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Abstract. In the present study, acoustic wave propagation in the field
including sound isolation panel is simulated using Cellular Automata
(CA). CA is a discrete system which consists of finite state variables,
arranged on a uniform grid. CA dynamics is described by a local inter-
action rule which is used for computation of new state of each cell from
the present state at every time step. In this study a sound field is mod-
eled using CA where the sound isolation panel exists and the numerical
simulation results are evaluated quantitatively by the insertion loss. The
results showed good correspondence with analytical solutions.
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1 Introduction

Not only the recent growth of roadway traffic but also the increasing number
of full-sized vehicle, high-speed running cars on highways cased serious noise
problems especially in urban regions. The noise abatement usually follows either
the reduction of noise emitted by car itself, or the absorption and the isolation
of air-borne noise within the environment. The former approach includes, for
example, the development of low-noise emitting vehicle and tires. On the other
hand, the latter uses noise-reducing porous asphalts and the construction of
sound insulation walls beside the highways. It is physically proper that the higher
sound insulation wall is preferable in order to prevent the noise leakage into
the inhabited region [1], however, the high wall adversely causes some of the
problems related to insolation, the landscape and also the radio disturbance.
Hence the high sound insulation performance should be realized while the height
of the insulation wall is kept low. The sound can be reduced by appropriately
arranging the sound transmission paths along the wall shape where the sound
waves are well diffracted and interfered with each other so that the outgoing
sound transmission characteristic is changed. Several studies have been done
for this issue devising the shape of the wall, whose noise isolation performances
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are predicted analytically and numerically [2]-[6]. The development of double
y-shaped noise barrier is one typical example of these works [2], where the tip
of the wall consists of y-shaped branches each possessing another y-shaped sub-
branches.

It is desirable that the numerical prediction of the isolation performance
would be made by more efficient, precise simulation strategies. The boundary
element method (BEM) is commonly used in order to predict the sound field
bounded by the insulation wall, however, the method is basically suited for the
stationary analysis where the harmonic sound source is assumed. Therefore,
numerous calculations are required in order to obtain frequency response char-
acteristics for a wide range of frequencies, since a harmonic response is only
calculated for respective frequencies. Additionally, the expression for the mov-
ing sound source which corresponds to the sound emitted by the moving cars
is hardly introduced into the BEM model. These restrictions may limit the nu-
merical simulation to the simplified case unlike the practical situations. Another
numerical method known as the finite element method (FEM) can be used, but
the considerable amount of time needed for the calculation may not be negligible
depending on the number of space division into elements.

The Cellular Automata has been used for modeling wide range of phenom-
ena including many physical processes described generally by partial differential
equations [7]-[10]. The authors have also developed an acoustic wave propaga-
tion model for two dimensional acoustic problems [11]. Due to its easiness and
simplicity of the modeling procedure, the Cellular Automata would be suitable
for representing realistic situation of the actual problems involved. In the present
study, the acoustic wave propagation model constituted by Cellular Automata
is applied in order to evaluate the sound isolation performance of the sound in-
sulation wall placed within the acoustic space. The wave model is based on past
studies by authors where the two dimensional acoustic problems were solved
for sound source movement, diffraction, reflection and also the sound absorp-
tion. The sound isolation performance is numerically predicted for three types
of insulation walls whose geometries are different: the straight wall, the wall
with single y-shaped branch installed at the top, and also the wall with dou-
ble y-shaped branch. As already mentioned, the third type consists of y-shaped
smaller branch subordinated by the larger main y-shaped branch, where the
incident sound wave and the wave traveling along the surface of the wall are
interfered each other and multiply diffracted, insomuch that the dissipation of
the wave energy would be expected to some extent. In order to examine the
predicted results obtained by the Cellular Automata model, the calculations are
also performed for the model based on boundary element method which is gen-
erally used to analyze acoustic problems. In addition, the model is compared
with the theoretical model suggested by Maekawa [12], in which the insertion
loss of sound energy caused by the isolation wall is predicted. It is shown that
highly compatible results with other approaches can be obtained by the Cellular
Automata model, while keeping the modeling procedure simple and straightfor-
ward.
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Fig. 1. Definition of neighbor in two dimensional acoustic model. Two state variables,
sound pressure P and particle velocity V, are placed in each cell.

2 The Cellular Automata Model for Wave Propagation

Cellular Automata model for simulating acoustic wave propagation is shown
in this section. CA has been developed for modeling wide range of phenomena
including many physical processes [7]. Specifically the wave propagation mod-
els have been studied by researchers based on Cellular Automata [7]-[11]. The
simple finite difference scheme obtained by linear wave equation is referenced
for developing local interaction rule, in a sense that discretized wave equation
yields to an expression of local relationship of wave amplitudes. The rule is then
extended to a more practical case, yet time and space are treated as discrete
integers. Definitions for state variables and local interaction rules are presented
in the following subsections.

2.1 Space Partitioning and State Definition

Two dimensional space is discretized into rectangular cells, where state of each
cell is distinguished by two integers; i) zero for acoustic media, ii) one for rigid
wall. Additionally, two variables which express the sound pressure and particle
velocity in four neighbor directions are defined for the acoustic medium state.
These variables are updated at each simulation step according to the local inter-
action rules which describe the relationship between a cell and its cross-located
four neighboring cells as shown in Fig.1. Following Cellular Automata conven-
tion, time and space are treated as integers. In order for the model to be compa-
rable with actual dimension, we assign unit cell length dz = 0.001[m], and also
¢ = 344[m/s] for the sound speed.

2.2 Definition of Local Rules

State parameters given in each cell is updated every discrete time step according
to a local interaction rule. First, the particle velocities in four directions are
updated in time with respect the difference of sound pressure between adjacent
cells, whose update rule is described explicitly as,

VI(x,t+1) = Va(x,t) — {P(x +dxg,t) — P(x,t)} . (1)
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V., represents particle velocity of media and P the sound pressure. Two dimen-
sional cell position is expressed as a vector x and discrete time step as t. A suffix
a in (1) signifies index of four neighbors. The particle velocity further obeys the
next (2), which expresses linear energy dissipation mechanism.

Vot +1) = (1—d) - V/(x,t+1) . (2)

In the above (2), d represents a damping constant per unit cell assuming sound
absorption by the media. In the present study, d is given as 0.001.
The pressure is then updated according to the rule described by (3),

P(x,t+1) = P(x,t) =2 Y Va(x,t+1) , (3)

where ¢, denotes the wave traveling speed in CA space. Sound pressure and
particle velocities are updated according to the local rule described by above
three equations. In addition, if the wall is totally reflective, the sound pressure
values of wall state cells are copied by those of the adjacent medium state cells
so that the perfect reflective condition can be represented.

Since calculation is carried out between nearby cells that are separated only a
unit length at every step, any physical quantities cannot have the transport speed
exceed to this calculation limit. The maximum wave speed becomes ¢, = 1/ V2
for two dimensional space, therefore the wave front travels 1/4/2 of unit length
per calculation step [11].

3 Simulation of Sound Field Incorporating Isolation Wall

3.1 Description of the Model

Numerical simulation is performed for the wave propagation within two dimen-
sional acoustic field incorporating sound isolation wall. The sound field is cal-
culated for the simulation space of 4[m] in height and 6[m] in width, whose
boundary conditions are assumed to be infinite without any reflected wave from
the boundaries. Despite the easiness in realizing infinite boundary condition in
BEM modeling, the finite set of cell arrangement in CA model naturally causes
boundary reflection at the cells located on four edges. Therefore, the actual size
of the simulation space is set as large as threefold of the analyzed space so that
the reflection problem is avoided in the course of the simulation. The unit size
of a cell is assumed to be 10[mm], hence the cellular space is constituted of
1200 x 1800 cells. A sound insulation wall is located and extended downward
vertically separating the analyzed space. On the left side, the noise source is lo-
cated, and the other side the sound observation points labeled by numbers from
1 to 12 are placed. The sound isolation performance is numerically predicted for
three types of insulation walls whose geometries are different, as shown in Fig.3:
the straight wall (type 1), the wall with single y-shaped branch installed at the
top (type 2), and also the wall with double y-shaped branch (type 3). The sound
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Fig. 2. Schematic of calculated sound field incorporating noise insulation wall. The
numbers on grids signify the observation points of sound pressure passes over the wall.
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Fig. 3. Geometries of sound insulation walls.

source assuming the air-borne noise radiated by the roadway cars is placed 1[m)]
apart horizontally from the tip of the wall.

In both BEM and CA models, the harmonic sound source ranging from
500[Hz] to 2[kHz] at every 100[Hz] step is given and the sound pressure distri-
bution of the field is calculated at respective frequency. Additionally, the RMS
of the propagated sound pressure transmitted beyond the wall is measured at
12 points, where each pressure is normalized by the RMS reference pressure at
the source location. The normalized pressure is employed as evaluation indicator
when comparing the isolation performance among three types of walls. Whereas
the acoustic field response analysis is rather limited to the harmonic cases in
BEM model while avoiding the formulation become complex, the transient field
response is easily calculated in CA model. Therefore, the random sound source
response is calculated for the CA model as an additional sound source condition.
By computing Fourier transformation of the observed time histories of sound
pressure at measurement points and further calculate the transfer functions to
the frequency characteristics at the source location, roughly the identical evalu-
ation of the isolation performance can be made in comparison to the sinusoidal
cases with just a single computation.
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(a) Type 1 (b) Type 2 (c) Type 3

Fig. 4. Sound pressure distribution calculated by BEM for 1000Hz sinusoidal source.

(a) Type 1 (b) Type 2 (c) Type 3

Fig. 5. Sound pressure distribution calculated by CA model for 1000Hz sinusoidal
source.

3.2 Sound Pressure Distribution of the Calculated Field

Examples of calculated sound field incorporating three types of isolation walls
when the sinusoidal sound source frequency is set to 1[kHz| are shown respec-
tively for BEM and CA model in Figs.4 and 5. The sound source is located on
the left side of the wall, whereas the region in which the sound transmission is
undesirable is assumed to be on the right side. In each type of wall and in all the
frequencies given to the sinusoidal source, approximately the consistent pressure
distribution can be obtained in both models. In view of the sound isolation per-
formance, the double y-shaped wall (type 3) mostly prevents sound transmission
downward the right hand side of the wall as compared to the vertically straight
type wall (type 1). The sound dissipation is thought to be occurred by the in-
terference of the outgoing direct wave and the phase-delayed diffracted sound
wave transmitting along the wall shape. These numerically predicted results are
qualitatively supported by the experimental observations made by the original
inventor group of double y-shaped insulation wall.

3.3 Frequency Characteristics of the Sound Isolation Performance

The measured frequency response of the sound isolation performance measured
at observation points 1 and 11 are shown for three types of walls in Figs.6, 7
and 8, respectively. The calculated results are compared for sinusoidal source
case in both BEM and CA models, and also for the random source case in CA
model. In these figures, the insertion loss is adopted for the isolation performance
evaluation, which is defined as the difference between the sound pressure level
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measured at a point under the presence of the isolation wall and that without
the wall. Here again it is seen that the calculation results by both models coin-
cide well in each type of wall. What is more remarkable is that the frequency
response characteristics calculated by assigning the transient sound wave in the
CA model are approximately consistent with those obtained by the other two
models. Despite the prediction accuracy, one could say that simulating field re-
sponse of the transient sound wave incorporating multiple frequencies is useful
in view of computational efficiency.

50 - .
Observation point 1 |: : |—I—C-ﬂ(F‘uremne}

T B L DL Mo o pdin, JSG BEN
k=1 —A— CA (Random)
=
=]
=
g
1)

0 : :

500 1000 1500 2000

Frequency[Hz]

50 ;
= Observation point 11 | —m—CA (Pure tone)
B 48 Lovsesurmnnnnennssnrmren e iiiiiiiiiiieiiot.|—@—BEM
= : + | —A—CA (Randem)
#
i
| =4
o2
2
@
=

0 : ;

500 1000 1500 2000

Frequency[Hz]

Fig. 6. Insertion loss predicted by respective calculations for type 1 wall.
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Fig. 7. Insertion loss predicted by respective calculations for type 2 wall.
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In Fig.9, the insertion loss is further compared for three types of insulation
walls in which the sound pressure is measured at observation point 1 and 11.
The calculations are performed for the CA model where the sinusoidal sound
source at respective frequency is given. It is known qualitatively from the figure
that the type 3 wall shows better noise isolation performance throughout the
frequency range in comparison to the other two types. Though not shown in the
figure, not much difference can be seen at any other observation points.
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Fig. 8. Insertion loss predicted by respective calculations for type 3 wall.
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Fig. 9. Insertion loss compared by three types of walls. The measurement point is
located at point 1 and 11, where the calculation results are obtained by CA model.
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Fig. 10. Application of Maekawa’s insertion loss chart to the calculated results obtained
by CA simulation.

3.4 Verification of the Calculated Results using Maekawa’s
Insertion Loss Chart

The sound field calculated by CA model is examined based on more realistic
performance criterion known as Mackawa’s insertion loss chart [12]. Although
limited to the straight wall case, the chart is derived from Kirchhoff’s approxi-
mate diffraction theory where the formulated insertion loss is further calibrated
by experimental observation. The insertion loss [IL]|[dB] is generally plotted
against Fresnel number N, defined as,

(A+B)—d 2
N=""r "% )

In (4), A signifies the distance between the sound source and the vertex of
the wall, B the distance between the observation point and the vertex, d the
straight-line distance between the source and observation points, and also A the
wavelength of harmonic sound. The Fresnel number is defined by the difference
between the indirect (A+ B) and the direct d path of transmitted sound divided
by half-wavelength of the source. The transmission loss is then represented as
function of Fresnel number, which is expressed as follows.

10log, 0{N} + 13 N>1
[IL]p = {5+ —Srsinh'{|N|485}  —0324 < N < 1 (5)
0 N < —0.324

Using the first formula for N > 1, Maekawa’s empirical curve is shown in
Fig.10 in conjunction with plots obtained by the CA model. The overall value of
the plotted insertion loss exceeds the curve, one reason may be because the chart
is constituted by adopting the minimum value out of empirically tested multiple
data measured for each Fresnel number, based on the safe side estimation. From
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the figure, the CA model shows certain level of agreement with the insertion loss
criterion.

4 Conclusions

In this study, the acoustic wave propagation model is constituted by Cellular
Automata and is applied to the evaluation of the isolation performance of the
sound insulation wall placed within the acoustic space. The calculation results
obtained by both BEM and CA models coincide well in each type of insula-
tion wall for the harmonic sound source assumption. In addition, the frequency
response characteristics calculated by assigning the transient sound wave incor-
porating multiple frequencies in the CA model are approximately consistent with
those obtained by the other harmonic cases, which contribute to reduce compu-
tation time for the analysis. Finally, the insertion loss of the straight type wall
predicted by the CA model for the straight type wall is roughly shown to be
consistent with Maekawa’s insertion loss criterion.
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