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Abstract 

This paper presents a Sequential Approximate Optimization (SAO) procedure that uses the Radial 

Basis Function (RBF) network. If the objective and constraints are not known explicitly but can be 

evaluated through a computationally intensive numerical simulation, the response surface, which 

is often called meta-modeling, is an attractive method for finding an approximate global minimum 

with a small number of function evaluations. An RBF network is used to construct the response 

surface. The Gaussian function is employed as the basis function in this paper. In order to obtain 

the response surface with good approximation, the width of this Gaussian function should be 

adjusted. Therefore, we first examine the width. Through this examination, some sufficient 

conditions are introduced. Then, a simple method to determine the width of the Gaussian function 

is proposed. In addition, a new technique called the adaptive scaling technique is also proposed. 

The sufficient conditions for the width are satisfied by introducing this scaling technique. Second, 

the SAO algorithm is developed. The optimum of the response surface is taken as a new sampling 

point for local approximation. In addition, it is necessary to add new sampling points in the sparse 

region for global approximation. Thus, an important issue for SAO is to determine the sparse 

region among the sampling points. To achieve this, a new function called the density function is 

constructed using the RBF network. The global minimum of the density function is taken as the 

new sampling point. Through the sampling strategy proposed in this paper, the approximate global 

minimum can be found with a small number of function evaluations. Through numerical 

examples, the validities of the width and sampling strategy are examined in this paper.  

Keywords: Response Surface, Sequential Approximate Optimization, RBF 

network, Density Function, Engineering Optimization  
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1. Introduction 

 In recent years, many commercial software programs for design 

optimization have been widely utilized in a variety of industries. Recently, some 

population-based global optimization techniques, such as the Genetic Algorithm 

(GA), the Particle Swarm Optimization (PSO), and the Differential Evolution 

(DE), have been developed in comparison with classical mathematical 

programming. These global optimization techniques have been applied to 

practical design optimization. In addition, these methods are applicable to the 

multi-objective optimization problems. In general, the population-based 

optimization techniques require a large number of function evaluations to find the 

global minimum and a set of pareto-optimal solutions. This makes the direct 

application of these optimization techniques to practical design optimization 

problems difficult in some cases due to the time-consuming. Since classical 

mathematical programming requires the sensitivity of the objective and 

constraints, it is not applicable to non-differentiable problems. In addition, 

function evaluations for calculating the sensitivity and determining the step-size 

are required. Nowadays, the time made available to develop new products is 

continuously being shortened, making it preferable to reduce the computing-time 

required for optimization. This implies that one of the most important aspects is 

reducing the function evaluations in practical design optimization. It is important 

to find the global minimum with high accuracy using global optimization 

techniques, and these global optimization techniques generally require a large 

number of function evaluations. However, it is also important to find an 

approximate global minimum for a design problem with a small number of 

function evaluations even when the objective and constraints are not known 

explicitly.  

 If the objective and constraints are not known explicitly but can be 

evaluated through computationally intensive numerical simulation, the response 

surface, which is called meta-modeling, is an attractive method for finding an 

approximate global minimum with a small number of function evaluations [1]. 

The Design of Experiment (DOE) is one of the most popular response surface 

methods [2]. The general and classical response surface procedure is briefly 

summarized as follows: 
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(STEP1) First, numerous sampling points in the design variable space are set. The 

orthogonal array or Latin Hypercube Design (LHD) is often used to determine 

these sampling points. 

(STEP2) The objective and constraints are evaluated at these sampling points. 

Thus, the number of sampling points is equal to the function evaluations. 

(STEP3) Then, a response surface which approximates the objective and 

constraints is constructed. Quadratic polynomials, the Kriging, and the Radial 

Basis Function (RBF) network are used to construct the response surface.  

(STEP4) Finally, the approximate optimum can be obtained by optimizing the 

response surface. The optimum of the response surface is taken as the 

approximate optimum of the original design optimization problem 

It is understood that the response surface is one of the approximation 

techniques. It is clear from the general flow described above that the number of 

function evaluations is drastically reduced by using the response surface 

approach. Using the quadratic polynomials as the response surface, it is possible 

to approximate the original function globally. It is possible to use the Kriging 

[3,4,5] and the RBF Network [6,7,8,9,10,11] to approximate the original function 

locally and globally, because these two methods utilize the Gaussian function as 

the basis function. Thus, the response surface using the Kriging and RBF Network 

is expressed by the linear combination of the weight and Gaussian function. In 

addition, the global and local approximations by the Kriging and the RBF 

Network imply that the response surface by these methods will be a multi-modal 

function. However, an appropriate parameter should be adjusted in order to 

approximate the original function locally and globally. Therefore, one key for a 

good approximation is to determine the parameter appropriately. Adjusting this 

parameter appropriately will allow the global minimum to be found with high 

accuracy. This parameter is the width of the Gaussian function [9,12]. If this 

width is small, the response surface will become peaky. Otherwise, the response 

surface will become smooth. The effect of the width is shown in Figs.1 (a) and 

(b). In Fig.1, the black dots represent the sampling points, the dashed line 

represents the Gaussian function, and the bold line denotes the response surface. 

The following weights are assigned to the sampling points: w1 = 0.5 at x = 1, w2 = 

1.7 at x = 3, and w3 = 1.3 at x = 5. The difference between Fig.1(a) and Fig.1 (b) is 

the value of the basis function width. The widths in Figs.1(a) and (b) are set to 0.5 
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and 1.0, respectively. It is clear from Fig.1 that the determination of the width 

plays an important role. 
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Fig.1 Effect of width in the Gaussian function 

 

In recent years, the Sequential Approximate Optimization (SAO) has been 

widely studied [13,14,15,16,17,18,19], compared with the classical response 

surface approach described above. The general procedure for SAO is shown in 

Fig.2. 

Input of Sampling Points

Construction of Response Surface

Optimization to the Response Surface

Terminal Criteria

Addition of New Sampling Points

End
Yes

No

 
Fig.2 General procedure of SAO 

 

 In SAO, the response surface is constructed repeatedly by adding new 

sampling points, until the terminal criterion determined by the decision-maker is 

satisfied. In comparison with the classical response surface approach described 

above, it is expected that an approximate global minimum with high accuracy can 

be obtained through the addition of the new sampling points. In order to obtain an 

approximate global minimum with high accuracy, it has been reported that the 

most important requirement is simultaneously adding the new sampling points 
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around (1) the optimum of the response surface and (2) the sparse region in the 

design variable space [3,9,13,14,15,16,17,18,19,20,21,22]. Let us consider the 

first objective, which is to add the optimum of the response surface as the new 

sampling point. This will lead to a local approximation with high accuracy. The 

zooming method belongs to this category [23]. However, only the successive 

additions of the optimum of the response surface may result in finding the local 

minimum. Then, the second objective, which is to add a sampling point in the 

sparse region, plays an important role. The addition of a new sampling point in the 

sparse region will lead to the global approximation. By this addition, it is possible 

to avoid falling into the local minimum. Thus, global and local approximations 

will be achieved simultaneously through the above sequential sampling strategy. 

In this sequential sampling strategy, it is important to find the sparse region in the 

design variable space. This paper will roughly belong to Ref.[3,20,21]. In these 

references, the expected improvement (EI) algorithm is employed to find the 

sparse region. In the EI algorithm, the region with high uncertainty corresponds to 

the sparse region. By adding the new sampling points to the regions with high 

uncertainty, a global approximation can be achieved. However, the Gaussian 

function is also employed in the EI algorithm. In order to find the sparse region 

with the EI algorithm, the parameter in the Gaussian function should be adjusted. 

Therefore, the common subject is the determination of the width in the Gaussian 

function with a simple manner. 

 In this paper, we use the RBF network to construct the response surface, in 

which the Gaussian function is employed as the basis function. In particular, we 

will consider the determination of the width and the exploration of the sparse 

region in the design variable space. First, we discuss the width of the Gaussian 

function, which affects the accuracy of the response surface. Two equations for 

determining the width have been proposed [9,12]. Among these, the equation 

proposed by Nakayama [9] is effective through the author’s numerical 

experiences in the case of one or two design variables. Thus, a good 

approximation can be achieved by using the equation proposed by Nakayama in 

the case of one or two design variables. However, it may be impossible to find an 

approximate global minimum with high accuracy in a case of involving more than 

three design variables. Therefore, a new equation for determining the width is 

necessary. By examining the equation proposed by Nakayama, some sufficient 
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conditions are introduced. Then, a new equation for determining the width is 

proposed. In addition, a new technique called the adaptive scaling technique is 

also proposed in this paper. Second, an effective method for determining the 

sparse region in the design variable space is considered. In Ref.[9], a simple 

method for determining the sparse region was proposed. However, this method 

basically depends on the randomness. Thus, a deterministic method for finding the 

sparse region is preferable from the viewpoint of efficiency.  

The remainder of this paper is organized as follows: In section 2, the RBF 

network is described briefly. In this section, the width proposed by Nakayama is 

also analyzed, and some sufficient conditions for a good approximation are 

determined. Then, a new equation for the width is proposed. In addition, the 

adaptive scaling technique is also described. In section 3, the new function to find 

the sparse region in the design variable space, which is called the density function, 

is introduced, and the details of an SAO algorithm that uses the density function 

are shown in section 4. The density function utilizes the RBF network, making its 

construction easy. In section 5, some benchmark problems are discussed in order 

to examine the proposed SAO algorithm.  

2. Radial Basis Function Network 

2.1 Learning of RBF network 

An RBF network is a three-layer feed-forward network. The output of the 

network fa(x) , which corresponds to the response surface, is given by 

1
( ) ( )m

a i ii
f w h


x x      (1) 

where m represents the number of sampling points, hi(x) is the i-th basis function, 

and wi denotes the weight of the i-th basis function. In this paper, the following 

Gaussian function is used as the basis function. 

2

( ) ( )( ) exp( )
T

i i
i

i

h
r

 
 

x x x xx    (2) 

In Eq(2), xi represents the i-th sampling point, and ri is the width of the i-th basis 

function. The response yi is calculated at sampling point xi. The learning of the 

RBF network is usually accomplished by solving 
2 2

1 1
( ( )) minm m

i a i i ii i
E y f w

 
    x    (3) 
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where the second term is introduced for the purpose of regularization. It is 

recommended that i  in Eq.(3) have a sufficiently small value (e.g. 

31.0 10i
  ). Thus, the learning of the RBF network is equivalent to finding the 

weight vector w [24]. The necessary condition of Eq.(3) leads to the following 

equation: 
1( )T T w H H Λ H y     (4) 

where H, Λ , and y are given as follows: 

1 1 2 1 1

1 2 2 2 2

1 2
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( ) ( ) ( )

( ) ( ) ( )
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m

m m m m

h h h
h h h

h h h
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x x x
x x x
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   (5) 

1

2

0 0
0 0

0 0 0 m







 
 
 
 
 
  

Λ

 0 0 0 0
 
 
 
 
 0 0 0 0
 

0 0
 

0 0 
 
 0 0 0 0
 

0 0 0 0 
 
 
 
 
 

 
 
 
 
  
 
       (6) 

1 2( , , , )Tmy y yy ( , , , )T
m( , , , )m( , , , )y y y( , , , )y y y( , , , )my y ym( , , , )m( , , , )y y y( , , , )m( , , , )       (7) 

 It is clear from Eq.(6) that the learning of the RBF network is equivalent to 

the matrix inversion 1( )T H H Λ . In the SAO, the new sampling points are 

added. Using the RBF network, it is easy to calculate the weight vector w, because 

the additional learning is reduced to the incremental calculation of the matrix 

inversion. The detailed procedure is found in Ref.[24]. 

2.2 Width of Basis Function 

 Determining the width of the basis function is the key factor for good 

approximation. The optimization with respect to width may be valid. However, 

the increment of the sampling points will cause some difficulties in optimizing the 

width, such as the local minimum. Thus, it is preferable to determine the width 

with a simple method. To determine the width easily, the following equation was 

proposed by Nakayama [9]: 

max
n
dr
nm

       (8) 

where dmax denotes the maximum distance among the sampling points. n denotes 

the number of design variables, and m is the number of sampling points. Eq.(8) is 
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applied to all basis functions. Thus, 1 2 mr r r r   mr r r rmr r r rmr r r r   r r r r . Eq.(8) is considered to 

be the generalization of the equation proposed by Haykin [13].  

 Suppose that all of the design variables are equally scaled. This scaling 

technique, which is called the adaptive scaling technique, will be described in 

section 2.3. Let us consider the K-level full factorial design, in which the regular 

interval is given by d . In this case, dmax is given by 

max ( 1)d n K d        (9) 

The black dots in Fig.3 show the sampling points with two design variables.  

1x

2x

d

d ( 1)k d 

( 1)k d   
Fig.3 Sampling points with two design variables 

In the case of n design variables, the number of sampling points, m, is simply 

calculated as follows:  
nm K       (10) 

Eqs.(9) and (10) are substituted into Eq.(8). We solve Eq.(8) with respect to 

r d , and then we can finally obtain the following equation: 

2
2 1(1 )
n
nr n

d K



 


     (11) 

In Eq.(11), K   is considered. This implies an ideal distribution of the 

sampling points in the design variable space. Table 1 shows the convergence at 

K  .  

Table 1 Convergence of r d  at K   
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The number of
design variables n

r /Δd

1 1.000
2 1.000
3 1.201
4 1.414
5 1.621
6 1.817
7 2.003
8 2.181  

 

It is clear from Table 1 that the uniform convergence of r d  can be achieved in 

the cases of n=1 and n =2. However, r d does not converge uniformly in the 

case of 3n  . Therefore, 1r d   cannot be achieved at K  . It is 

assumed that the key factor for a good approximation is the uniform convergence, 

which is 1r d   at K  . Then, on the basis of Eq.(8), some sufficient 

conditions for the width for a good approximation by the RBF network are 

summarized as follows: 

(W1) It is preferable to consider the number of design variables, n. 

(W2) It is also preferable to consider the number of sampling points, m. 

(W3) It is preferable to consider the maximum distance among the sampling 

points, dmax. 

(W4) It is preferable to consider the uniform convergence of r d  through the 

increment of the number of design variables. ( 1r d   at K  ) 

In order to satisfy the above sufficient conditions, the following equation 

for the width may be valid: 

max
1 2 m n

dr r r
n m

   mr r rmr r rm   r r r   r r r     (12) 

Since Eq.(12) satisfies the above sufficient conditions at K  , a good 

approximation can be expected. However, Eq.(12) does not consider the 

sparseness and density of the sampling points. In addition, it is clear from Eq.(10) 

that numerous sampling points are required for a good approximation, using 

Eq.(12). Then, the following equation considering the sparseness and density of 

the sampling points is proposed in this paper. 

,max

1
i

i n

d
r

n m



 1,2, ,i m1,2, ,i m1,2, ,i m1,2, ,    (13) 
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where di,max denotes the maximum distance from the i-th sampling point. Eq.(13) 

is applied to each basis function individually, unlike Eqs.(8) and (12).  

2.3 Adaptive Scaling Technique 

As already described, all of the design variables should be scaled equally 

in the development of Eq.(13). A simple scaling technique, called the adaptive 

scaling technique, is introduced in this section. The following equation is used to 

scale all of the design variables: 
L

I I
I U L

I I

x xX s
x x


 


 1,2, ,I n1,2, ,I n1,2, ,I n1,2, ,    (14) 

where xI is the I-th design variable. xIU and xIL denote the upper and lower bounds 

of the I-th design variable, respectively. s (>0) in Eq.(14) denotes the scaling 

coefficient. Using Eq.(14), all of the design variables are scaled between 0 and s. 

The scaling coefficient s plays an important. If the scaling coefficient s is fixed, 

(W4) described above may not be satisfied. Thus, scaling coefficient s should be 

adjusted adaptively. Then, we develop the adaptive scaling technique to satisfy 

(W4). The algorithm for this technique is summarized as follows: 

(STEP1) Initial scaling coefficient s (>0) is set up.  

(STEP2) All of the design variables are scaled by Eq.(14). 

(STEP3) The width given by Eq.(13) is calculated in the scaled space. 

(STEP4) The minimum width rmin is found. 

min 1
min{ }ii m

r r
 

       (15) 

(STEP5) If min 1r  , then scaling coefficient s is updated as follows: 

s s   ( 1  )     (16) 

Otherwise, the adaptive scaling algorithm will be terminated. On the basis of the 

author’s numerical experiences, 1.2   is recommended. 

 The characteristics of this scaling technique are as follows: (1) it can be 

used to calculate the width in the scaled space and (2) it can be used to examine 

(W4), which is one of the sufficient conditions. Therefore, the sufficient 

conditions for a good approximation are always verified. 
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3. Density Function Using RBF network 

 The objective of the density function is to discover a sparse region in the 

design variable space. It is expected that the addition of new sampling points in 

the sparse region will lead to the global approximation. An important issue is the 

construction of a density function using the RBF network. In the SAO, the 

approximate global minimum can be found through the addition of new sampling 

points. From the point of view of computer-programming code, it is not preferable 

to construct numerous subroutines. For simpler computer-programming code, it is 

preferable to use one or two subroutines multiple times. Thus, the density function 

using the RBF network is developed. 

 The basic concept of the density function is very simple. The local maxima 

are generated at the sampling points. To achieve this objective, every output y of 

the RBF network is replaced with +1. Suppose that the number of sampling points 

is m, and D(x) denotes the density function. Eq.(13) with the adaptive scaling 

technique is also used for the density function. The detailed procedure to construct 

the density function is summarized as follows:  

(D-STEP1) The following vector yD is prepared at the sampling points.  

1(1,1, ,1)D T
my 1(1,1, ,1)D T(1,1, ,1)D T(1,1, ,1)m      (17) 

(D-STEP2) The weight vector wD of the density function D(x) is calculated as 

follows: 

( )D T T D w H H Λ H y     (18) 

(D-STEP3) The density function D(x) is minimized to determine the sparse region 

in the design variable space.   

1
( ) ( ) minm D

i ii
D w h


 x x     (19) 

(D-STEP4) The point at which the density function D(x) is minimized is taken as 

the new sampling point.  

 Fig. 4 shows an illustrative example in one dimension. The black dots 

denote the sampling points.  
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2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

x

D(x)

A
B

Density function D(x)

Interpolation ExtrapolationExtrapolation

 
Fig.4 Illustrative example of density function in one dimension 

 

 It is clear from Fig.4 that local minima are generated in the sparse region 

of the sampling points and that local maxima are also generated at the sampling 

points. The RBF network is basically the interpolation between sampling points: 

therefore, points A and B in Fig.4 are the lower and upper bounds of the density 

function.  

4. Algorithm for SAO Using RBF network 

 Fig.5 shows the detailed algorithm for SAO using the RBF network. In this 

paper, the terminal criterion of SAO is determined by the maximum number of 

sampling points, mmax.  
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Calculation of the response of objective and constraints

Construction of D(x) from m sampling points.  Addition of point such as D(x) → min

count < int(n/2)count = count +1

rmin ≦ 1

Scaling of the all design variables

Calculation of rmin in the scaled space

rmin ≦ 1

m < m max

End

Y

N

Y

N

Y

Y

N

Construction of the response surface of objective and constraints from m sampling points
N

count = 1

Scaling of the all design variables

Calculation of rmin in the scaled space

Update of scaling coefficient s
by Eq.(16)

Update of the number of sampling points as m : = m + 1

Initial sampling points m and initial scaling coefficient s

Find the optimum of response surface. Addition of the optimum of response surface

Update of the number of sampling points as  m: = m + 1

Update of scaling coefficient s
by Eq.(16)

Second phase

First phase

 
Fig.5 Proposed SAO algorithm 

 

 The proposed SAO algorithm is roughly divided into two phases. The first 

phase is used to construct the response surface and add the optimum of response 

surface as a new sampling point. Thus, in the first phase, the number of new 

sampling points is one that is the optimum of the response surface. The second 

phase is used to construct the density function and add the optimum of the density 

function as a new sampling point. It should be noted that the density function is 

constructed until the terminal criterion, which is described later, is satisfied. As a 

result, many new sampling points will be added, according to the number of 

design variables, n . 

Let us consider the first phase. First, the initial sampling points are 

determined by using the orthogonal array, the LHD, and so on. The number of 

sampling points is m. The initial scaling coefficient is also set up. The objective 

and constraints are calculated at the sampling points. Then, the adaptive scaling 

technique is applied. After the scaling coefficient is determined with the adaptive 
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scaling technique, the response surface of the objective and constraints is 

constructed from m sampling points, by RBF network. The global optimization 

technique is applied to the response surface, in order to find the optimum of the 

response surface. The optimum of the response surface is directly taken as the 

new sampling point. In this phase, the number of sampling points is updated as 

m= m +1.  

Then, the second phase, in which the density function is constructed, is 

considered. In order to construct the density function by the RBF network, the 

adaptive scaling technique is also employed. Thus, the scaling coefficient and 

width are determined and these values are used to construct the density function. 

The point at which the density function is minimized is then found. The optimum 

of the density function is taken as the new sampling point, and the number of 

sampling points is updated as shown in Fig.5.  In Fig.5, the parameter count is 

introduced. This parameter controls the number of sampling points that can be 

obtained by the density function. Thus, in the proposed algorithm, the number of 

sampling points by the density function varies according to the number of design 

variables. If the parameter count is less than int(n/2), this parameter is increased 

as count = count +1, and the adaptive scaling techniques is also employed as 

shown in Fig.5. The terminal criterion in the second phase is given by int(n/2), 

where int() represents the rounding-off. If the terminal criterion is satisfied, the 

number of sampling point m is compared with mmax. If the m is less than mmax, the 

objective function and constraints are calculated as shown in Fig.5. Otherwise, the 

algorithm is terminated. In the SAO, several optima can be obtained because the 

response surface is constructed repeatedly through the addition of the new 

sampling points. In this paper, the optimum of the response surface at mmax is 

taken as the final optimum.  

5. Numerical Examples 

 The validity of the proposed SAO algorithm will now be examined 

through some typical numerical examples. The objective and constraints are 

approximated separately by the RBF network. These response surfaces and the 

density function become a multi-modal function: Therefore, the global 

optimization technique is required to find the global minimum of the response 

surface. Then, the Particle Swarm Optimization (PSO) is used as the global 
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optimizer. In all of the numerical examples, the following PSO parameters are 

used: (1) the number of particles is 30 and (2) the maximum search iteration is set 

to 500. The initial scaling coefficient is set to 1 in all of the numerical examples.  

5.1 Illustrative Example 

 Let us consider the following optimization problem. 
2 2

1 2( ) ( 1) ( 0.5) minf x x     x    (20) 

2 2 7
1 2 2

1
[( 3) ( 2) ]exp( )( ) 1 0

12
x x x

g
   

  x   (21) 

2 1 2( ) (10 ) 7 1 0g x x   x      (22) 

2 2
1 2

3
( 0.5) ( 0.5)( ) 1 0

0.2
x x

g
  

  x    (23) 

0 1 x      (24) 

In Fig.6, the local minimum xL and global minimum xG are shown by the squares. 

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

1.0

Global minimum

Local minimum

3( ) 0g x

2 ( ) 0g x

1( ) 0g x

Feasible

Feasible

x1

x2

 
Fig.6 Feasible region, and local and global minima 

 

The objective functions at xL and xG are given as follows: 

( ) 0.6867Lf  x  at (0.2623,0.1223)T

L x   (25) 

( ) 0.7484Gf  x  at (0.2016,0.8332)T

G x   (26) 

Two constraints g1(x) and g3(x) are active at the local and global minima. It is 

clear from Fig.6 that there are two separate feasible regions in this problem and 

that the response surface approach is valid.  

 The five initial sampling points represented by the dots   in Fig.6 are 

determined by the LHD, and the maximum number of sampling points mmax is set 

to 50. The objective and constraints are approximated separately, and the 
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presented SAO algorithm is applied. The distribution of the sampling points at 

mmax is shown in Fig.7, and the objective and constraints at the optimum of the 

response surface through the successive addition of the sampling points are shown 

in Table 2.  

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

1.0

x1

x2

 
Fig.7 Distribution of sampling points at mmax 

 

Table 2 Objective and constraints at the optimum of the response surface 

Number of sampling
points

5 -0.7818 0.2189 -0.7468 -0.2441
11 -0.6321 0.0966 -0.5380 -0.3510
17 -0.7245 0.0414 -0.5886 -0.0920
23 -0.7257 -0.0159 -0.5686 -0.0309
29 -0.7510 0.0158 -0.6006 -0.0100
35 -0.7468 0.0000 -0.5919 0.0000
41 -0.7468 0.0000 -0.5919 0.0000
47 -0.7468 0.0000 -0.5919 0.0000

( )Gf x( )G( )G( )( )x( ) 1( )Gg x( )G( )G( )( )x( ) 2 ( )Gg x( )G( )G( )( )x( ) 3 ( )Gg x( )G( )G( )( )x( )

 
The sampling points are distributed around the global minimum, and are also 

distributed in the design variable space. The approximate global minimum is 

(0.2024,0.8327)TG x (0.2024,0.8327)G x , and the objective at this point is ( ) 0.7468Gf  x( ) 0.7468G( ) 0.7468G( ) 0.7468( ) 0.7468 ( ) 0.7468( ) 0.7468x( ) 0.7468 .  

5.2 Application to several benchmark problems 

 The validity of the proposed SAO algorithm is examined through five 

typical benchmark problems. These problems are listed in Table 3. The initial 

sampling points are determined by the LHD. In each of these problems, the initial 

number of sampling points is set to five. Twenty trials are performed with 

different random seeds. In the constrained problems, the objective and constraints 

are approximated separately. The results are shown in Table 4. 
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Table 3 Benchmark problems considered in this paper 

No. Objective and constraints f(xG)

1

2

3

4

5

5
11

( ) cos[( 1) ] min
i

f i i x i


   x

10 7.5x 
( ) 12.871Gf x  

2 2 2 2
2 1 1 2( ) 2 0.01( ) (1 ) 2(2 )f x x x x       x

1 1 27sin(0.5 )sin(0.7 ) minx x x 

0 5 x

( ) 1.4565Gf  x

2

1
( ) sin 0.1 mini i ii

f x x x


  x

10 10  x
( ) 0Gf x

2 2
1 2( ) minf x x  x

2 2
1 1 2( ) ( 4) 3 ( 0.1) 20 0g x x      x

1 26 4 4 6x x     

2 2
1 2( ) ( 1) ( 0.5) minf x x     x

2 2 7
1 1 2 2( ) [( 3) ( 2) ]exp( ) 12 0g x x x      x

2 1 2( ) 10 7 0g x x   x
2 2

3 1 2( ) ( 0.5) ( 0.5) 0.2 0g x x     x
0 1 x

( ) 11.4371
G

f x

( ) 0.7483Gf  x

 
Table 4 Results of benchmark problems 

Test1 Test2 Test3 Test4 Test5
m max 15 50 50 50 50

Minimum of objective -12.8708 -1.4557 4.3601E-04 11.4426 -0.7486

Maximum of objective -12.3941 -1.3107 9.3849E-03 11.9480 -0.7431

Average of objective -12.7723 -1.4061 3.5725E-03 11.6164 -0.7467

Standard deviation of objective 1.4444E-01 4.8181E-02 3.1839E-03 1.7970E-01 1.7961E-03  
 It is clear from Table 4 that the proposed SAO algorithm is valid for the 

benchmark problems considered here.  

5.3 Comparison with other SAO algorithms 

 It is difficult to examine and evaluate all of the SAO algorithms because 

they employ the specific parameters in the algorithm. In addition, various 

sequential sampling algorithms are developed. One of the important aspects in the 

SAO is to reduce the function evaluations. Thus, it may be possible to examine 

the validity of the proposed algorithm from the view point of function evaluations. 

In this section, the proposed SAO algorithm is compared with other SAO 

algorithms through benchmark problems. The benchmark problems are taken 
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from Refs. [7] and [14], in which the function evaluations are clearly described. 

The proposed SAO algorithm is compared through six benchmark problems. In 

the proposed algorithm, initial sampling points are determined by the LHD, and 

initial number of sampling points is set to 10. The comparisons of function 

evaluations and the objective at the approximate global minimum are listed in 

Table 5.  

Table 5 Comparison of other method based on Ref.[7] and [14] 

Ref. Objective and constraints f  ( x G  )
Objective at
approximate

global minimum

Function
evaluations

Proposed
algorithm

Function evaluations by
the proposed algorithm

14 44 28

14 60 28

14 36 34

14 77 60

7 N/A 80 40

7 N/A 60 30

6
2 4 2 41
1 1 1 2 2 2( ) 4 2.1 4 4 min

3
x

f x x x x x x      x

2 2  x

2 2
1 2 1 2( ) cos(18 ) cos(18 ) minf x x x x    x

1 1  x

2
2

2 1 12
5.1 5( ) 6
4

f x x x


 
    
 

x

1
110 1 cos 10 min

8
x



 
    

 

15 10x   20 15x 

1 2 2 1( ) sin( ) sin( ) minf x x x x  x

2 2   x

1 1 2 2( ) sin( ) sin( ) minf x x x x  x

2 2   x

2 2  x

2 2 2
1 2 1 1 2 1 2 2( ) [1 ( 1) (19 14 3 14 6 3 )]f x x x x x x x x         x

2 2 2
1 2 1 1 2 1 2 2[30 (2 3 ) (18 32 12 48 36 27 ] minx x x x x x x x        

1.032

2.0

0.398

9.629

9.629

1.029

1.854

0.398

3.0003.000

1.016

1.990

0.398

3.050

9.628

9.623

 

5.4 Examination of width 

 The validity of the width proposed in this paper is examined through the 

following problem. 

 4 2

1

1( ) 16 5 min
2

n

i i i
i

f x x x


   x    (27) 

5 5  x       (28) 

The global minimum xG is ( 2.9035, 2.9035, , 2.9035)TG    x ( 2.9035, 2.9035, , 2.9035)( 2.9035, 2.9035, , 2.9035)   ( 2.9035, 2.9035, , 2.9035) . The number of 

design variables n is set to 10. In this case, the objective function at xG is  

( ) 391.661Gf  x . The PSO is applied to this problem directly. The number of 

particles is set to 20, and the maximum search iteration is set to 500. Therefore, 

10000 function evaluations are required to find the global minimum. The PSO 

results are shown in Table 6 through 10 trials. 
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Table 6 Results of direct search by the PSO 

Trial x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 obj.
1 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -391.6600
2 -2.9036 -2.9036 -2.9036 -2.9035 -2.9035 -2.9035 -2.9035 2.7468 -2.9035 -2.9035 -377.5200
3 -2.9046 -2.9027 -2.9021 -2.9038 -2.9032 -2.9047 -2.9015 -2.9043 -2.9029 -2.9049 -391.6600
4 -2.9036 -2.9035 -2.9036 -2.9036 -2.9035 -2.9035 -2.9036 -2.9035 -2.9036 -2.9036 -391.6600
5 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -391.6600
6 -2.9035 -2.9035 -2.9035 -2.9035 -2.9036 -2.9035 2.7468 -2.9036 -2.9035 -2.9035 -377.5200
7 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -391.6600
8 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -391.6600
9 -2.9036 -2.9034 -2.9036 -2.9036 -2.9034 -2.9036 -2.9035 -2.9035 -2.9036 -2.9036 -391.6600

10 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -391.6600  
 

 To reduce the function evaluations, we try to find the global minimum 

with 500 function evaluations. Thus, the maximum number of sampling points is 

set to 500. First, 30 sampling points are distributed at random in the design 

variable space. Ten trials are performed using Eqs.(8) and (13). The results are 

shown in Table 7 and Table 8. 

 

Table 7 The result by using Eq.(8) 

Trial x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 obj.
1 -2.6590 -2.7695 -2.1054 3.0079 -3.2740 -2.7108 -2.6121 -2.3852 2.7003 -0.9410 -314.1416
2 -2.0759 -2.7692 2.2905 -1.9245 2.7989 -2.6619 1.9850 -2.0531 2.4101 -1.4912 -273.9235
3 -2.9410 -2.8063 -3.0479 -2.6390 -2.9142 -2.8250 -2.8031 0.9497 -2.7844 0.7700 -318.2305
4 -2.8926 -2.9712 -2.0732 -3.2507 -2.8878 -2.7514 -3.3558 -1.2210 -2.2069 -1.5235 -324.6039
5 -2.9462 2.5448 -2.9124 -2.7911 -3.0628 2.3251 0.6797 -2.9464 -2.9779 2.7018 -308.3509
6 2.4241 -0.3086 3.1126 -3.6446 -1.6238 -2.6086 -3.4843 1.1949 -0.0281 1.9153 -192.1104
7 -2.8263 -2.9896 2.7270 -3.1419 -2.6376 -2.6945 -2.4389 -3.2174 -1.6055 -3.3261 -347.9492
8 -2.9634 -2.7063 2.5490 -2.6656 -2.5071 -2.9957 -2.9850 2.8242 -3.0073 2.2608 -341.3516
9 -2.6664 2.4891 -2.7121 -2.2098 -2.7480 -0.1432 1.5402 -2.7654 -3.2011 -3.0773 -300.2067

10 -2.3563 -2.7148 -2.7854 -2.6837 2.3436 -1.2683 2.4122 -2.6995 -2.7142 -2.1761 -321.3327  
 

 

Table 8 The result by using Eq.(13) 

Trial x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 obj.
1 -2.8096 -2.8428 -2.8138 -2.8923 -2.9249 -2.8322 -2.7792 -2.9189 -2.9251 -2.8174 -390.8271
2 -2.8796 -2.7992 -2.9779 -2.9068 -2.8315 -2.9377 -2.9344 -2.9574 -2.9395 -2.8551 -391.1336
3 -2.9828 -2.8559 -2.8442 -2.7923 -2.8739 -2.9228 -2.7560 -2.9362 -2.9070 -2.8233 -390.7393
4 -2.8815 -2.8551 -2.9466 -2.8876 -2.8993 -2.8246 -2.8708 -2.8602 -2.8473 -2.8967 -391.3663
5 -2.9453 -2.9166 -2.7878 -2.8491 -2.8713 -2.7786 -2.9730 -2.7636 -2.9755 -2.9006 -390.5783
6 -2.9192 -2.8345 -2.9351 -2.8462 -2.9019 -2.8998 -2.8975 -2.9197 2.6884 -2.8685 -377.2915
7 -2.9376 2.6801 -2.8858 -2.8898 -2.8615 -2.8626 -2.9049 -2.8773 -2.8294 -2.8921 -377.2669
8 2.6569 -2.9470 -2.9554 -2.8557 -2.8986 -2.9416 -2.8419 -2.8627 -2.9532 -2.8738 -377.1143
9 -2.9211 -2.8614 2.7425 -2.9349 -2.8388 -2.8856 -2.8809 -2.8981 -2.9182 -2.8922 -377.3801

10 -2.8901 -2.8468 -2.8828 -2.9049 -2.9252 2.6898 -2.8235 -2.9735 -2.8813 -2.8938 -377.2004  
 

By comparing Table 7 with Table 8, it is clear that better results can be 

obtained, by using Eq.(13). Through five trials (Trial No.1 – Trial No.5), the 
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approximate global minimum could be obtained by Eq.(13). In addition, the other 

trials (Trial No.6 – Trial No.10) yield quasi-optimums. However, an approximate 

global minimum cannot be obtained with Eq.(8). These results imply that it is 

preferable to apply a different width to each basis function. 

5.5 Optimum Design of Tension/Compression Spring 

One of the most popular test problems proposed by Arora can be 

considered [25]. Many researchers have used this as benchmark problem in the 

structural optimization [26,27,28]. The design variables are (1) the diameter d 

(=x1), (2) mean coil diameter D (=x2), and (3) number of active coils N (=x3). The 

problem can be formulated as follows: 

2
3 1 2( ) (2 ) minf x x x  x     (29) 

3
2 3

1 4
1

( ) 1 0
71785

x x
g

x
  x     (30) 

2
2 1 2

2 3 4 2
2 1 1 1

4 1( ) 1 0
12566( ) 5108

x x x
g

x x x x


   


x   (31) 

1
3 2

2 3

140.45( ) 1 0x
g

x x
  x     (32) 

1 2
4 ( ) 1 0

1.5
x x

g


  x     (33) 

10.05 2.00x       (34) 

20.25 1.30x       (35) 

32.00 15.0x       (36) 

 The orthogonal array L9, which is shown in Table 9, is used to determine 

the initial sampling points.  

 

Table 9 Orthogonal array L9 
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x 1 x 2 x 3

No.1 0.05 0.25 2
No.2 0.05 0.775 8.5
No.3 0.05 1.3 15
No.4 1.025 0.25 8.5
No.5 1.025 0.075 15
No.6 1.025 1.3 2
No.7 2 0.25 15
No.8 2 0.075 2
No.9 2 1.3 8.5  

 

mmax is set to 150, and 11 trials are performed to compare the past researches. The 

results obtained by applying the proposed SAO algorithm are shown in Table 10. 

It is clear from Table 10 that the function evaluations are drastically reduced in 

comparison with those in the past researches.  

 

Table 10 Comparison of results on the optimum design of tension/compression 

spring 

Arora (25) Coello (26) Ray (27) Hu (28) This research

x 1 0.053396 0.051480 0.050417 0.051466 0.050000
x 2 0.399180 0.351661 0.321532 0.351384 0.314777
x 3 9.185400 11.632201 13.979915 11.608659 14.650042

g 1(x ) 0.000019 -0.002080 -0.001926 -0.003336 -0.018820
g 2(x ) -0.000018 -0.000110 -0.012944 -0.000110 -0.006566
g 3(x ) -4.123832 -4.026318 -3.899430 -4.026318 -3.837790
g 4(x ) -0.698283 -0.731239 -0.752034 -0.731324 -0.756815
f (x ) 0.012730 0.012705 0.013060 0.012667 0.013103

Function Call N/A 900000 1291 N/A 66

Average of f (x ) N/A 0.012769 0.013436 0.012719 0.013273

Worst of f (x ) N/A 0.012822 0.013580 N/A 0.013643

Design variables
Best solutions found

 
 

5. Conclusions 

 In this paper, the Sequential Approximate Optimization (SAO) algorithm 

using the RBF network has been proposed. The Gaussian function is employed as 

the basis function. We have examined the width of the Gaussian function, which 
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affects the accuracy of the response surface. By examining the width equation 

proposed by Nakayama, some sufficient conditions for a good approximation are 

introduced. Then, a new equation to determine the width has been proposed. In 

addition, a simple scaling technique called the adaptive scaling technique has also 

been proposed. In this technique, the sufficient conditions for a good 

approximation are always verified. Clearly, it is better to optimize the width in 

these kinds of meta-modeling techniques. However, optimization of the width is 

very is time-consuming task. Therefore, it is preferable to determine the width 

with a simple manner. Many meta-modeling techniques, such as Kriging, RBF 

network, and Support Vector Regression (SVR), have been proposed. The 

Gaussian function, which is sometimes called the Gaussian kernel, is commonly 

employed in all these methods. The equivalence between ordinary Kriging and 

SVR has been reported under the assumption that the covariance function is used 

as the kernel function [29]. The equivalence between SVM and the regularization 

neural network has been also reported [30]. This equivalence can be extended to 

RBF network, considering the suggestions of Ref. [31]. Thus, it is considered that 

the equivalence between SVM and RBF network can be established. In the 

Gaussian kernel, the width plays an important role. Therefore, one of the 

important issues is the determination of the width with a simple manner. It is 

expected that the proposed width with the adaptive scaling technique is applicable 

to Kriging, SVR, and so on, in which the Gaussian function is employed.  

Second, the sampling strategy has been examined. In the SAO, the 

optimum of the response surface is taken as the new sampling point in order to 

improve the local accuracy. In addition, new sampling points in the sparse region 

are required for a global approximation. To determine the sparse region, the 

density function constructed by the RBF network has been developed. This 

density function generates local minima in the sparse region, so that the minimum 

of this function can be taken as a new sampling point. In the proposed SAO 

algorithm, the density function is constructed repeatedly until the terminal 

criterion is satisfied. As the result, many new sampling points can be obtained. 

Through typical mathematical and engineering optimization problems, the validity 

of the proposed SAO algorithm has been examined.  
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