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Abstract—A leaky recursive least squares (LRLS) algorithm obtained by
a criterion of the ridge regression with the exponential weighting factor was
recently proposed by one of the authors. On the other hand, an optimiza-
tion criterion for improving the method of total least squares (TLS) has
been proposed by Chandrasekaran ef al In this work, it is expressed that
there is a case where the equation obtained by the criterion of the LRLS
algorithm is identical to one obtained by the extended criterion of Chan-
drasekaran ef al. In addition, some implementations of the LRLS filter by
using the method for updating the eigendecomposition of rank-one matrix
updates, or by using the leaky least mean square (LLMS) algorithm, are
introduced to decrease the computational complexity of the LRLS algo-
rithm. Moreover, by means of computer experiments, it is shown that the
LRLS and the LLMS algorithms yield more precise estimation parameters
than the RLS algorithm when the method of Chandrasekaran et al. is more
useful than that of LS and TLS. Besides, it is demonstrated that the LLMS
algorithm can be effectively introduced into a noise reduction system for
noisy speech signals to support the theoretical results in this work.

Index Terms—Adaptive filters, computational complexity, parameter es-
timation.

1. INTRODUCTION

Recursive least squares (RLS) algorithms are widely used adaptive
filters. Fast RLS algorithms based on QR decomposition using Givens
rotations are known to be numerically robust and to own regular struc-
tures, which can lead to efficient implementations [1]-{3].

Alternative optimization criteria, however, have been proposed in-
cluding, among others, regularized least-squares, ridge regression, and
total least squares (TLS) [4]-{7]. In [8] and [9], an adaptive ridge re-
gression algorithm with the exponential weighting factor, i.e., the leaky
RLS (LRLS) algorithm, has been proposed. The LRLS algorithm is
numerically stable for time-varying signals even in the worst case, al-
though the estimated parameters by using the LRLS algorithm do not
converge to the optimum values in the LS sense because of the ridge
parameter [8], [9]-

On the other hand, in contrast to the standard LS problem, the TLS
formulation allows for errors in the data matrix. However, it still shows
certain drawbacks that degrade its performance in practical situations.
More explicitly, assume that A € R**” is a given full rank matrix
with £ > n, b € R* is a given vector, and consider the problem of
solving the inconsistent linear system AZ(k) = b in the LS sense. The
TLS solution assumes data uncertainties in A and proceeds to correct
A and b by replacing them by their projections A and b onto a spe-
cific subspace and by solving the consistent linear system of equations
Ai(k) = b. The spectral norm of the correction (A — A) in the TLS
solution is bounded by the smallest singular value of [A b]. Although
this norm might be small for vectors b that are close enough to the range
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space of A, it need not always be so. In other words, the TLS solution
may lead to situations in which the correction term is unnecessarily
large. In [5]-[7], an optimization criterion for improving the method of
TLS has been proposed by Chandrasekaran ef al. The method of Chan-
drasekaran ef al. is more useful than that of TLS when we consider a
situation in which the uncertainties in A are very small, and b is far
from the column space of A [7]. It has also been reported in [7] that
there are cases where the equations obtained by the criterion of Chan-
drasekaran et al. are identical to ones obtained by the criterion of the
ridge regression.

In this work, we express that there is a case where the equation
obtained by the extended criterion of Chandrasekaran et al. with the
exponential weighting factor is identical to one obtained by the crite-
rion of the LRLS algorithm. In other words, we explain that it is pos-
sible for the LRLS algorithm to give more accurate estimation parame-
ters than the RLS algorithm. In addition, some implementations of the
LRLS filter by using the method for updating the eigendecomposition
of rank-one matrix updates, or by using the leaky LMS (LLMS) algo-
rithm, are introduced to decrease the computational complexity of the
LRLS algorithm. Moreover, by means of computer experiments, we
show that the LRLS and the LLMS algorithms yield more precise esti-
mation parameters than the RLS algorithm when the method of Chan-
drasekaran ef al. is more useful than that of LS and TLS. Besides, we
demonstrate that the LLMS algorithm can be effectively introduced
into the noise reduction system for noisy speech signals proposed in
[10] and [11] to support the theoretical results in this work.

II. PROBLEM FORMULATION AND ITS ADAPTIVE SOLUTION
A. Standard RLS and LRLS Algorithms

Let A € R¥*" be a given matrix with ¥ > n and b € R* a given
vector, both of which are defined, respectively, by

u (i) = [u(@) u(i-1) u(i —n+1)] (1)

AT =[u(1) u(2) u(k)] @

T =[d(1) d(2) d(k)) 3)

where the vectorsu(?),2 = 1,2,. .., k consist of the inputs of an adap-
tive filter, and d(i),7 = 1,2, ..., k denote the desired response.

We then define a criterion of the RLS algorithm with the initial con-
dition discussed in [2] as

ming, [W(Az(k) - B3 + 8X°[|2(k) |2 @)
W = diag(VAF—1,VAF=2,.. . [1),(0 < A< 1) )

where ) is the exponential weighting factor for processing time-varying
signals, and & is a small positive constant. Its solution vector Z(k) sat-
isfies
(ATW2A + 6XFDz(k) = ATW?b. (6)

The standard RLS algorithm is obtained by solving (6) adaptively and
accurately as follows [1]:
[RLS algorithm]

Initialize the algorithm by setting

P(0) =671,

£(0) = 0. 0)
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For each instant of time k = 1, 2,..., compute

v(k) = d(k) — uT (B)2(k — 1) (8)
g(k) = P(k = Du(k)(A +u" (k)P(k— Du(k))™" (9
z(k) = z(k — 1) + g(k)v(k) (10)
P(k) = APk - 1) — g(k)u" (B)P(k — 1)} (11
where
P (k)= ATW?A + 6XFI
k
=3 N u@E)u’ (@) + AL (12)

i=1

In the above algorithm, its computational complexity is on the order
of n® since the matrix inversion lemma can be applied to (12) [1]. In
addition, fast and numerically stable RLS algorithms whose computa-
tionai complexity is on the order of n have been proposed [2], [3].

On the other hand, a criterion of the ridge regression with the expo-
nential weighting factor discussed in [8] and [9] is defined as

ming ) [|W(A2(k) - )|z + all2(k)|12 (13)
where « is a positive constant. Its solution vector (k) satisfies
(ATW?A + aD)z(k) = ATW?b. (14)

In order to estimate £(%) adaptively, (14) is solved iteratively as

®(k)z(k) = 0(k) (15)
(k) =ATW A+ al
k
= A Tu(i)u’ (@) + ol (16)
=1 R
(k) = ATWb =" AT d(i)u(i) a7
where
(k) =& (k)AB(k — D&k — 1)+ d(k)u(k)]  (18)

is obtained by substituting (17) into (15). On the other hand, since (16)
can be expressed as

AB(k—1) = &(k) — u(k)uT (k) — a(1 = NI

and substitued into (18) to obtain an equation that can be used to update
the parameter vector

k) =[I— a(1=N@ 1 (K)Ek-1)+ & (K)uk)r(k) (19)

the LRLS algorithm is obtained as follows [8], [9]:
[LRLS algorithm]
Initialize the algorithm by setting

&(0) = of,£(0) = O. (20
For each instant of time & = 1, 2,. . ., compute
&(k) = AB(k— 1)+ u(k)u” (&) + (1 - NI @n
v(k) = d(k) — uT (K)&(k ~ 1) (22)
#HE)=[I - o(l - NE (E)2(K-1)
+ & (k)u(k)v(k). 23)

The LRLS algorithm is numerically stable for time-varying signals
even in the worst case, although the estimated parameters by using the
LRLS algorithm do not converge to the optimum values in the LS sense
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because of the ridge parameter « [8], [9]. Moreover, its computational
complexity is on the order of »* for 0 < X < 1 since direct computa-
tion of the matrix inverse at each time is required.

B. Extended Criterion of Chandrasekaran et al. and LRLS Algorithm

We consider a situation in which the uncertainties in A are very
small, say, A is almost known exactly. We assume further that b is far
from the column space of A. In this case, it is not diﬂicﬂultﬁto imagine
that the TLS solution will need to rotate (A, b) into (A, b) and may
therefore end up with an overly corrected approximation for A, despite
the fact that A is almost exact. These facts lead to a motivation that
Chandrasekaran ef al. have introduced a new parameter estimation for-
mulation with prior bounds on the size of the allowable corrections to
the data [7].

The criterion of Chandrasekaran et al. is expressed as

ming,, max[||(A + 6A)Z(k) — (b+ 6b)]l2

: 16All2 < n, [|6bl2 < ms) (24)

where A and b are defined by (2) and (3), respectively. It is assumed
that the true coefficient matrix is A + 6 A and that the upper bound 7
on the 2-induced norm of the perturbation 64 is known. Likewise, it is
assumed that the true observation vector is b + 6b and that the upper
bound 7, on the Euclidean norm of the perturbation b is known. We
then pose the problem (24) of finding an estimate that performs well for
any allowed perturbation (64, 8b). Wenote thatif 7 = 0 = 7, then the
problem (24) reduces to a standard least-squares problem. Therefore,
we will assume throughout that 7 > 0 [7].

Accordingly, we may define the extended criterion (25) of Chan-
drasekaran et al. with the exponential weighting factor to find a re-
lationship between the equation obtained by the extended criterion of
Chandrasekaran et al. and the equation from which the LRLS algorithm
is derived.

ming, ) max{||[W{(A + 6A4)2(k) — (b+ 6b)}]|
:16All2 <, 116bl2 < ma]-
In (25), the matrix W is defined by (5). We show how to reduce the
min-max problem (25) to reduce it to a standard minimization problem.
To begin with, we note that
|W{(A + 6A4)2(k) — (b+ 6b)}]2
< W (Az(k) - b)llz + [Wl2[l6All2[|2(K) |2 + IW]|2|6b]|-
< W (Az(k) - b)ll2 + nllz(k)ll2 + ns
which provides an upper bound for ||W{(A+ §A)z(k) — (b+ 6b)}2

because of || W||2 = 1. However, this upper bound is in fact achievable,
i.e., there exist (8A, 6b) for which

|W{(A+ 6A4)2(k) — (b+ 6b)}|2
= [|[W(Az(k) — B)l|2 + nll2(k) ]2 + 75

(25

To see that this is indeed the case, we choose 6 A as the rank one matrix
0 (Az(k)—b) &7 (k)
6A° = A _ 26
IZCECEDIEQIN ¢
and choose 6b as the vector

NCEOED
For these choices of perturbations in A and b, it follows that

W(Az(k) —b), W6A°%(k),and W6b°
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are collinear vectors that point in the same direction. Hence

IW{(A+6A4%)%(k) — (b+ 6}l
= |[W(A#(k) — b) + W6A° (k) — W6b°||,
= ||W(Az(k) — b)|l2 + |[WEA 2(k)]||2 + ||W6b°||2
= |W(Az(k) — b)||2 + nll£(k)]l2 + 7»

which is the desired upper bound. We therefore conclude that

max) ;A <o i16bila<ng 1V (A + 6A)E(K) — (b + 6b) }H]2
= [W(Az(k) - b)ll2 + nll2(K)]l2 + 7 (28)
which establishes the following result.

Lemma 2.1: The min-max problem (25) is equivalent to the fol-
lowing minimization problem. Given A € R**" with k > n,b €
RF, W in(5),and non-negative real numbers (7, 13 ), determine, if pos-
sible, an (k) that solves

ming (| W(AZ(k) — b)ll2 + nll2(k)[}2 + 7). 29

Lemma 2.1 with the forgetting factor A = 1, i.e., W = I, coincides
with [7, Lemma 3.1}. Moreover, when we introduce a matrix Aw
W A and a vector bw = Wb, we can rewrite the problem (29) as

ming ) (| Aw2(k) — dw ||z + nl[Z(k)ll2 + ms)- (30)

Since the solutions of the problem (30) can be derived in the same way
by which the solutions of the problem (30) with W = I have been
expressed in [7], we can utilize [7, Th. 3.6.] to solve (30) as follows.

* Introduce the SVD of Aw

Aw=U[E]VT

0 G

where U € R*** and V. € R™*™ are orthogonal, and & =
diag(o1,...,0,) is diagonal, where

61262220, >0

are the singular values of Aw.
« Partition the vector UTbw into

b
[ W’l] =UTbw (32)
bwa
where bw,1 € R™ andbws € R¥ ™.
» Introduce the secular function
2
G(e) = by (B2 = n°D)(Z* + al) b - L [bwallf. (33)
¢ Define
ARl
ffowlla

Assume that bw does not belong to the column span of Aw . If
7 < T, then the unique solution is
. T -1 T
&(k) = (AwAw + aI) Awbw (34)

where « is the unique positive root of the secular equation

Gla) =01

IThe solutions in the other cases were given in [7].
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Thus, when bw does not belong to the column span of Aw and 5
is smaller than 7, the solution (34) to (25) is equivalent to the LRLS
solution (14) obtaind by the criterion (13).

Accordingly, when we consider a situation in which A is almost
known exactly and b is far from the column space of A4, in addition to
the above case, we may conclude that the LRLS algorithm gives more
accurate estimation parameters than the RLS algorithm.

C. Some Implementations of LRLS Algorithm

The computational comlexity of the LRLS filter is on the order of
n® since it requires the inversion of the matrix ®(k) at every instant
of time. Thus, we introduce an O(n?) algorithm to update the eigen-
decomposition of rank-one matrix updates [12].2 The algorithm de-
veloped in [12] employs a method to update the eigendecomposition
of rank-one matrix updates [13], [14] and the fast multipole method
(FMM) [15] to update each eigenvector. Therefore, the computational
complexity of the LRLS algorithm may be reduced to O(n?) by using
the method discussed in [12] as follows.

Let Q,_; Di—1Q7_, denote the eigendecomposition of &(k — 1).
In addition, let @} _, D}_, Q" , denote the eigendecomposition of the
rank-one update &(k — 1) + A~ u(k)uT (k). The method developd in
[12] allows us to update Dx_1 to D, [13],[14] and @, _, to Q}_,
[12], [13} in O(n?). Then, we can recognize that

Q. =Qi_.Di =)D\ +o(1- L (35)

This leads us to update £(k — 1) to £(k) in (19) as

#(k)=Q, [T — (1 - XD QF (k- 1)
+Q D' QT u(k)v(k). (36)

Therefore, the method discussed in [12] allows us to update Z(k — 1)
to 2(k) in O(n®) in this way.

Moreover, we express an O(n) algorithm to update the estimation
parameter vector Z(k) approximately. The discussed algorithm is the
leaky least-mean-square (LLMS) filter that further stabilizes the digital
implementation of the LMS algorithm. In the LLMS algorithm, the
criterion

J(k) = {d(k) — w” ())2(k)}* + crLmslZR)E - (37)
is minimized with respect to the estimation parameter vector Z(k),
where aLLMs is a positive control parameter. The minimization on (37)
yields the following time update for the estimation parameter vector
E(k):
[LLMS algorithm]
Initialize the algorithm by setting

#(0) = 0. (38)

For each instant of time, k = 1, 2, ..., compute
e(k) = d(k) — u” (k)2(k - 1) (39)
#(k) = (1 — povims)z(k — 1) + pe(k)u(k). (40)

where p is the step-size parameter. The leakage factor (1 — parims)
associated with the first term on the right side of (40) prevents the oc-
curence of overflow in a limited-precision environment by providing
a compromise between minimizing the mean-squared error and con-
taining the energy in the estimation parameters [1]. Although the es-
timation parameter vector (k) of the LLMS algorithm does not con-
verge to the LS solution, we can expect that the vector (k) of (40) ap-

2This method has already been indicated in [6].
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proximately converges to the solution of the LRLS algorithm, as shown
below.
Taking the mathematical expectation of both sides of (15), we get
E[#(k)2(k)] = E[6(K). @)
For the right side of (41), we introduce an assumption that the filter
input u(7) and the desired response d(i) are single realizations of

jointly wide-sense stationary stochastic processes, both with zero
mean, to rewrite this term as

k
Elo(] = 3 X" Eld(@)u()]

k
— Z Ak_ip
i=1

where p denotes the cross-correlation vector between the filter input
and the desired response. For the left side of (41), we introduce an
assumption that the vector £(k) is statistically independent from ® (k)
to rewrite this term as

(42)

E[2(k)2(k)] = E[®(K)]E[2(k)]

k
(Z /\k_iE['u(i)'uT(i)] + aI) T, LRLS

i=1

k
(Z Mgy aI) To,LRLS

=1

(43)

where R denotes the correlation matrix of the wide-sense stationary
stochastic process «(2). Thus, we obtain the following equation for the
mean value 2o, LrLs = E[#(k)] with0 < A < 1:

(—1—R+ aI) Lo LRLS = —1—p,as k - oo.

1-2A 1= “44)

Moreover, we get the similar equation to (44) for the LLMS algorithm
as

(R+ armsIDzo Lims = . (45)
For z, LrLs = Zo,LLMs in (44) and (45), we obtain
ortms = (1—A)a, 0<A< 1. (46)

Therefore, we may regard (46) as a guide for the estimation parameter
vector of the LLMS algorithm to converge to that of the LRLS algo-
rithm with 0 < A < 1 in the mean sense.

To get a condition about the step-size parameter px under which
the mean value E[Z(k)] of the estimation parameter vector Z(k)
of the LLMS algorithm converges to the solution z,rLms, we
decompose the symmetric matrix R into R = QDQT, where
D = diag(p1,p2,--+,pn), ;1 < p2 < ... < pn is the matrix of the
eigenvalues, and Q is the matrix of the eigenvectors of R. Introducing
the parameter error vector ez (k) = Z(k) — Zo,1.LMs, and defining the
rotated vectors

e (k) = QTes(k), u'(k)=QTu(k), z,rims=Q zorLLMs
then using the relation

d(k) = u” (k)z, 1Lms + co(k)
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(40) can be rewritten as

e (k) = [I — plarimsI + o' (K)u'T (k))]el (k — 1)
— poLLMs®, Lims + peo(k)u' (k). (47)

If we take the expected value of both sides of (47) with the common
independence assumption of ez (k) and u’ (%), and the relation

Elu(k)eo (k)] = arLMsZo,LLMS

obtained by minimizing the expected value of (37) with respect to
z,,Lims = E[Z(k)], (47) can be rewritten as
Ele.(k)] = [I — p(armsI + D)]Ele(k — 1)]. (48)

Clearly, from (48), the boundedness of the expected value of all modes
is guaranteed by the following condition on the step-size y:

0< p< (49)

pn + oLLMS

Relation (49) is identical to the conventional condition for the mean
value E[£(k)] of the estimation parameter vector £(k) of the LLMS
algorithm to converge to the Wiener solution zw = R™"p, although
a nonzero leakage factor arLMs results in some nonzero steady-state
coefficient bias [16].

Accordingly, we can use the LLMS algorithm as an O(n) algorithm
to track the estimation parameter vector of the LRLS algorithm ap-
proximately. However, we see, from (48), that when the eigenvalues
of the correlation matrix R are widely spread with p1 + aLims <
pn + arLLMms, the time taken by the average parameter vector to con-
verge is primarily limited by the smallest eigenvalues and orums.

ITI. EXPERIMENTAL RESULTS

In this section, by means of computer experiments with MATLAB,
we show that the LRLS and the LLMS algorithms give more accu-
rate estimation parameters than the RLS algorithm when the method
of Chandrasekaran et al. is more useful than that of LS. In addition,
we demonstrate that the LLMS algorithm can be effectively introduced
into the noise reduction system for noisy speech signals proposed in
[10] and [11].

A. Fundamental Example 1: Batch Processing, Eigenvalue Spread
x(R) =1

In this experiment, we consider a system identification setup illus-
trated in Fig. 1 to support the theoretical results of the previous section.
The unknown system was a lowpass filter of order n = 29 whose pass-
band was from the normalized angular frequency w = 0 to w = 0.47
and whose stopband was from w = 0.57 to w = . Table I lists the
coefficients of the lowpass filter.

The input signal to the unknown system uo(i),i = 1,2,...,% and
the observed input signal u(4),7 = 1, 2,..., k were defined as

u(i) = uo(i) + vu(7) (50)
where v, (7) denoted a white noise process of zero mean and variance
2. The output signal from the unknown system do(¢),4 = 1,2,...,k
and the observed output signal d(i),z = 1,2,..., k were defined, re-
spectively, as

n

do(i) = " uo(i) = Zm;uo(i —1+41),

=1

(51
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ugi)

Unknown System

Vi)

o

(Adaptive)
u(i) Parameter Estimator
Fig. 1. System identification setup.
TABLE 1 © L
COEFFICIENTS OF THE LOWPASS FILTER
T, = Tg9 | -0.00555489638749 T etedefTs T
T2 = Tog | -0.02442499477047
T3 =27 | -0.01760414047874
T4 = To6 0.00757896430410
I5 = Ios 0.02238212553468
Te = T24 | -0.00208414909154 @
T7 = Ta3 -0.03175784245076 Method of Chandrasekaran et.al.
zg = xo2 | -0.01072978865583 Method of LS
Tg = Toy 0.04181657535078 it T e e
T10 = T20 | 0.03540281323908
I11 = Z19 | -0.05049812267987
T12 = x18 | -0.08762989569786
I3 = T17 0.05635575263757 ,o*‘o ; ; ; 4! ; é ; ; ; o
T14 =16 | 0.31188616494361 Factor multiplied by the 2-induced norm of A
T 0.44157150419284

d(2) = do(2) + va(d) (52)
where v4(z) denoted another white noise process of zero mean and
variance 3. The signal uo(i) was a white noise process of zero
mean and unity variance for the correlation matrix R to have the
smallest 2-induced norm condition number3x(R) = (pa)/(p1) =
(1+02)/(1+03) = 1.

The SNRs of the input to and the output from the unknown system
were given by

k2.
SNRi, = 10log,, ————Zfl uﬂ(l.)
Yo v3(E)

ko0,
SNRout = 10log;, M
Yo v3()

The values of SNRi, and SNR,..:. were 30 and 0 dB, respectively, to
satisfy the condition where the solution of Chandrasekaran et al. was
more accurate than the solutions of both LS and TLS, i.e., where the
matrix A was almost known exactly, and the vector b was far from the
column space of A.

In addition, since the matrices A and b include the noises v, (Z) and
v4(1), the matrices 64 and 6b of the true matrices A + 6A and b + 6b
in (25) may be assumed to be

vl () = [u(®), va(G — 1),...,v.(i —n + 1)]
6AT = —[w.(1),74(2), . .., vu(k)]

(53)
(54)

3The correlation matrix R is ill conditioned if the condition number x(R) =
pn/p1 or the eigenvalue spread is large [1], [4]).

Fig. 2. Comparison of the solution (34) with LS and TLS solutions.

66" = —[va(1),va(2),...,va(k)]. (55)

Moreover, we assumed the norms [|6A{|2 and [|6B]|2 to be estimates of
7 and 73 in (25), although the matrices 64 in (54) and 6b in (55) were
different from the optimum matrices 6A° and 6b° in (26) and (27),
respectively.

In the experiment, the solutions (34) with A = 1 of the criterion
of Chandrasekaran et al., where the estimation value 7 of # in (25)
varied from 107" ||6Al|2 to 10]|6A4]|2, were compared with LS and TLS
solutions. An index parameter defined by

1g 2
e—’,—l;(z, £:)

has been used as the measure of the estimation accuracy. The ensemble
averaging has been performed over 100 independent trials of the exper-
iment.

When we used the observed input » (), which included the noise
vy (%), the LS solution was not the optimum solution due to the criterion
of Chandrasekaran et al. [7]. In addition, the used signals satisfied the
conditions for which (34) was the solution of (25). Fig. 2 indicates that
the solutions (34) with appropriate 7js perform better than the solutions
of LS and TLS.

(56)

B. Fundamental Example 2: Adaptive Filter, Eigenvalue
Spread x(R) > 1

In this experiment, we consider the same system identification setup
illustrated in Fig. 1. Only the input signal to the unknown system o (%)
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TABLE 11
USED CONDITIONS IN THE EXPERIMENT
b 0 0.4 0.6
P1uo 1 0.3644 0.1666
Pr,uo 1 1.956 2.553
a2 0.001035 | 0.001211 | 0.001350
p1 = p1u, + 02 1.001 0.3656 0.1679
Pn = Pnuo +02 1.001 1.957 2.555
x(R) = pn/m 1 5.352 15.21
A 0.995 0.995 0.995
a 72.5 79.4 93.6
ALLMS 0.363 0.397 0.468
u 0.0035 0.0035 0.0033

and SNR,u: of —10 dB were primarily different from that in Sec-
tion I1I-A. The input signal uo(%) was generated by

uo(?) = w(i) — byw(i - 1) (57)
where w(i) denoted a white noise process of zero mean and unity vari-
ance. From (57), the autocorrelation 7,4 (k) = Eluo(i)uo(t — k)] is
given by

Pug (00 = 14 53, 7o (1) = —b1, 7wy (k) = 0(k > 2). (58)

Thus, we can obtain the eigenvalue spread
X(B) = x (R + R, ) 2 1

where the correlation matrices Ry, and R, are (7, (]¢ — j|)) and
o021, respectively.

The LRLS and the LLMS algorithms have been numerically com-
pared with the RLS algorithm for each of three different eigenvalue
spreads. The used LRLS filter was the algorithm in Section II-A. The
estimation value 7 was set to |[[§A]|2 for the LRLS and the LLMS al-
gorithms. The constant ar1ms was given by (46) with A and o used in
the LRLS algorithm. The initial value 6 for the RLS algorithm was set
to o of the LRLS algorithm for both the initial conditions to coincide.
Table 11 lists the other conditions in the experiment. An index param-
eter €1(J) defined by

L1 APUNCI
== i — &y , =12,...,k
€(7) n;(l‘ ()% J 2
1T—l
61(])=TZE(1_Z)’ j:1$29"-9k
i=0

has been used with 7" = 50 as the measure of the smoothed estimation
accuracy. Another index parameter &1 () defined by

£) = (d) — v (N())?, i=1,2,....k
T-—1

6()= 2 Y EG=4), =12k
i=0

has also been used with T = 50 to obtain another characteristic of
the algorithms. The ensemble averaging has been performed over 100
independent trials of the experiment.

When the number of iterations k increases, the factor SA* in (6)
converges to 0 because of 0 < A < 1. Thus, the solution of the
RLS algorithm comes apart from the optimum value in the criterion
of Chandrasekaran et al. in this process, although the initial value é
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Fig. 3. Comparison of the experimental result €;(k) of the LRLS and the
LLMS algorithms with the RLS algorithm of the same initial condition for
b] = 0.
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Fig. 4. Comparison of the experimental result €, (k) of the LRLS and the
LLMS algorithms with the RLS algorithm of the same initial condition for
b = 04.

is ov. Figs. 3—5 show that the LRLS algorithm gives more accurate es-
timates than the RLS algorithm. Moreover, Fig. 3 demonstrates that
the LLMS algorithm performs as well as the LRLS algorithm since
(1-p(p1 +rms))F of (48) is 0.0084 with k = 1000 and the values
of y£, p1 and opLms in Table II. In cases of by = 0.4,0.6, (1 — u(p1 +
arrms))* are 0.069 and 0.12 with k£ = 1000 and the values in Table 1I,
respectively. Figs. 3—5 and the values of (1 — u(p1 + orms))* for
by = 0,0.4,0.6 indicate that the rate of convergence of the LLMS al-
gorithm slows down if the eigenvalues of the correlation matrix R are
widely spread with p1 + arims < pn + cLLMs.

On the other hand, Fig. 6 shows that the average errors &; (k) of
the LRLS and the LLMS algorithms are larger than those of the RLS
algorithm since the LRLS and the LLMS algorithms do not minimize
¥ | &(%) because of (13) and (37).

Accordingly, we can conclude that the LRLS and the LLMS algo-
rithms give more accurate estimation parameters than the RLS algo-
rithm in applications dealing with system identification where the noise
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Fig. 5. Comparison of the experimental result €; (k) of the LRLS and the
LLMS algorithms with the RLS algorithm of the same initial condition for
b] = 0.6.
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Fig. 6. Comparison of the experimental result £; (k) of the LRLS and the
LLMS algorithms with the RLS algorithm of the same initial condition for
bl =0.

vu(%) in A is much smaller than the signal uo () and the noise v4(%) in
b is large for b to be far from the column space of A.

C. Actual Example: Noise Reduction for Noisy Speech Signals

In this experiment, we consider a noise-reduction system [10], [1 1]
as an actual example illustrated in Fig. 7 to reduce a background noise
in a noisy speech. This system uses a noise reconstruction method
based on a linear prediction, a system identification, and an adaptive
line enhancer (ALE) [1], although the method proposed in [10] does
not utilize the ALE.

The noisy speech is represented as

d(i) = 5(i) + es(3)

where s() and e,(%) are a clean speech signal and a background noise,
respectively. The signals ©(¢), €. (¢), and 3(i) are the output of a linear
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prediction error filter (LPEF) [1], the reconstructed noise, and the en-
hanced speech signal, respectively. Hrprr(z) and Hnrr(z) denote
the transfer functions of the LPEF and the noise reconstruction filter
{(NRF), respectively. The system proposed in [11] includes the ALE* for
the input @(¢) to the NRF to have only few speech components. Since
a speech signal input to the LPEF is known as the stationary signal in a
short time interval, most of it can be predicted by the linear predictor.
On the other hand, the noise becomes the white signal by the LPEF. If
the background noise is assumed to be generated by exciting a linear
system with the white noise, it can be reconstructed from the whitened
noise by estimating the transfer function Hnxrr(2) of the noise-gener-
ating system. This method does not require the prior estimation of the
noise spectrum. In addition, the enhanced signal does not involve the
musical tones [10], [11].

In the system [10], [11] of Fig. 7, the LMS or the normalized LMS
algorithm [1] is used for the NRF. Thus, the power of the enhanced
speech signal §° (i) may become small since the NRF with the LMS
algorithm operates for °(i) to decrease. Clearly, from the previous
sections, 42(¢) of the LLMS algorithm is generally larger than that of
the LMS algorithm because of or.1.ms > 0. In addition, we can expect
that the LLMS algorithm will give more accurate estimation parameters
of the transfer function Hnrr(2z) when the error in the input 4#(2) is
much smaller than the true input w (2) and the clean speech signal s(i)
is larger than the background noise e, (z).

The noise-reduction system was tested under artificially noise con-
dition. All sound data prepared in simulations were sampled by 8 kHz.
As the speech signal, a Japanese sentence pronounced by a male was
used. The evaluation indexes for the noise reduction ability are SNR,,
and SNR,.;, which are given by

k2
SNR/, = 101og, | 2Zi=2® )
Zi:l 63 (Z)
Zf:l 52 ('L)
Tim {s() ~ 3D}
The noise es (i) was generated as the response of the filter with the
following transfer function:

SNR,,., = 10log,, [

1
1—2vcosfz—14 4222

N(z)=

to white noise w(i), where v = 0.9, and § = = /4. Incidentally,
the noise e, (¢) is modeled on the tunnel noise of an expressway. The
adaptive algorithm for the ALE and the LPEF was the LMS algorithm,
which was given by

£(t) = z(i — 1) + pe(i)u(s)
where

#(i) = [ha (4), ha(3), ..., hs(d)]”
(@) =[dGE —A),di-A—-1),...,di—A-S+1)]7
e(i) = d(i) — u” (i)2(i — 1)

for the ALE
(i) = [k (3), 5 (3),..., AL, (5)]7

w(i) =[d'(i —1),d'(E —-2),...,d' G — L)T
e(i) = d' (i) — w” (i)2(i — 1)

“In this system, the ALE works to estimate the speech s(i) by suppressing
the noise e, (7) [11].
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d(i)=s(i)+ei)
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s(i)

HLPEF(Z)

Hwd?) =

Hy (2)
TABLE III
USED PARAMETERS IN THE EXPERIMENT

ALE Decorrelation parameter A 40
Number of tap coefficients S 50
Step size p 0.1
LPEF | Number of tap coeflicients I, | 128
Step size u 0.01
NRF | Number of tap coefficients M | 128
Step size p 0.02

TABLE IV

SIMULATION RESULT OF THE NOISE REDUCTION. (2) NRF IS THE LMS
ALGORITHM. (b) NRF Is THE LLMS ALGORITHM OF arp,ms = 0.001

SNRou:dB]
SNRi[dB] | (A)] (B)
5.0 0.27| 0.18
-4.0 1.08| 1.00
-3.0 1.68| 1.61
-2.0 2.37| 2.34
-1.0 3.02| 3.00
0.0 3.60{ 3.62
1.0 406| 412
2.0 463| 474
3.0 5.05| 5.21
40 5.61| 5.82
5.0 5.95| 6.20

for the LPEF {10}, [11]. The adaptive algorithm for the NRF was the
LLMS algorithm,5 which is given by

(i) = (1 — poLLms)2(t — 1) + pe(i)u(i)
where

#(3) = [#1(6), £2(3)s . . . , ar(D)]T
u(i) = [B(5), D — 1),..., (i — M+ 1)]”
e(i) = d@@) — uT (D)2(G — 1).

The difference between 0 (z) and w(z) is unknown in the system of
Fig. 7. Thus, the parameter arpms of the LLMS algorithm was set
to 0.001 from some experiments since the upper bound 7 on [{6A{}> of
(25) was unknown. Table III lists the each parameter in the experiment.
Table IV and Fig. 8 show the simulation result. We sec from Table IV
that the SNRL,,; with the LLMS algorithm as the NRF becomes larger
than that with the LMS algorithm as the NRF, as the SNR;, gets larger
than 0. In addition, Fig. 8 shows that the power of the enhanced speech
signal with the LLMS algorithm as the NRF is somewhat larger than

5The LMS algorithm for the NRF was the LLMS algorithm with ar,,ms = 0
in the experiment.

(@

Amplitude

(b)

Amplitude

©

Amplitude

(&)

Amplitude

Time { x 1/8000) [s] x10'

Fig. 8. Waveforms of the simulation result. (a) Clean speech. (b) Noisy
speech (SNR!, = 5 dB). (c) Enhanced speech with the LMS algorithm as the
NRF (SNR. ,, = 5.95 dB). (d) Enhanced speech with the LLMS algorithm of

out
apims = 0.001 as the NRF (SNR.,, = 6.20 dB).

out

that with the LMS algorithm as the NRF. We can conclude that these
results support the theoretical results in the previous sections in the
main.

IV. CONCLUSION

In this work, we have expressed that there is a case where the equa-
tion obtained by the extended criterion of Chandrasekaran et al. with
the exponential weighting factor is identical to one obtained by the cri-
terion of the LRLS algorithm. In other words, we have explained that
it is possible for the LRLS algorithm to give more accurate estimation
parameters than the RLS algorithm. In addition, some implementations
of the LRLS filter by using the method for updating the eigendecom-
position of rank-one matrix updates, or by using the LLMS algorithm,
have been introduced to decrease the computational complexity of the
LRLS algorithm.

Moreover, by means of computer experiments, we have shown that
the LRLS and the LLMS algorithms yield more accurate estimation pa-
rameters than the RLS algorithm when the method of Chandrasekaran
et al. is more useful than that of LS and TLS. Besides, we have demon-
strated that the LLMS algorithm can be effectively introduced into the
noise-reduction system for noisy speech signals proposed in [10] and
{11] to support the theoretical results in this work in the main.

Future issues involve a stochastic interpretation of the experimental
results shown in this work and developments of simple and fast LRLS-
like filters whose computational complexity is smaller than on the order
of n* and whose rate of convergence is faster than that of the LLMS
algorithm for correlated inputs whose correlation matrix R has the wide
eigenvalue spread with p1 4+ arLms € pn + aLLMs.
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