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We consider a dynamical semigroup for unbounded Kossakowski-Lindblad-Davies
generator corresponding to evolution of an open system for a tuned repeated har-
monic perturbation. For this evolution, we prove the existence of uniquely determined
minimal trace-preserving strongly continuous dynamical semigroups on the space of
states. The corresponding dual W ∗-dynamical system is shown to be unital quasi-
free and completely positive automorphisms of the canonical commutation relation-
algebra. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4941940]

I. REPEATED PERTURBATION AND SEMIGROUPS

A quantum Hamiltonian dynamical system with repeated harmonic interaction was proposed
in Refs. 20 and 22, as a model of physical phenomenon known as the “one-atom maser,” see Refs. 6
and 17. The model consists of the isolated one mode cavity, which is pumping by an infinite chain
of atoms. In the present paper, we consider the corresponding open system, which is a model of
a leaky cavity. This model can be described mathematically through the Kossakowski-Lindblad-
Davies (KLD) dissipative extension of the Hamiltonian dynamics.21,3

Since repeated perturbation of Hamiltonian dynamics is piecewise constant, its analysis re-
duces to study of Quantum Dynamical Semigroups (QDSs) and their generators on the space
of states. A similar reduction is also valid for repeated perturbation of open quantum dynamical
systems.

The theory of QDS is quite satisfactory for bounded generators and for their bounded KLD
extensions.8 An extension of this theory to the case of unbounded dissipative generators was initi-
ated in Refs. 9 and 10 and developed in Refs. 13, 12, 11, and 19 for completely positive maps
of Canonical Commutation Relation (CCR)-algebras. The progress in construction of the mini-
mal dynamical semigroups for unbounded dissipative generators is essentially due to ideas that
come back to Kato.14 They were extended on quantum dynamics in Ref. 9. The Kato regularisa-
tion method inspired the study of uniqueness and trace-preserving (or Markovian) property of the
minimal QDS for KLD generators, e.g., Refs. 7 and 4 Lecture 3.

This method initiated analysis of singular (with relative bound equal one) perturbations of
positive substochastic semigroups on the normal states16 as well as in abstract space of states.5

In the present paper, we consider the problem of construction of unbounded generators for a
concrete quantum dynamical system. The model is a dissipative KLD extension of the Hamiltonian
dynamical system21 for an open system interacting with a boson reservoir. We show that generator
of the corresponding QDS can be constructed following the Kato regularisation14 of perturbations
with relative bound equal one.

Our main results are the following.

a)tamurah@staff.kanazawa-u.ac.jp
b)Valentin.Zagrebnov@univ-amu.fr
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In Section II, we construct generator of the minimal QDS corresponding to the standard
KLD extension of the Hamiltonian dynamical system.21 We prove (Theorem 2.7) that it gener-
ates strongly continuous, contraction, positive, and trace-preserving semigroup, i.e., it is a Markov
Dynamical Semigroup (MDS) on the space of trace-class operators.

In Section III, we establish explicit formulae for the action of the dual MDS on the Weyl
CCR-algebra (Theorem 3.1). This allows to prove that the dual MDS is completely positive (The-
orem 3.6). Finally, we prove that the MDS maps the space of quasi-free states into itself, see
Theorem 3.9.

Note that evolution driven by repeated perturbation has the form of iterated composition of
quantum dynamical semigroups.6 Although motivated by repeated perturbation, the main results
of the present paper concern first of all the individual semigroups (Section II) rather than their
compositions. In Section III, we consider completely positive quasi-free maps by semigroups con-
structed in Section II and one application to compositions. For more results related to iteration of the
semigroups compositions we address the readers to Ref. 21.

In the rest of this section, we briefly review the Hamiltonian dynamics and recall the standard
KLD extension for the open system with a boson reservoir. Then we give a formal definition of
generators corresponding to individual semigroups that define evolution of our model of the open
boson system for repeated harmonic interaction.21

Let a and a∗ be the annihilation and the creation operators defined in the Fock space F gener-
ated by a cyclic vector Ω. That is, the Hilbert space F contains the algebraic span Ffin of vectors
{(a∗)mΩ}m≥0 as a dense subset and a,a∗ satisfy the CCRs,

[a,a∗] = 1, [a,a] = 0, [a∗,a∗] = 0 on Ffin.

We denote by {Hk}Nk=0 the copies of F for an arbitrary but finite N ∈ N and by H(N ) the Hilbert
space tensor product of these copies,

H(N ) =
N
k=0

Hk (1.1)

and byΩF := Ω⊗(N+1), its cyclic vector.
In this space, we define the annihilation and the creation operators

bk B 1 ⊗ · · · ⊗ 1 ⊗ a ⊗ 1 ⊗ · · · ⊗ 1 , b∗k B 1 ⊗ · · · ⊗ 1 ⊗ a∗ ⊗ 1 ⊗ · · · ⊗ 1 (1.2)

for k = 0,1,2, . . . ,N , where the operator a, or a∗, is the (k + 1)th factor. On algebraic tensor product
H(N )

fin B F⊗(N+1)
fin , these unbounded operators satisfy the CCR,

[bk,b∗k′] = δk,k′1, [bk,bk′] = [b∗k,b∗k′] = 0 (k, k ′ = 0,1,2, . . . ,N). (1.3)

We consider the Hamiltonian of the system with time-dependent repeated harmonic perturba-
tion,20,22

HN(t) = E b∗0b0 + ϵ

N
k=1

b∗kbk + η

N
k=1

χ[(k−1)τ,kτ)(t) (b∗0bk + b∗kb0), (1.4)

for t ∈ [0,Nτ), where τ,E, ϵ ,η > 0 and χ[x, y)(·) is the characteristic function of semi-open intervals
[x, y) ⊂ R. Here (1.4) denotes the self-adjoint operator on the dense domain

D0 B
N
k=0

dom(b∗kbk) ⊂ H(N ). (1.5)

Model (1.4) describes the system S + CN , where subsystem S corresponding to the kinetic
term E b∗0b0 of the Hamiltonian is repeatedly interacting with a long time-equidistant chain CN =
S1 + S2 + · · · + SN of subsystems corresponding to the kinetic terms ϵ

N
k=1 b∗

k
bk. The Hilbert

space H0 corresponds to the subsystem S and the Hilbert space Hk to the subsystem Sk (k =
1, . . . ,N). This visualisation is motivated by a number of physical models, see Refs. 6 and 17.
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For t ∈ [(n − 1)τ,nτ), only subsystem Sn interacts with S and the system S + CN is autono-
mous on this time-interval with the self-adjoint Hamiltonian

Hn = E b∗0b0 + ϵ

N
k=1

b∗kbk + η (b∗0bn + b∗nb0) (1.6)

on domain D0. To keep operator (1.6) lower semi-bounded, we assume that parameters E, ϵ ,η
satisfy the condition

(H1) η2 6 E ϵ . (1.7)

We denote by C1(H(N )) the Banach space of trace-class operators on H(N ) with trace norm
∥ · ∥1. Its dual space is isometrically isomorphic to the space of bounded operators on H(N ):
C∗1(H(N )) ≃ L(H(N )). We consider the dual pair corresponding to the bilinear functional

⟨φ |A⟩H(N ) = TrH(N )(φ A), for (φ, A) ∈ C1(H(N )) × L(H(N )). (1.8)

Positive operators in C1(H(N )) with unit trace are called density matrices. For each density matrix ρ,
we consider the normal state ωρ(·) on L(H(N )) defined by

ωρ( · ) = ⟨ρ | · ⟩H(N ). (1.9)

To describe evolution of the open system corresponding to (1.4), we consider the KLD
dissipative extension of the Hamiltonian dynamics to non-Hamiltonian master equation: ∂t ρ(t) =
Lσ(t)(ρ(t)), with the time-dependent generator

Lσ(t)(ρ) B −i [HN(t), ρ] + Q(ρ) − 1
2
(Q∗(1)ρ + ρQ∗(1)), (1.10)

for t ∈ [0,Nτ).4,1 The operator Q acts on ρ as

Q(ρ) = σ− b0 ρ b∗0 + σ+ b∗0 ρ b0. (1.11)

Its dual operator Q∗ is defined by the relation ⟨Q(ρ) |A⟩H(N ) = ⟨ρ |Q∗(A)⟩H(N ),

Q∗(A) = σ− b∗0 A b0 + σ+ b0 A b∗0. (1.12)

Since the Hamiltonian part of the dynamics is piecewise autonomous, the formal generator
(1.10) for t ∈ [(k − 1)τ, kτ), k = 1,2, . . . ,N , is

Lσ,k(ρ) B −i[Hk, ρ] + Q(ρ) − 1
2
(Q∗(1)ρ + ρQ∗(1)). (1.13)

Note that the form of generators (1.10), (1.13) corresponds to repeated perturbation of the open
system S + R, i.e., we study (S + R) + CN for external boson reservoir R. Then a formal solution
ρ(t) of the Cauchy problem for the master equation corresponding to initial condition ρ(0) = ρ is
defined by the evolution map {Tσ

t,0}t≥0. It is a composition of QDS with generators (1.13),

ρ(t) = Tσ
t,0(ρ) B (Tσ

n,ν(t)T
σ
n−1 . . .T

σ
2 Tσ

1 )(ρ) (1.14)

for t = (n − 1)τ + ν(t) and n 6 N , where Tσ
k,s
= esLσ,k, Tσ

k
= Tσ

k,τ
(k = 1,2, . . . ,n). Consequently,

the analysis of evolution for repeated perturbation reduces to the study of QDS on the intervals
[(k − 1)τ, kτ), k = 1, . . . ,N .

It is known that for the standard KLD generator of form (1.13) with bounded Hk, Q, and
Q∗, the corresponding QDS {Tσ

k,s
}s≥0 on C1(H(N )) is norm-continuous, completely positive and

trace-preserving, see, e.g., Ref. 8.
Our first aim is to give a rigorous definition of unbounded generator, which has standard

KLD-form (1.13) for (unbounded) operators (1.6), (1.11), (1.12), and then to construct QDS for
solution (1.14). After that we check for QDS the properties quoted above for semigroup with a
bounded generator.

Our next hypothesis imposed on the parameters σ± (1.11), (1.12) the conditions,

(H2) 0 6 σ+ < σ−. (1.15)
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Together with (H1), they play an important role in construction of semigroups {Tσ
k,s

}s≥0 with the
trace-preserving property, cf. Theorem 2.7. Under these hypotheses, complete positivity of the dual
semigroups {Tσ ∗

k,s
}s≥0 is established in Section III B.

II. MINIMAL DYNAMICAL SEMIGROUP

A. Unbounded generators

First, we define operators related to Hamiltonian (1.6) in Hilbert space (1.1), which we denote
now on by H ≡H(N ),

K0 =
σ+
2

b0b∗0 +
σ−
2

b∗0b0 + i
�(E − ϵ)b∗0b0 + ϵ n̂

�
, n̂ =

N
j=0

b∗jbj, (2.1)

Kn = K0 + i η(b∗0bn + b∗nb0) = 1
2
Q∗(1) + i Hn, n = 1,2, . . . ,N. (2.2)

Here E, ϵ ,η > 0 and σ± satisfy (H1) and (H2), respectively. Domains of these operators are iden-
tical toD0 (1.5), which is dense in H.

Lemma 2.1. For n = 1,2, . . . ,N, the operator Kn is m-accretive.

For the proof, see the Appendix.
It is known that for any m-accretive A in a Hilbert space, the operator (−A) is the generator of a

one-parameter Strongly Continuous Contraction Semigroup (SCCS) {e−t A}t>0 on the Hilbert space,
in general, e.g., Refs. 15 and 24. Then Lemma 2.1 implies

Corollary 2.2. Theoperator (−Kn) is generator of a SCCS {e−t Kn}t>0 on H for n= 1,2, . . . ,N.

Next we make precise definition of operators (1.13). Since the operators {bn,b∗n}Nn=0 in H are
unbounded, operators (1.13) in the Banach space C1(H) are also unbounded. Let Φ : C1(H) →
C1(H) be the positive injection defined by Φ(ρ) = (1 + n̂)−1ρ(1 + n̂)−1, and we put D B Φ(C1(H)).
Note that n̂ is a non-negative self-adjoint operator on domainD0. In fact,

ψm =
b∗m0

0 b∗m1
1 . . . b∗mN

N√
m0! m1! . . . mN!

ΩF (2.3)

is the eigenvector of n̂ with eigenvalue
N

k=0 mk for m = (m0, . . . ,mN) ∈ ZN+1
+ . And the set of

vectors (2.3) for m ∈ Z+ form a Complete Ortho-Normal System (CONS) of H.
Note that operators (2.2) are relatively bounded with respect to (1 + n̂), i.e., ∥Knψ∥ ≤ α ∥(1 +

n̂)ψ∥, ψ ∈ D0 hold for some α > 0. Then taking into account that operators b0(1 + n̂)−1 and
b∗0(1 + n̂)−1 are bounded, the restriction Lσ,n�D to the set D = Φ(C1(H)) of unbounded in C1(H)
operator

Lσ,n(ρ) = −Knρ − ρK∗n + σ−b0ρb∗0 + σ+b
∗
0ρb0, (2.4)

(see (1.13)) can be defined for any n = 1,2 . . . ,N as

Lσ,n(Φ(ρ)) = −Kn(1 + n̂)−1ρ(1 + n̂)−1 − (1 + n̂)−1ρ(Kn(1 + n̂)−1)∗
+σ−b0(1 + n̂)−1ρ(b0(1 + n̂)−1)∗ + σ+b∗0(1 + n̂)−1ρ(b∗0(1 + n̂)−1)∗. (2.5)

Note that the domain D is dense in C1(H) since it contains all finite-rank operators, which are the
vectors ofD0.

B. Dynamical semigroup on the space of density matrices

To construct dynamical semigroups (DSs) with the generators, which are extensions of (2.4),
we recall some results of the Kato-Davies analysis in Refs. 14 and 9. Since these results are appli-
cable to any n = 1,2, . . . N , we describe them only for n = 1 and for the corresponding semigroup.
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First, we note that the operator K1 (2.2) satisfies for all ϕ,ψ ∈ D0 (1.5) the (conservation)
identity,

−(K1ϕ,ψ) − (ϕ,K1ψ) + σ−(b0ϕ,b0ψ) + σ+(b∗0ϕ,b∗0ψ) = 0. (2.6)

Let V B Csa1 (H) denote the Banach subspace of all self-adjoint elements of C1(H). The family
of maps

St(ρ) = e−tK1 ρ (e−tK1)∗ (t > 0, ρ ∈ V ) (2.7)

defines a positive SCCS on V . Let the closed operator Z be generator of St and dom(Z) denote its
domain. Then the set D B Ψ(V ) = (1 + K1)−1V ((1 + K1)−1)∗ ⊂ dom(Z) is dense in V and

Z(ρ) = −K1ρ − ρK∗1 holds for ρ ∈ D. (2.8)

Since the SCCS semigroup {St}t≥0 commutes with the map Ψ, one gets St(D) ⊆ D. Hence the
set D is a core of the generator Z . Note also that St(dom(Z)) ⊆ dom(Z) and that D = D ∩ V .

There are two positive Z-bounded operators J− and J+ on dom(Z) such that

J−(ρ) = b0ρb∗0, J+(ρ) = b∗0ρb0 for ρ ∈ D. (2.9)

Then, the operator L̂ B Z + σ−J− + σ+J+ is defined on the domain dom(Z). Whereas we denote by
L B Lσ,n=1�D operator (2.4) for n = 1 with domain D. Here we understand (2.8) and (2.9) as in
(2.5). Then the conservation identity

TrH(L̂(ρ)) = 0 holds for ρ ∈ dom (Z), (2.10)

and the operator J B (σ−J− + σ+J+) is Z-bounded with the relative bound equals to one, which
require non-perturbative arguments to construct a DS corresponding to L̂.

Proposition 2.3. For any r ∈ [0,1) the operator Z + r(σ−J− + σ+J+) with domain dom (Z) is
the generator of a positive SCCS {Tt,r}t>0 on V.

Proposition 2.4. There exists a positive SCCS {Tt}t>0 on V such that

lim
r→1

Tt,r(ρ) = Tt(ρ) , ρ ∈ V ,

uniformly on each compact interval of t > 0. The generator M of Tt is a closed extension of the
operator L̂ = Z + (σ−J− + σ+J+) with dom(L̂) = dom(Z).

Remark 2.5. Since perturbation J has relative bound 1, the operator L̂ may have many closed
extensions.15 The semigroup constructed in Proposition 2.4 is minimal in the following sense: if
the SCCS {T ′t }t>0 has the generator M ′, which is another extension of L̂, then T ′t > Tt holds for
all t > 0. Moreover, in spite of (2.6), or conservation identity (2.10), the minimal DS need not be
trace-preserving.

Proposition 2.6. If dom (Z) is a core of the generator M, then the minimal semigroup {Tt}t>0
is trace-preserving, i.e., a Markovian semigroup.

Now we come back to contraction of DS for our concrete open system (1.6) and (1.13)
described by the master equation with the formal individual generators Lσ,n (2.4) defined on the set
D, or on the subset D = D ∩ V .

Theorem 2.7. For each n = 1,2 . . . ,N, the closure of the operator Lσ,n�D is the generator of a
trace-preserving SCCS on V.

Proof. As we noted above, it is enough to consider only the case n = 1, i.e., the operator
L�D = (Z + σ−J− + σ+J+)�D.
(a) We start by checking that dom (Z) is a core of M constructed in Proposition 2.4. To this aim, we
define on V the SCCS {Rs}s≥0,

Rs(ρ) = e−sn̂ρe−sn̂, (s > 0, ρ ∈ V ).
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Note that Rs>0(V ) ⊂ Ψ(V ) = D. This implies

Rs(dom(Z)) ⊆ dom(Z). (2.11)

Moreover,

Rs(St(ρ)) = St(Rs(ρ)) for ρ ∈ V, and t, s ≥ 0,

which by (2.11) and differentiation at t = +0 give

Rs(Z(ρ)) = Z(Rs(ρ)) for ρ ∈ dom(Z). (2.12)

By explicit calculations and by (2.11), one finds that for Z-bounded operators (2.9),

J+(Rs(ρ)) = e2sRs(J+(ρ)) and J−(Rs(ρ)) = e−2sRs(J−(ρ)) (2.13)

hold for all ρ ∈ dom (Z). Then (2.12) and (2.13) yield on dom(Z) the equation

(Z + σ+J+ + σ−J−)Rs = Rs(Z + e2sσ+J+ + e−2sσ−J−). (2.14)

Now we introduce the operators K̃0 and K̃1, which are defined via replacing parameters σ±,E, ϵ
and η in K0 and K1 (see (2.1), (2.2)) by σ̃± = e±2sσ±, Ẽ = r(s)E, ϵ̃ = r(s)ϵ , and η̃ = r(s)η. Here

r(s) B e2sσ+ + e−2sσ−
σ+ + σ−

. (2.15)

To keep r(s) ∈ (0,1), we set s ∈ (0,2−1 logσ−/σ+). Note that this is possible due to hypothesis
(H2): 0 6 σ+ < σ− , and that the limit lims↓0 r(s) = 1.

By (2.15) and definitions (2.2), (2.8), one gets the identities

K1 =
K̃1

r(s) −
σ+σ−
σ+ + σ−

sinh 2s
r(s) 1 , Z =

Z̃
r(s) +

2σ+σ−
σ+ + σ−

sinh 2s
r(s) 1. (2.16)

which hold on dom(Z) by the closure. Here operator Z̃ is given by the same expression as (2.8), but
with K̃1 instead of K1. Therefore, the equality

Z + σ̃+J+ + σ̃−J− =
1

r(s)
 2σ+σ−
σ+ + σ−

sinh 2s 1 + Z̃ + r(s)(σ̃+J+ + σ̃−J−)

,

also holds on dom(Z). Together with (2.14), this yields on dom(Z) the relation

(λ1 − Z − σ+J+ − σ−J−) Rs = (2.17)
1

r(s)Rs

(
r(s)λ − 2σ+σ−

σ+ + σ−
sinh 2s

)
1 − Z̃ − r(s)(σ̃+J+ + σ̃−J−)


.

Now, for arbitrary λ > 0, we can choose s ∈ (0,1) small enough such that

r(s)λ − 2σ+σ−
σ+ + σ−

sinh 2s > 0. (2.18)

By Proposition 2.3, the operator Z̃ + r(s)(σ̃+J+ + σ̃−J−) is generator of a SCCS. Hence by the
Hille-Yosida theorem, its resolvent set includes C+ := { z ∈ C | Re z > 0 }. This together with (2.18)
imply that the last factor in the right-hand side of (2.17) is invertible and that the range ran((λ1 −
Z − σ+J+ − σ−J−) Rs (V )) of the operator in the left-hand side coincides with the set Rs (V ). Since
for the SCCS {Rs}s≥0 it is dense in V , the range of (λ1 − Z − σ+J+ − σ−J−) = λ1 − L̂ is also dense
in V .

Note that by Proposition 2.4, the operator L̂ = Z + σ+J+ + σ−J− on the domain dom (Z) is
closable since it has the closed extension M . Let M0 = L̂ be the closure of L̂. Then we have
λ1 − M ⊇ λ − M0 ⊃ λ1 − L̂, which implies for λ > 0,

(λ1 − M)−1 ⊃ (λ1 − M0)−1 ⊃ (λ1 − L̂)−1. (2.19)

By the conclusion in the previous paragraph, the domain of the last operator in (2.19) is dense.
Hence, by Proposition 2.4, the first operator in (2.19) is a closed bounded extension of the last.
Since the second operator (λ1 − M0)−1 is the closure of the last one and since it is a restriction of
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the bounded operator (λ1 − M)−1, then it is also a bounded operator on V . This yields M = M0 and
implies that the minimal semigroup constructed by Kato regularisation (Proposition 2.6) from L̂ is
trace-preserving.

(b) To finish the proof, one has to show that D is a core of M . To this end, we recall that since the
SCCS semigroup {et Z}t≥0 (2.7) commutes with the map Ψ, the set D = Ψ(V ) is a core of Z and
that in (a) we established that dom (Z) is a core of M = L̂. Then, since the restrictions: L̂�D = L�D,
and the operators J± are Z-bounded, the closure (Z + σ−J− + σ+J+)�D coincides with M . This
completes the proof of the theorem for n = 1. �

Remark 2.8. The set of density matrices { ρ ∈ C1(H) | ρ > 0,TrH ρ = 1 } ⊂ V is obviously
invariant subset of C1(H) for the Markov Dynamical Semigroups (MDS) {Tσ

n, t}t>0, n = 1,2, . . . ,N.
On the other hand, the semigroups {Tσ

n, t}t>0 can be extended to the MDS on the Banach space
C1(H) by linearity.

III. MARKOV DYNAMICAL SEMIGROUP ON DUAL SPACE

A. Dual dynamics

Equivalent and often more convenient description of the evolution ρ → Tσ
t,0(ρ), ρ ∈ C1(H) is

the dual evolution {Tσ ∗
t,0 }t>0 on the dual space C∗1(H) ≃ L(H).

For repeated perturbation, we have to study semigroups {Tσ ∗
n, t }t>0 dual to the SCCS {Tσ

n, t}t>0

constructed in Theorem 2.7,

⟨Tσ
n, t(ρ) | A⟩H = ⟨ρ | Tσ ∗

n, t (A)⟩H for (ρ, A) ∈ C1(H) × L(H), n = 1, . . . ,N. (3.1)

Since the maps Tσ
n, t are trace-preserving, the dual semigroups are unital (unity-preserving) contrac-

tions. They are also called the MDSs.
Because the semigroup {Tσ

n, t}t>0 has unbounded generator, the adjoint semigroup {Tσ ∗
n, t }t>0 is

not strongly continuous on the dual space L(H). Duality relation (3.1) and the strong continuity
of semigroup {Tσ

n, t}t>0 merely imply the weak∗-continuity of Tσ ∗
n, t on L(H). Therefore, the pair

(L(H),Tσ ∗
n, t ) is a W ∗-dynamical system.

Let A(H) denote the Weyl CCR-algebra on H. This unital algebra is generated as operator-
norm closure of the linear span Afin(H) of the Weyl operators

W (ζ) = exp[i�⟨ζ,b⟩ + ⟨b, ζ⟩�/√2], (3.2)

where the sesquilinear form notations

⟨ζ,b⟩ B
N
j=0

ζ̄ jbj, ⟨b, ζ⟩ B
N
j=0

ζ jb∗j (3.3)

are used. We comment that CCR (1.3) has the Weyl form:

W (ζ1)W (ζ2) = e−i Im⟨ζ1,ζ2⟩/2 W (ζ1 + ζ2) for ζ1, ζ2 ∈ CN+1. (3.4)

and the algebra A(H) is dense subset of L(H) in the weak as well as in the strong operator
topologies. (see, e.g., Ref. 2, Lectures 4 and 5).

In the rest of this section, we give the explicit form for the action of {Tσ ∗
n, t }t>0 for 1 6 n 6 N on

the Weyl operators. To this aim, we introduce (N + 1) × (N + 1) Hermitian matrices Jn, Xn, and Yn
by

(Jn) jk =



1 ( j = k = 0 or j = k = n)
0 otherwise

, (3.5)
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(Xn) jk =




(E − ϵ)/2 ( j, k) = (0,0)
−(E − ϵ)/2 ( j, k) = (n,n)
η ( j, k) = (0,n)
η ( j, k) = (n,0)
0 otherwise

, (3.6)

and

Yn = ϵ I +
E − ϵ

2
Jn + Xn for n = 1, . . . ,N, (3.7)

where I is the (N + 1) × (N + 1) identity matrix. By P0 we denote the (N + 1) × (N + 1) matrix:
(P0) jk = δ j0δk0 ( j, k = 1,2, . . . ,N). Then Hamiltonian (1.6) takes the form

Hn =

N
j,k=0

(Yn) jkb∗jbk . (3.8)

Theorem 3.1. For n = 1,2, . . . ,N, the action of {Tσ ∗
n, t }t>0 on the Weyl operator has the form

Tσ ∗
n, t (W (ζ)) = Γσn, t(ζ)W (Uσ

n (t)ζ) , ζ ∈ CN+1 , (3.9)

Γ
σ
n, t(ζ) = exp


− 1

4
σ− + σ+
σ− − σ+

�⟨ζ, ζ⟩ − ⟨Uσ
n (t)ζ,Uσ

n (t)ζ⟩
�
, (3.10)

and

Uσ
n (t) = exp


it
(
Yn + i

σ− − σ+
2

P0

)
. (3.11)

Remark 3.2. The main effect of non-zero σ∓, in comparison to the case σ∓ = 0,20 may be
summarised as an imaginary shift of the energy parameter,

E → Eσ B E + i
σ− − σ+

2
, 0 ≤ σ+ < σ−.

Note that by (H2) Im(Eσ) > 0. Thereby the semigroup {Uσ
n (t)}t>0 is contraction.

Proof (of Theorem 3.1). Without loss of generality, we only consider n = 1. We put

Ω(t) = Γσ1, t(ζ) and ζ(t) = Uσ
1 (t)ζ . (3.12)

1◦ The operator-valued equation

∂t(Ω(t)W (ζ(t))) = Ω(t)(i[H1,W (ζ(t))] + σ− b∗0 W (ζ(t)) b0

−σ−
2
{b∗0b0,W (ζ(t))} + σ+ b0 W (ζ(t)) b∗0 −

σ+
2
{b0b∗0,W (ζ(t))}) . (3.13)

holds on D0 (1.5). Here the derivative in the left-hand side is valid in the strong-operator conver-
gence sense. Note that equation (3.13) follows straightforwardly from the formulae

∂tW (ζ(t)) = (i ⟨∂tζ(t),b⟩ + ⟨b, ∂tζ(t)⟩√
2

+
1
2


i
⟨ζ(t),b⟩ + ⟨b, ζ(t)⟩

√
2

, i
⟨∂tζ(t),b⟩ + ⟨b, ∂tζ(t)⟩√

2

 )
W (ζ(t))

and

[bk,W (ζ(t))] = i
ζ(t)k√

2
W (ζ(t)) , [b∗k,W (ζ(t))] = −i

ζ(t)k√
2

W (ζ(t)),
which have sense on the number-operator domainD0. See, e.g., Ref. 2, Lecture 5.
2◦ For any ρ ∈ D = (1 + n̂)−1V (1 + n̂)−1, the following equality holds:

∂t Tr[ρΩ(t)W (ζ(t))] = Tr[(Lσ,1ρ)Ω(t)W (ζ(t))]. (3.14)
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In fact, let ρ = (1 + n̂)−1ν(1 + n̂)−1, where ν ∈ V is approximated by a family of finite-rank
self-adjoint operators {νk}k>1, i.e., νk → ν, when k → ∞, in the trace-norm topology. Then from 1◦

with the help of (2.5), we obtain

∂tTr[(1 + n̂)−1νk(1 + n̂)−1
Ω(t)W (ζ(t))] = Tr

�
Lσ,1

�(1 + n̂)−1νk(1 + n̂)−1�
Ω(t)W (ζ(t))�.

Note that one also gets that the limit

lim
k→∞

Lσ,1
�(1 + n̂)−1νk(1 + n̂)−1� = Lσ,1

�(1 + n̂)−1ν(1 + n̂)−1�

in the trace-norm, since by (2.5), the expression of Lσ,1
�(1 + n̂)−1(νk − ν)(1 + n̂)−1� is the sum of

the products of νk − ν and k-independent bounded operators . Then

∂tTr[(1 + n̂)−1νk(1 + n̂)−1
Ω(t)W (ζ(t))] → Tr

�
Lσ,1

�(1 + n̂)−1ν(1 + n̂)−1�
Ω(t)W (ζ(t))�

holds uniformly in t. On the other hand, the limit

Tr[(1 + n̂)−1νk(1 + n̂)−1
Ω(t)W (ζ(t))] → Tr[(1 + n̂)−1ν(1 + n̂)−1

Ω(t)W (ζ(t))]
also holds for k → ∞ uniformly in t. Then we obtain the assertion by the standard argument on
differentiation under the limit.
3◦ Equality (3.14) also holds for ρ ∈ dom Lσ,1�D. Here Lσ,1�D denotes the closure of the restriction
Lσ,1�D (cf. Theorem 2.7).

In fact, for any ρ ∈ dom Lσ,1�D, there exists a sequence {ρk}k>1 ⊂ D such that

ρk → ρ, Lσ,1�D ρk → Lσ,1�D ρ ,

as k → ∞, in the trace-norm topology. Then we obtain the assertion by differentiation under the
limit as in 2◦.
4◦ For each ρ ∈ dom Lσ,1�D , ζ ∈ CN+1 and t > 0, the following equality holds:

Tr [Tσ
1, t(ρ)W (ζ)] = Tr [ρΩ(t)W (ζ(t))]. (3.15)

To this aim, we define the function

f (s, t) B Tr [Tσ
1,s(ρ)Ω(t)W (ζ(t))] for s, t > 0.

Then Theorem 2.7 and the Hille-Yosida theorem yield Tσ
1,s(ρ) ∈ dom Lσ,1�D and ∂s f (s, t)

= Tr [Lσ,1�D(Tσ
1,s(ρ))Ω(t)W (ζ(t))], which is equal to ∂t f (s, t) by 3◦. Then we obtain ∂s f (t − s, s) =

0 and assertion (3.15) follows from f (t,0) = f (0, t).
5◦ Since Tσ

1, t is bounded and dom Lσ,1�D is dense in V , (3.15) holds for any ρ ∈ V . Note that any
ρ ∈ C1(H) can be presented as a linear combination of elements from V . The theorem then follows
by Remark 2.8 and by duality (3.1). �

From (1.14), the dual evolution map for the repeated perturbation is given by

Tσ ∗
t,0 = Tσ ∗

1 · · · Tσ ∗
n−1 Tσ ∗

n,ν(t), (3.16)

where t = (n − 1)τ + ν(t), n 6 N .

Corollary 3.3. The composition of dual evolutions (3.16) on the Weyl operator is

Tσ ∗
Nτ,0(W (ζ)) = exp


− 1

4
σ− + σ+
σ− − σ+

�⟨ζ, ζ⟩ − ⟨Uσ
1 · · ·U

σ
N ζ,Uσ

1 · · ·U
σ
N ζ⟩�W (Uσ

1 · · ·U
σ
N ζ) , (3.17)

where we denote Uσ
n B Uσ

n (τ).
To illustrate the above statements by an example, we consider the evolution of the initial state

given by product of the Gibbs states,

ρ = ρ0 ⊗
N
k=1

ρk , ρ0 = e−β0a
∗a/Z(β0) , ρ j = e−βa

∗a/Z(β) ( j = 1,2 . . . ,N), (3.18)

which has the characteristic function (see Ref. 20),
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ωρ(W (ζ)) = ⟨ρ |W (ζ)⟩ = exp

− |ζ0|2

4

(1 + e−β0

1 − e−β0
− 1 + e−β

1 − e−β
)
− ⟨ζ, ζ⟩

4
1 + e−β

1 − e−β

. (3.19)

From Corollary 3.3, we obtain the following proposition about time evolution of the Gibbs state
for the open system (S + R) + C.

Proposition 3.4. Let ρ be initial density matrix (3.18). Then

ωTσ
Nτ,0ρ

(W (ζ)) = ⟨ρ |Tσ ∗
Nτ,0(W (ζ))⟩ = exp


− 1

4
⟨ζ,Xσ(Nτ)ζ⟩ ,

where Xσ(Nτ) is the (N + 1) × (N + 1) matrix given by

Xσ(Nτ) =Uσ ∗
N · · ·U

σ ∗
1

(
− σ− + σ+
σ− − σ+

+
1 + e−β

1 − e−β
)
I +
(1 + e−β0

1 − e−β0
− 1 + e−β

1 − e−β
)
P0



×Uσ
1 · · ·U

σ
N +

σ− + σ+
σ− − σ+

I . (3.20)

B. Completely positive quasi-free maps and states

Let A(S,σ) be the (abstract) Weyl CCR-algebra for a linear spaceS and a symplectic form σ
onS. Recall that a bounded linear unital map T : A(S,σ) → A(S,σ) is quasi-free if there exists a
linear map U :S → S, and a map Γ :S → C such that

T(W (ζ)) = Γ(ζ)W (Uζ) hold for all ζ ∈ S. (3.21)

We also recall that for two C∗-algebras A and B, a map T : A → B is completely positive (CP)
if

K
k,k′=1

y∗k T(x∗kxk′) yk′ > 0 (3.22)

holds for all {xk}Kk=1 ⊂ A and {yk}Kk=1 ⊂ B for any K > 1. See [Ref. 18, Ch. 8], [Refs. 1 and 4].
Using (3.21), one can define the map T for a given U and Γ on the algebraic span of Weyl operators
which is dense in A(S,σ). For the problem of extension of T to a CP map on A(S,σ), we refer the
following result in Ref. 11.

Proposition 3.5. For a given linear map U :S → S, let σU be another symplectic form defined
by

σU(α, β) = σ(α, β) − σ(Uα,U β) for α, β ∈ S. (3.23)

Then the necessary and sufficient condition of that map (3.21) can be extended to a completely
positive map on A(S,σ) is the existence of a state ω on A(S,σU) such that Γ(ζ) = ω(WU(ζ)) for
Weyl operators WU ∈ A(S,σU).

Theorem 3.6. As a map on A(H), the dual MDS {Tσ ∗
n, t }t≥0 given by duality (3.1) is quasi-free

and completely positive for n = 1,2, . . . N.

Proof. It is obvious from (3.9) and its contraction property that the dual MDS maps A(H) into
itself and that it is quasi-free.

For a fixed n and t, we put U = Uσ
n (t). By setting S = CN+1 and σ( · , · ) = Im ⟨ · , · ⟩,

then A(S,σ) = A(H) holds and the action of Tσ ∗
n, t has form (3.21). Since U is a contraction

(Remark 3.2), there is a linear map C : CN+1 → CN+1 such that

⟨Cα,C β⟩ = ⟨α, β⟩ − ⟨Uα,U β⟩, α, β ∈ CN+1. (3.24)

Then we can consider the CCR-algebra A(CN+1,σU) with symplectic form

σU(α, β) = σ(α, β) − σ(Uα,U β) = Im⟨Cα,C β⟩, (3.25)
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as the C∗-subalgebra of L(H) generated by the Weyl system {W (Cζ) | ζ ∈ CN+1}. Here WU(ζ) =
W (Cζ) satisfies CCR with symplectic form σU, where W (ζ) is given by (3.2).

Let ρ be product density matrix (3.18) with β0 = β = logσ−/σ+ > 0 (cf. H.2). Then we have
the corresponding normal state ωρ on L(H). Let ω be the restriction of ωρ to A(CN+1,σU). From
(3.19), one gets

ω(WU(ζ)) = ⟨ρ |W (Cζ)⟩ = exp

− ∥Cζ ∥2

4
σ− + σ+
σ− − σ+


.

Comparing with Γσn, t(ζ) in (3.10) and (3.24), we see that the ω plays the role in Proposition 3.5.
Then, there exists a CP map on A(H) whose action on the Weyl operators coincides with that of
Tσ ∗
n, t . From the continuity, the coincidence of these maps on A(H) follows. Thus, the complete

positivity of Tσ ∗
n, t has been proved. �

Since a composition of quasi-free CP maps is clearly quasi-free and CP, (3.16) imply

Corollary 3.7. The dual evolutions Tσ ∗
t,0 is the completely positive quasi-free map on the Weyl

CCR-algebra A(H) for t ∈ [0,Nτ).
Corollary 3.8. The dual evolutions Tσ ∗

t,0 and Tσ ∗
n, t (n = 1, . . . ,N) are the completely positive

maps on L(H) for t ∈ [0,Nτ).
Proof. For T = Tσ;∗

n, t , arbitrarily fixed unit vector ϕ ∈ H and K ∈ N, put

Φ({Ak}Kk=1,{Bk}Kk=1) = (ϕ,
K

k,k′=1

B∗k T(A∗k Ak′) Bk′ϕ), (3.26)

where {Ak}Kk=1,{Bk}Kk=1 ⊂ L(H). Since the CCR algebra A(H) is a dense subset of L(H) in the
strong operator topology, we may take {Ak, j} j ∈N,{Bk, j} j ∈N ⊂ A(H) such that

s − lim
j→∞

Ak, j = Ak and s − lim
j→∞

Bk, j = Bk

for every k = 1, . . . ,K . Recalling that T = Tσ ∗
n, t is CP on A(H), we have

0 6 Φ({Ak, j}Kk=1,{Bk, j}Kk=1) =
K

k,k′=1

⟨Tσ
n, t(Bk, jPϕB∗k′, j), A∗k, jAk′, j⟩ ,

where Pϕ is the projection operator on H onto its one dimensional subspace spanned by ϕ. Note
that

Tσ
n, t(Bk, jPϕB∗k′, j) → Tσ

n, t(BkPϕB∗k′) in C1(H)
as j → ∞ since Bk, jPϕB∗

k′, j → BkPϕB∗
k′ in C1(H) and Tσ

n, t is bounded on C1(H). Note also that
A∗
k, j

Ak′, j converges to A∗
k
Ak′ weakly. By the principle of uniform boundedness, {A∗

k, j
Ak′, j} j ∈N is a

bounded set. Together with weak continuity of normal states ⟨ρ| · ⟩ : L(H) → C, this yields that

Φ({Ak}Kk=1,{Bk}Kk=1) = lim
j→∞
Φ({Ak, j}Kk=1,{Bk, j}Kk=1) > 0.

Thereby we have proved the complete positivity of T = Tσ ∗
n, t on L(H). Proofs for the other maps

are almost verbatim. �

As we have seen, T
�
A(H)� ⊂ A(H) for T = Tσ ∗

t,0 , Tσ ∗
n, t holds. Moreover, T is positive unital

map. Therefore for any state ω on A(H), ω ◦ T is also a state on A(H).
Recall that a state ω on A(H) is said to be quasi-free if there exist a linear form L and a

non-negative sesquilinear form q on CN+1 such that

ω(W (ζ)) = exp[L(ζ) − q(ζ, ζ)]
holds for every ζ ∈ CN+1.23 By (3.9) and (3.17), it is obvious that ω ◦ T is quasi-free if ω is. Let us
summarize them in the following assertion.

Theorem 3.9. The operators Tσ ∗
t,0 , Tσ ∗

n, t (n = 1, . . . ,N) map the set of quasi-free state on A(H)
into itself.
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APPENDIX: PROOF OF LEMMA 2.1

Proof. The operator K0 with its domain D0 (1.5) is closed with discrete spectrum S(K0) ⊂
C+ = { z ∈ C| Re z > 0}. In fact, for m ∈ ZN+1,

�
2−1(σ+ + σ−) + iE

�
m0 + 2−1σ+ + iϵ

N
j=1 m j is its

eigenvalue and ψm in (2.3) is the corresponding eigenvectors. It is enough to consider the case n = 1
only and to prove the following three claims:24

(i) the operator K1 is closed;

(ii) the numerical range of K1 is contained in C+;

(iii) there exists z ∈ C such that Re z > 0 and z belongs to the resolvent set ρ(−K1) of the operator
−K1.

For (i), we have to show that there exist constants c ∈ (0,1) and C > 0 such that

∥η(b∗0b1 + b∗1b0)ϕ∥ 6 c∥K0ϕ∥ + C∥ϕ∥, (A1)

for every ϕ ∈ D0. Estimate (A1) follows directly from the CCR number-operator bounds for bo-
sons. By conditions η2 6 Eϵ , (H.1), and 0 < σ+ + σ−, (H.2), we obtain

c =
√

2η
(
E +


E2 + (σ+ + σ−)2/4
)−1/2

ϵ−1/2 < 1.

To show (ii), let ϕ ∈ D0, ∥ϕ∥ = 1. Then one immediately gets

(ϕ,K1ϕ) = σ+
2
∥b∗0ϕ∥2 +

σ−
2
∥b0ϕ∥2 + iE∥b0ϕ∥2 + iϵ

N
j=1

∥bjϕ∥2 + 2iη Re (b0ϕ,b1ϕ) ⊂ C+.

For (iii), we note that by virtue of S(K0) ⊂ C+, z ∈ ρ(−K0) and ∥(z1 + K0)−1∥ 6 1/Re z hold,
if Re z > 0. Moreover, we get estimate ∥K0(z1 + K0)−1∥ 6 1, if Re z > 0 and Im z > 0 hold. Hence,
by (A1), we obtain for this value of z that

∥η(b∗0b1 + b∗1b0)(z1 + K0)−1∥ 6 c∥K0(z1 + K0)−1∥ + C∥(z1 + K0)−1∥ 6 c +
C

Re z
. (A2)

Then, if Re z is large enough, the right-hand side of (A2) is less than one. For these values of z, the
resolvent identity for K1 and K0 yields the boundedness of

(z1 + K1)−1 = (z1 + K0)−1�1 + iη(b∗0b1 + b∗1b0)(z1 + K0)−1�−1
,

which proves assertion (iii) and the lemma. �
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