUs with only two SIMD arrays; one for SAEC and
the other for graphics and video. Another reason is to avoid
synchronization and communication between multiple SIMD
arrays. This implementation focuses on

e Memory assignment
« Reduction of memory access

- 304 -

2009 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2009) December 7-9, 2009

o Division of adaptive FIR filters into multiple threads.

A PC-based communication is carried out as a block-based
processing, a block with several hundred samples is assumed.

A. Memory assignment

Since the cost for the memory access might restrict the per-
formance of an adaptive FIR filter with the NLMS algorithm,
a faster memory is used if available. Figure 3 demonstrates the
memory assignments and the flow of data. The input signals,
which are not modified, are stored into constant memory and
then cached in shared memory. The filter coefficients, which
are modified, are stored into device memory. They are loaded
into shared memory at the beginning of a block, and restored
into device memory at the end of the block.

The procedure of data transfer and signal processing is
shown below.

1) Copy signals from CPU to GPU

2) Copy program from CPU to GPU, and execute

3) Copy signals and coefficients from device/constant
memory to shared memory

4) Computation for a block of input signals

5) Copy results and coefficients from shared memory to
device memory

6) Copy results from GPU to CPU

In the actual implementaion, steps 3 and 4 are performed in
the NLMS process for the first sapmle of the block. Also, the
NLMS process for the last sample carried steps 4 and out.

B. Reduction of memory access

The number of memory access can be reduce by similar
manner as in[5]. The data load can be reduced by changing
the order of (1) and (3). Calculating

wijk(n) = wijkr(n—1)
+ 0j(n—Dzi(n—k—1) 4)
and
sumj(n) = sum;(n) + w; jx(n)x;(n — k) (5)

in the descending order of the tap index k could reduce the
number of load operation for both w; ; x(n) and z;(n — k). In
4), 6;(n — 1) is defined by

3 pe;j(n —1)

%0 =1 = R+ P

(6)

w; jk(n) is a k-th element of w; j(n). The load operation
for w; ;1 (n) is reduced because w; ; ;(n) calculated in (4) is
also used for convolution (5) just after (4). The number of load
operation for z; (n—k) can be reduced because x;(n—k) in (5)
can be re-used in (4) for the next k = k— 1. In SAEC, treating
both channels in the same loop also reduces the memory access
cost for the input signals.

Adaptive Filter w; (n)

1st 2nd 3rd 4th last
thread] [thread] [thread [thread: thread
x;(n) 1st 2nd 3rd 4th last

sub Fr¥ sub R#¥ sub K# sub
filter}] Rfilter [y (lfilterl] [y filter

XX — sub
filter

% i)

. |

yj(n)

D)
N

DL

BN

Tree Adder
J

Fig. 4. Multi-thread implementation of adaptive FIR filter

C. Multi-thread implementation of adaptive FIR filter

In this implementation, each adaptive filter is divided simply
into short sub filters. Figure 4 shows the implementation of
adaptive FIR filters. Each thread processes small segments
from all of four adaptive filters from w1 1 (n) through ws 2(n).
This is because the memory access reduction shown in IV-B
requires successive processing of adjacent filter taps and also
simultaneous processing of four adaptive filters. This division
also simplifies thread division.

A problem specific to GeForce GPU is the computational
cost for summing all sub filter outputs up. If this summing-up
process is carried out by a thread, it requires larger amount
of computations than that for the sub filters. This is because
the optimum number of threads is very large. The evaluation
results show that the optimum number of threads is 128 for
512-tap SAEC. Therefore, each sub filters have only four taps,
while the summing-up process have to sum 128 results up.

In order to reduce the summing-up cost, a tree adder is
introduced. Figure 4 depicts the tree adder. For 128-thread
case, seven-stage adder is used. The first stage consists of 64
adders by 64 threads; each thread performs one addition.

D. Maximum number of taps

For this implementation, the maximum number of taps is
restricted by the shared-memory size. The capacity of shared
memory for 32-bit word is only 4096 words. Therefore, the
maximum number of taps is about 512, which might be enough
for 8kHz sampling and for a small room.

E. Memory assignment for larger number of taps

The maximum number of taps can be increased by slightly
degrading the performance. The memory assignments and the
data flow are shown in Fig. 5. The procedure is shown below.

1) Copy signals from CPU to GPU
2) Copy program from CPU to GPU, and execute

- 305 -

2009 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2009) December 7-9, 2009

Shader Processor Array]
4), (1) 4), (1)
Shared Memory
ex(n) w;1(n) w;o(n) J*
ey(n) 5), dq(n) do(n)

(8)

(8) 3) (6) 3)

e;(n)||\wy1(n) wyy(n)

ey(n)||wy 1(n) wy (1) dy(n) dy(n)

Device Memory Constant Memory

9) (1) (1)

d,(n) dy(n)

GPU Program

el(n)wlyl(n) wy 9(n)
ey(n)| wy1(n) wy4(n)

Host Memory

Fig. 5. Dataflow

TABLE I
SPECIFICATIONS OF PLATFORMS

Type Server Notebook Netbook GPU
CPU Core 2 Extreme | Core 2 Duo Atom GeForce
Model X9650 T7700 N270 8800 GTS
Total cores 4 2 1 128
Cores used 1 1 1 8
Core Clock 3GHz 2.4GHz 1.6GHz 1.6GHz
OS Linux WinXP WinXP —
(bits) (64bit) (32bit) (32bit)

3) Copy signals and coefficients from device/constant
memory to shared memory

4) Computation for 1st channel

5) Copy coefficients from shared memory to device mem-
ory

6) Copy coefficients from device/constant memory to
shared memory

7) Computation for 2nd channel

8) Copy results and coefficients from shared memory to
device memory

9) Copy results from GPU to CPU

In this implementation, the first and the second channels are
processed separately. The maximum nuber of taps is almost
768, which is 50% larger than the previous implementation.

V. PERFORMANCE COMPARISON

The standard SAEC has been implemented and tested on
two different platforms. Table I depicts the specifications of the
platforms. For both CPUs and GPUs, programs in C language
is used. The CPU program has been optimized by the compiler.
For the GPU programs, the tunable parameters such as the
number of thread has been manually optimized for the speed.

TABLE II
COMPUTATION TIME FOR 512-TAP, 16000-SAMPLE CASE

Type Server | Notebook | Netbook | GPU 1 | GPU 2
Time [msec] | 126.57 228.60 698.01 159.60 | 163.30
TABLE III
COMPUTATION TIME FOR DIFFERENT FILTER SIZES
Tap 128 256 384 512 640 768
Time | 111.68 | 125.03 | 12648 | 162.11 | 140.45 | 163.46

Table II compares the processing time for 16000 sample of
inputs. The results suggests that all processors are capable of
real-time processing for 512-tap SAEC at 16kHz sampling.
The difference between GPU 1 and 2 is the memory assign-
ments shown in IV-A and IV-E. Though parallel processing is
used and manual optimization have also been carried out, the
performance of GPU’s is slightly less than Core 2 Extreme
server. Furthermore, almost four times speed-up has been
achieved by introduction of vector processing for Intel Core 2
family CPU’s[5].

On the other hand, the performance of the GPU’s is superior
to those of notebook CPU’s. This result suggests that even
a low-cost GPU’s with a small number of shader processor
greatly helps the echo cancellation for low-cost PC-based
teleconferencing.

Table III examines the influence of the number of taps on
the performance of GPU 2. The result suggests that there might
be a large overhead because a large offset exists, which is not
proportional to the number of taps. Without the tree adder, the
perfomance is degraded by almost 50%.

VI. CONCLUSIONS

This paper presents an implementation of an SAEC on
nVIDIA GeForce GPU and CUDA. For efficiency, fast shared
memory has been used as much as possilbe. Introducing the
tree adder improves the performance by almost 33%. Even
a low-cost GPU’s with a small number of shader processor
greatly helps the echo cancellation for low-cost PC-based
teleconferencing.

REFERENCES

[1] M. M. Sondhi and D. R. Morgan, “Stereophonic acoustic echo cancella-
tion — an overview of the fundamental problem,” IEEE SP Letters, vol.
2, no. 8, pp. 148-151, Aug. 1995.

[2] A. Sugiyama, Y. Joncour, and A. Hirano, “A stereo echo canceler with
correct echo-path identification based on an input-sliding technique,”
IEEE Trans. SP, vol. 49, no. 11, pp. 2577-2587, Nov. 2001.

[3] A. Hirano, K. Nakayama, and K. Watanabe, “Convergence analysis of
stereophonic echo canceller with pre-processing — relation between pre-
processing and convergence —,” Proc. of ICASSP ’99, pp. 861-864, Mar.
1999.

[4] “Intel 64 and IA-32 architectures software developer’s manual volume 1:
Basic architecture,” May 2007.

[5] A. Hirano and K. Nakayama, “Implementation of stereophonic acoustic
echo canceller on intel IA-32 processors with SIMD capability,” Proc.
of 22nd SIP symposium, Nov. 2007.

[6] “NVIDIA CUDA compute unified device architecture reference manual,”
Nov. 2008.

[7] “NVIDIA CUDA programming guide,” Dec. 2008.

[8] “ATI stream computing user guide,” Mar 2009.

[9] J. Nagumo and A. Noda, “A learning method for system identification,”
IEEE Trans. AC, vol. 12, no. 3, pp. 282-287, Mar. 1967.

- 306 -

