
Development of probabilistic timed CEGAR

言語: eng

出版者:

公開日: 2017-10-03

キーワード (Ja):

キーワード (En):

作成者:

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/2297/41336URL

Development of Probabilistic Timed CounterExample Guided Abstraction
Refinement

Satoshi Yamane
Kanazawa University

Email: syamane@is.t.kanazawa-u.ac.jp

Takaya Shimizu
Kanazawa University

Email: shimizu@csl.ec.t.kanazawa-u.ac.jp

Abstract—In this paper, we present an efficient verification
method for probabilistic timed automaton. This method based
on predicate abstractions and refinements realizes effective au-
tomated verifications for real-time and probabilistic embedded
systems.

Keywords-probabilistic timed automaton, model checking,
CEGAR(CounterExample Guided Abstraction Refinement),
predicate abstraction

I. INTRODUCTION

A. Background

E.M.Clarke has proposed model checking [2] based on
CEGAR(CounterExample Guided Abstraction Refinement)
[9] of reactive systems. As it is possible to avoid the
state space explosion by predicate abstraction [1], CEGAR
attracts attention. Of special interests in model checking are
safety properties, which assert that the system does not reach
a bad state. The safety is verified by reachability analysis.

In this paper, we propose the reachability analysis of a
probabilistic timed automaton based on CEGAR, what is
called Probabilistic Timed CEGAR. In order to develop the
verifier of probabilistic timed automaton based on CEGAR,
we must construct a sound abstract model, and analyze
counterexamples, refine the abstract model. In this paper,
we develop Probabilistic Timed CEGAR by constructing
a sound abstract model, and analyzing counterexamples,
refining the abstract model for a probabilistic timed au-
tomaton. In development of the above-mentioned technique,
the simultaneous practicability of two or more paths by a
probabilistic branch is judged in Simultaneous Counterex-
ample Analysis, and the refinement technique of the abstract
model by the spurious counterexample is realized. Moreover,
the experiment of this technique is implemented, and it is
shown by comparing with existing techniques [8], [23] that
verifications with smaller state spaces are possible.

B. Related works

Various CEGAR verifiers have been studied for various
systems. Real-time CEGAR [10] has been developed for
real-time systems, Hybrid CEGAR [21], [22] has been
developed in hybrid systems. Probabilistic CEGAR [14] has
been developed in probabilistic systems. As related works

of probabilistic timed CEGAR, H.Hermanns proposes the
abstraction of a probabilistic automaton using a stochastic
game semantics [15]. But he does not propose refinements,
also predicate abstractions. On the other hand, symbolic
model checking has been developed for a probabilistic timed
automaton [8], [23]. Also, J. Sproston has studied the com-
putational complexity of model checking of a probability
time automaton [20]. Our proposed new Probabilistic timed
CEGAR is the verification technique reducing the number
of states, and can expect an efficient verification.

II. PROBABILISTIC TIMED AUTOMATA

A. Preliminaries

First we define distributions and clocks.

Definition 1 (Discrete probability distribution).
A discrete probability distribution over a finite set Q is a

function p : Q → [0, 1] such that
∑

q∈Q p(q) = 1. For a
possibly uncountable set Q∞, let Dist(Q∞) be the set of
distributions over finite subsets of Q∞.

Definition 2 (Clocks and clock valuations).
A clock is a real-valued variable which increases at the

same rate. Let C be a set of clocks. A valuation of ν is
a function ν : C → R

≥0. We denote the set of all clock
valuations by VC．For any δ ∈ R and ν ∈ R

≥0, we use
(ν+δ) to denote the clock valuation defined as (ν+δ)(x) =
ν(x) + δ for all x ∈ C. We use ν[X := 0] to denote the
clock valuation obtained from ν by resetting all of the clocks
in x ∈ X to 0, and leaving the values of all other clocks
unchanged.

Next, we define zones as the set of clock valuations.

Definition 3 (Zones).
The set of zones of C, written Zones(C), is defined

inductively by the syntax:

ζ ::= x ≤ c|x < c|x > c|x ≥ c|x1 − x2 ≤ d|x1 − x2 < d|true|ζ ∧ ζ
, where x ∈ C，c ∈ N，d ∈ Z．

The clock valuation ν satisfies the zone ζ, written ν � ζ,
if and only if ζ resolves to true after substituting each clock
x ∈ C with the corresponding clock value ν(x) from ν. The
semantics of a zone ζ is the set of clock valuations which

satisfy the zone ζ. The zone ζ satisfies the clock valuation
ν0 , written ζ0 = {ν0}.

B. Syntax

We now present the formal syntax of a probabilistic timed
automaton.

Definition 4 (Probabilistic timed automaton).
A probabilistic timed automaton G is a tuple

(L, l0, C, Inv , prob) where:

• L is a finite set of locations
• l0 ∈ L is an initial location
• C is a finite set of clocks
• Inv : L→ Zones(C) is a function called an invariant

condition
• prob ⊆ L × Zones(C) × Dist(2C × L) is a finite set

called the probabilistic edge relation

A state s of G is a pair (l, ν)．G behaves from an initial
state (l0, ν0) by discrete transitions or timed transitions.

In any state (l, ν), there is a nondeterministic choice of
either (1)letting time pass or (1)making a discrete transition.
In case (1), a timed transition is performed within the same
location, and when a t ∈ R

>0 timed transition carries out in
state (l, ν), it becomes a state (l, ν + t) by a probability 1,
where according to the invariant conditions of a location, t
must satisfy ν + t � Inv(l). In case (2), a discrete transition
can be made according to any (l, ζg, p) ∈ prob, where l ∈ L
is a source location，ζg ∈ Zones(C) is a zone condition,
p ∈ Dist(2C×L) is a distribution. The probability of moving
to the location l′ ∈ L and resetting all of the clocks in the
set X ∈ 2C to 0 is given by p(X, l′) ∈ (0, 1]. When (l, ζg, p)
is a transition relation and the set of clocks to reset is X ,
and l moves to l′, the state (l, ν) becomes (l′, ν[X := 0])
by the discrete transition.

Discrete transitions are possible when filling two of the
followings.

• For any (l, ζg, p) ∈ prob, clock valuations in a source
state (l, ν) satisfy a zone condition ζg .

• Clock valuations in a target state (l′, ν[X := 0]) satisfy
the invariant condition of l′.

In the result, both ν � ζg and ν[X := 0] � Inv(l′) must hold
true．

Example 1. We explain behaviors of a probabilistic timed
automaton G1 in Figure 1. x, y ∈ C are clocks，
start, done, abort ∈ L are locations. G1 makes a transition
either from start to start with the probability 0.2 or to done
with the probability 0.8.

C. Semantics

We give the semantics of a probabilistic timed automaton
G defined in terms of a timed probabilistic system M[8],
which is a Markov decision process.

Figure 1. Probabilistic Timed Automaton G1

Definition 5 (Timed probabilistic system).
Let G = (L, l0, C, Inv , prob) be a probabilistic timed

automaton. The semantics of G is defined as the timed
probabilistic system M = (S, s0,Steps) where:

• S ⊆ L× VC is a set of states
• s0 = (l0, ν0) is an initial state
• Steps ⊆ S × R

>0 × Dist(2C × S) is a finite set of
transitions

(l, ν) ∈ S must satisfy ν �Inv(l)．Steps consists of timed
transitions and discrete transitions. Let μ ∈ Dist(2C ×S) be
a probability distribution. We define the transition relation
((l, ν), t, μ) ∈ Steps from (l, ν) ∈ S to (l′, ν′) ∈ S as
follows, where t ∈ R

>0 is an elapsed time and (l, ζg, p) ∈
prob is a probabilistic transition relation of G. Especially
let μ⊥ be a probability distribution of timed transitions.

(1)t-timed transition:

(l, ν)
t,μ⊥(∅,(l′,ν′))−→ (l′, ν′)

, where

μ⊥(∅, (l′, ν′)) =

{
1 if l′= l ∧ ∀t′.(0 ≤ t′ ≤ t ∧ ν′=ν+t′ ∧ ν′�Inv(l))
0 otherwise

(2)Discrete probabilistic transition by (l, ζg, p):

(l, ν)
0,μ(X,(l′,ν′))−→ (l′, ν′)

, where

μ(X, (l′, ν′)) =

{
p(X, l′) if ν � ζg ∧ ν′=ν[X := 0]
0 otherwise

M moves to (l′, ν′) by resetting clocks X by the prob-
abilistic transition of μ(X, (l′, ν′)). For discrete transitions,
since the probability distributions μ(X, (l′, ν′)) on M corre-
sponds to the probability distribution p(X, l′) on G, p(X, l′)
is equal to μ(X, (l′, ν′)).

A path ω of M is a non-empty finite or infinite sequence
of transitions from an initial state s0.

ω = s0
t0,μ0(X0,s1)−→ · · · ti−1,μi−1(Xi−1,si)−→ si

ti,μi(Xi,si+1)−→ · · ·
In ith transition, ti is an elapsed time of a timed transition,
and μi is a probability distribution, Xi is a set of reset

clocks, si+1 is a target state. Here our timed probabilistic
system is a strictly divergent [20]. Strict divergence means
all the paths have time divergence [3]. Also J. Sproston
proposes EXPTIME algorithm for model checking of a
timed probabilistic automaton with strict divergence [20].
We say that a finite path ωfin of length |ωfin | is a prefix
of an infinite path ωful . The last state of a finite path ωfin

is denoted by last(ωfin). The sets of all finite and infinite
paths starting in state s0 are denoted Pathfin and Path ful ,
respectively. For any path, we denote by ωfin(i) and ωful (i)
the (i+ 1)th state.

We define the set of paths reaching the set Se of states as
follows:

• For a finite path
Pathfin(Se) = {ωfin ∈ Pathfin |last(ωfin) ∈ Se}

• For an infinite path
Pathful (Se) = {ωful ∈ Pathful |∃i.ωful(i) ∈ Se}

Next we define an adversary to resolve nondeterministic
behaviors.

Definition 6 (An adversary of a timed probabilistic system).
An adversary A of a timed probabilistic system M is a
fuction A : Pathfin → R

≥0 × Dist(2C × S) such that
(last(ωfin), t, μ) ∈ Steps . We denote the set of all the
adversaries by Adv .

An adversary represents a resolution of nondeterministic
behaviors, and maps every finite path to both a timed tran-
sition and a probability distribution. Here a timed transition
corresponds to both an elapsed time t and a probability
distribution μ⊥. We let PathA

ful (respectively, PathA
fin) de-

note the subset of Pathful (respectively, Pathfin) induced
by A. For any infinite path ωful ∈ PathA

ful , we can define
A(ωi-th) = (ti, μi) by ωi-th ∈ PathA

fin , which is a prefix of
an infinite path.

D. Discrete time Markov chains

We construct a discrete time Markov chain MCA =
(S, s0,PA) from a timed probabilistic system M =
(S, s0,Steps) by resolving non-deterministic behaviors us-
ing any adversary A. The S and s0 of a timed probabilistic
system correspond to the S and s0 of a discrete time Markov
chain. PA : PathA

fin ×PathA
fin → [0, 1] can be described for

any finite path of a discrete time Markov chain as follows:

PA(ωfin , ω
′
fin) =

⎧⎪⎨
⎪⎩
μ(X, s′) if ∃μ.(A(ωfin) = (t, μ) and

ω′
fin = ωfin

t,μ(X,s′)−→ s′

0 otherwise

Next for any finite path ωfin , we define the probability
ProbA

fin : PathA
fin → [0, 1] as follows:

ProbA
fin(ωfin) def=

⎧⎪⎪⎨
⎪⎪⎩

1 if |ωfin | = 0
|ωfin |−1∏

i=0

PA(ωi-th, ω(i+1)-th) otherwise

A finite path ωi-th of length i is a prefix of ωfin .
Next we define the cylinder of a finite path ωfin for an

adversary A as follows:

CA(ωfin) def= {ω ∈ PathA
ful |ωfin is a prefix of ω}

Let ΣA be the smallest σ-algebra on Pathfin which
contains the cylinders CA(ωfin) for any ωfin ∈ Pathfin .
Finally, we define ProbA on ΣA as the unique measure for
any ωfin ∈ Pathfin as follows:

ProbA(CA(ωfin)) def= ProbA
fin(ωfin)

Here a set of infinite paths reaching to a set Se of states
is {ω ∈ PathA

ful |∃i ∈ N.ω(i) ∈ Se} ∈ ΣA. The probability
reaching from an initial s0 to a set Se by an adversary A
can be given as ProbA({ω ∈ PathA

ful |∃i ∈ N.ω(i) ∈ Se}).
We denote this probability by ProbA(Se). The maximal
reachability probability of a Markov decision process can be
computed by resolving non-deterministic behaviors using a
simple adversary [13]. But the maximal reachability proba-
bility of a time probabilistic system can not be computed
by resolving non-deterministic behaviors using a simple
adversary [20]

E. Probabilistic reachability problem and counterexamples

In this paper, given a probabilistic timed automaton, we
verify a reachability problem, which is a safety property.

Definition 7 (Reachability problem).
Let Se = {(le, ν) ∈ S|le ∈ Le} be a set of states for a set
Le ⊆ L of locations. Also, let λ ∈ [0, 1] be the probability
of a set of paths reaching a set Se of states from s0.

Let the reachability problem of G be a tuple (λ,Le),
where λ ∈ [0, 1] is the probability of a set of paths reaching
a set Se, and Le ⊆ L is a set of target locations.

∀A.ProbA(Se) ≤ λ iff the reachability problem outputs
”yes” for any M.

The following proposition clearly holds true for a reach-
ability problem (λ,Le) of a probabilistic timed automaton
G.

Proposition 1 (An adversary in reachability problem).
If the probability of a set of paths reaching a set Se is less

than or equal to λ ∈ [0, 1] for any adversary A, (λ,Le) is
”yes”. Otherwise, (λ,Le) is ”no”.

If (λ,Le) is ”no”, there is an adversary such that the
probability of a set of paths reaching a set Se is greater

than λ ∈ [0, 1], and then probabilistic timed automaton G is
not safe.

Next we define a counterexample.

Definition 8 (Counterexamples).
A counterexample for ∀A.ProbA(Se) ≤ λ is a pair (A,Ω)

where A is an adversary and Ω is a set of finite paths such
that ∑

ω∈Ω

ProbA
fin(ω) > λ

The theorem that a finite counterexample for PCTL for-
mula exists [11] is famous. Also, a finite counterexample for
∀A.ProbA(Se) ≤ λ exists.

Theorem 1 (A finite counterexample).
A finite counterexample for ∀A.ProbA(Se) ≤ λ exists.

It follows that:
¬(∀A.ProbA(Se) ≤ λ) = ∃A.ProbA(Se) > λ
iff

∑
ω∈Ω ProbA

fin(ω) > λ

, where a finite set Ω ⊆ {ω ∈ PathA
fin |last(ω) ∈ Se}.

By this theorem, we can verify whether a counterexample
is spurious or not.

F. A restricted timed probabilistic system

In this paper, a timed probabilistic system(Definition 5)
is a strictly divergent system [20]，which is a non-zeno
system not containing zeno behaviors. But an abstract timed
probabilistic system may contain zeno behaviors. Therefore
we construct a restricted timed probabilistic system MR by
extending the predicate abstraction of timed systems [10].

Definition 9 (A restricted timed probabilistic system).
A restricted timed probabilistic system MR =

(S, s0,StepsR) as the semantics of G restricts timed tran-
sitions of a timed probabilistic system M = (S, s0,Steps).

Consider t ∈ R such that
∃x ∈ C.∃k ∈ {0, · · · , c}.(ν(x) = k∨ (ν(x) < k∧ν(x)+

t ≥ k)), where c ∈ N is the largest constant in M．
For the above t ∈ R, a restricted timed transition is

(l, ν)
t,μ⊥(∅,(l′,ν′))−→ (l′, ν′)

, where μ⊥ is as follows:

μ⊥(∅, (l′, ν′)) =

{
1 if l′= l ∧ ν′=ν+t ∧ ν′∈Inv (l)
0 otherwise

A restricted timed probabilistic system MR has only
restricted timed transitions in a timed probabilistic system
M.

Theorem 2 (A restricted timed probabilistic system).
The output of a reachability problem (λ,Le) of M is ”yes”

iff the output of a reachability problem (λ,Le) of MR is
”yes”.

In this paper, we verify the reachability problem of M by
abstracting and refining MR instead of M from the above
theorem. We denote a restricted timed probabilistic system
MR by M.

III. PREDICATE ABSTRACTION

Predicate abstraction [1] is used to compute a finite
approximation of a given infinite state transition system in
order to avoid the state space explosion. When we verify
real-time systems, the method is based on a set of abstraction
predicates, which are predicates over clock valuations [10].

A. Abstraction predicates

First we define a set of abstraction predicates.

Definition 10 (Abstraction predicates).
Given a set of clocks C, an abstraction predicate ψ with

respect to C is defined as follows:

ψ ::= x1 ≤ c|x1 < c|x1 − x2 < d|true

, where x1, x2 ∈ C，c ∈ N，d ∈ Z．
The value of an abstraction predicate ψ with respect to a

clock valuation ν, where both free and bound variables are
interpreted in the domain C, is denoted by the juxtaposition
ψν ∈ {true , false}. Whenever ψν evaluates to true, ν
satisfies ψ iff the formula obtained as a result of substituting
value ν(x) corresponding to a clock variable x ∈ C in ψ
holds true. For example, x > c，x ≥ c，x1 − x2 ≥ d are
predicates. For any ν ∈ VC , ψ = true is ψν = true.

In this paper, we define a set Ψl = {ψl
0, · · · , ψl

n−1} of
abstraction predicates per each location, where ψli is an
abstraction predicate in location l. A family of abstraction
predicates in all the locations is Ψ = {Ψl0 , · · · ,Ψlk}. A set
Ψl = {ψl

0, · · · , ψl
n−1} of abstraction predicates determines

an abstraction function α : S → S�, which maps clock
valuations (l, ν) to (l, bl), where is a bit-vector bl of length
n, such that the ith component of b is set if and only if ψl

i

holds for ν. We define a pair (l, bl) as an abstract state s�.
We denote a set of abstract states by S�. Here, we assume
that bit-vectors of length n are elements of the set Bn,
which are functions of domain {0, · · · , n−1} and codomain
{0, 1}. ψl

iν = bl(i) holds true, where i-th bl(i) of bl in an
abstract state (l, bl) is given by α((l, ν)). For example, given
Ψl = {x ≤ 1, x − y < −1}, s = (l, x = 1 ∧ y = 1) is
transformed into α(s) = (l, (true, false)).

The inverse image of α is the concretization function γ :
S� → 2S.

Definition 11 (Abstraction and concretization).
Let C be a set of clocks and VC be the corresponding set of
clock valuations. Given a finite set Ψ = {Ψl0 , · · · ,Ψlk} of
predicates , the abstraction function α : S → S� is defined
by

α((l, ν)) = (l, bl) s.t. ∀i.bl(i) = ψl
iν

and the concretization function γ : S� → 2S is defined by

γ((l, bl)) = {(l, ν) ∈ L× VC |Inv(l) ∧
n−1∧
i=0

bl(i) = ψl
iν}.

Moreover, blΨl is defined as a zone by

blΨl = {ν ∈ VC |
n−1∧
i=0

bl(i) = ψl
iν}.

B. Abstract model

We abstract a timed probabilistic system using abstrac-
tion predicates, abstraction and concretization function, a
set Ψ. The abstract model is a Markov decision process.
The abstract model is the over-approximation of a timed
probabilistic system such as the abstraction of timed systems
[10].

Definition 12 (Construction of Abstract model).
By a set Ψ of predicates, we construct the abstract model
M� = (S�, s�

0,Steps�) from a timed probabilistic system
M = (S, s0,Steps), which is transformed from a proba-
bilistic timed system G = (L, l0, C, Inv , prob) as follows:

• S� = L× Bn

• s�
0 = α(s0)

• Steps� ⊆ S� × Dist(2C × S�)
If ∃(l, ν) ∈ γ((l, b)).((l, ν), μ) ∈ Steps，a transition

((l, b), μ�) ∈ Steps� exists, where μ� in ((l, b), μ�) corre-
sponding to ((l, ν), t, μ) is defined as follows:

μ�(X, (l′, b′)) = μ(X, (l′, ν′))

, where α((l, ν)) = (l, b), α((l′, ν′)) = (l′, b′).

Steps� does not include timed transitions. On the other
hand, Steps includes timed transitions. But we define the
probability distribution μ�

⊥ of Steps�, which is abstracted
from the probability distribution μ⊥ of a timed transition of
Steps . Also, we define the path of M� as follows:

ω� = s�
0

μ�
0(X0,s�

1)−→ s�
1

μ�
1(X1,s�

2)−→ s�
2

μ�
2(X2,s�

3)−→ · · ·
An adversary A� of M� is a function A� : Path�

fin →
Dist(2C × S�).

Next a basis is a set of abstraction predicates that is
expressive enough to distinguish between two clock regions
[10]. If a basis is used for predicate abstraction, then the
approximation is exact.

Definition 13 (Basis). [10]
Let M be a timed probabilistic system. Then Ψ is a basis

with respect to M iff for all clock valuations ν1, ν2 ∈ VC

(∀ψ ∈ Ψ ∈ Ψ.ν1 satisf ies ψ iff ν2 satisf ies ψ)

implies

ψν1 ⇐⇒ ψν2

When we biuld M� by a basis, M� is a region graph [3].
In Probabilistic Timed CEGAR, a set of abstraction pred-

icates is a subset of basis. Since the loop of Probabilistic
Timed CEGAR is the technique of the ability to add new
predicates certainly each time, the loop of Probabilistic
Timed CEGAR halts.

Example 2. We show the abstract model M� from a proba-
bilistic timed automaton G1(in Figure 1.) by a set of abstract
predicates {ψst

0 = y≤8, ψst
1 = x−y<−8} in Figure 2.

Figure 2. Abstract Model of G1 : M�

C. Correspondence relations between an abstract model and
a timed probabilistic system

The abstract model may have a case where it does not
have the property of the original model. In this subsection,
the correspondence relation between an abstract model and
a timed probabilistic system about paths and adversaries is
described, moreover the candidate of the counterexample on
M� corresponding to the counterexample on M is defined.

1) Path: The timed transition between s1 and s2 on M
is performed in an abstract state s�, when α(s1) = α(s2) =
s� holds true. Therefore, when we derive ω from ω� by

Counterexample Analysis, a discrete transition s� μ�

−→ in ω�

is derived into s1
t,μ⊥−→ s2

0,μ−→. Thus, the timed transition in
this one abstract state is not included in ω� corresponding
to ω.

Definition 14 (Correspondence relation of paths).
For M� constituted by M and Ψ, a path ω� of M�

corresponding to a path ω of M is constructed for all the
transitions of ω by the following procedures.

1) If a transition of ω is a discrete transition s
0,μ(X,s′)−→ s′,

a transition of ω� is α(s)
μ�(X,α(s′))−→ α(s′)

2) If a transition of ω is a timed transition s
t,μ⊥(∅,s′)−→ s′

and α(s) = α(s′), a transition of ω� does not exist．

3) If a transition of ω is a timed transition s
t,μ⊥(∅,s′)−→ s′

and α(s) �= α(s′), a transition of ω� is α(s)
μ�
⊥(∅,s′)−→

α(s′).
Also, we define the correspondence ω ∈ Pathfin and ω� ∈

Path�
fin by αPath : Pathfin → Path�

fin .

Figure 3. Correspondence relation of paths

We show an example of correspondence relation of an
abstract path and a concrete path in Figure 3. A path ω of M
is one timed transition from s0 to s1, but the corresponding
path ω� of M� does not have a timed transition when s� =
α(s0) = α(s1) holds true.

2) Adversary: We define a correspondence relation of
adversaries by a correspondence relation of paths.

Definition 15 (Correspondence relation of adversaries).
An adversary A� : Path�

fin → Dist(2C × S�) of M� corre-
sponds to an adversary A : Pathfin → R

≥0×Dist(2C ×S)
of M when the following condition is satisfied:

For ∀ω ∈ PathA
fin .∀s ∈ S.∀X ⊆ C.A(ω) = (t, μ) ∧

A�(αPath(ω)) = μ�，μ(X, s) = μ�(X,α(s)).
Also, we define a correspondence between A ∈ Adv and

A� ∈ Adv � by αAdv : Adv → Adv �.

For an adversary A�, we define the probability PA�

: S�×
S� → [0, 1] as follows:

PA�

(s�, s�′) def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
X⊆C

μ�(X, s�′) if ∃ω� ∈ PathA�

fin .

(last(ω�) = s� ∧ ∃μ�.A�(ω�) = μ�))
0 otherwise

Moreover, for any finite path ω�
fin ∈ PathA�

fin , we define

the probability ProbA�

fin(ω�
fin) as follows:

ProbA�

fin(ω�
fin) def=

⎧⎪⎪⎨
⎪⎪⎩

1 if |ω�
fin | = 0

|ω�
fin |−1∏
i=0

PA�

(ω�
fin(i), ω

�
fin(i+ 1)) otherwise

By Definition 14 and Definition 15, the following theorem
holds true:

Theorem 3 (Correctness of paths).
For any ω ∈ PathA

fin and Ψ, αPath(ω) = ω� ∈ PathA�

fin

and αAdv(A) = A� ∈ Adv � exist such that ProbA
fin(ω) =

ProbA�

fin(ω�).

Theorem 4 (Abstraction of a path).
For M, we denote a set PathA

fin of paths induced by an
adversary A. For two paths ω1, ω2 ∈ PathA

fin , the following
holds true:

αPath(ω1) �= αPath(ω2)

3) Candidate of counterexamples: We define a candidate
of counterexamples by correspondence relations of paths and
adversaries.

Definition 16 (Candidate of counterexamples).
For G and a reachability problem (λ,Le), a candidate of

counterexamples of M� is a tuple of an adversary A� and
a set Ω� of paths such that

Σ
ω�∈{ω′�∈PathA�

fin |last(ω′�)∈S�
e}ProbA�

fin(ω�) > λ

, where S�
e ⊆ S� is a set of states of M�, which include le ∈

Le. A counterexample (A,Ω) corresponds to a candidate of
a counterexample (A�,Ω�) when the following relation is
satisfied:

αAdv (A) = A� ∧ ∀ω ∈ Ω.∃ω� ∈ Ω�.αPath(ω) = ω�

We denote

Σ
ω�∈{ω′�∈PathA�

fin |last(ω′�)∈S�
e}ProbA�

fin(ω�)

by

ProbA�

fin(S�
e).

Here we show two theorems about a counterexample and
a candidate of counterexamples.

Theorem 5 (Sum total of reachability probability).
When an adversary of M corresponds to an adversary A�

of M�, the following holds true;

ProbA
fin(Se) ≤ ProbA�

fin(S�
e)

, where ProbA
fin(Se) is the probability of a set of paths

reaching a set of target states Se for an adversary A.

Theorem 5 shows that the maximum reachability prob-
ability of M turns into below the maximum reachability
probability on an abstract model.

Theorem 6 (Existence of a counterexample).
If a counterexample (A,Ω) of M exists，a candidate of a

counterexample (A�,Ω�) always exists.

Figure 4. Probabilistic Timed Automaton G2

Figure 5. Abstract Model M�
0

This theorem shows that if there is not a candidate of a
counterexample (A�,Ω�) of M�, there is a counterexample
(A,Ω) of M. Therefore, if there is not a candidate of a
counterexample (A�,Ω�) of M�, we can say ”yes” for a
probabilistic reachability problem.

D. Simultaneous execution

We mention simultaneous executions of a probabilistic
timed automaton. By Theorem 6, we mention if a coun-
terexample (A,Ω) of M exists，a candidate of a coun-
terexample (A�,Ω�) always exists. But if a candidate of a
counterexample (A�,Ω�) exists, a counterexample (A,Ω) of
M does not necessarily exist. Therefore, in Counterexample
Analysis, we propose how to compute a counterexample
(A,Ω) from a candidate of a counterexample (A�,Ω�). But
it is insufficient just to consider it as a counterexample in
quest of a set Ω of the paths corresponding to each path
of Ω�, because simultaneous executions of a set Ω may
be impossible. We show this fact by both a probabilistic
timed automaton G2 in Figure 4 and an abstract model
M�

0 using abstraction predicates Ψ（Ψl0 = {true},Ψl1 =
{true},Ψl2 = {true},Ψle = {true}）in Figure 5, where a
reachability problem is (0.5, {le}).

We compute a set Ω� of paths as candidates of coun-
terexamples of M�

0 such that ω�
1 = s�

0 → s�
1 → s�

e and
ω�

2 = s�
0 → s�

2 → s�
e. Two paths of M corresponding

to the candidates of two counterexamples exist. For a path
ω1 corresponding to ω�

1, le cannot be reached if the timed
transition of 1 or more unit time is not carried out in l0.
On the other hand, for a path ω2 corresponding to ω�

2, le
cannot be reached if the timed transition is carried out in
l0. In ω1, a timed transition is carried out by an initial
state (l0, ν0), and a discrete transition is carried out in
ω2. That is, the behaviors chosen, respectively differ and

they are behaving by different adversaries. Therefore, it
is necessary to investigate not only Ω from (A�,Ω�) but
the correspondence of A. In this paper, by Counterexample
Analysis, we resolve this problem.

IV. PROBABILISTIC TIMED CEGAR

The approach which applies predicate abstraction and
refinement by a counterexample to a verification is a
framework of CEGAR(CounterExample-Guided Abstraction
Refinement) [9]. The flow of the verification of Probabilistic
Timed CEGAR is explained according to Figure 6.

Figure 6. Verification by Probabilistic Timed CEGAR

1) Abstraction: We compute an abstract model M� by a
set Ψ of predicates. We start computing M� by a set
Ψ of predicates such that ∀l ∈ L.Ψl = {true}.

2) Computing Candidates of Counterexamples: We com-
pute a candidate of a counterexample (A�,Ω�) of M�

Ψ.
If there is no candidate of a counterexample, we output
”yes”, and then finish the verification.

3) Counterexample Analysis: We decide whether a real
counterexample (A,Ω) corresponding to a candidate
(A�,Ω�) of a counterexample exists. If a real coun-
terexample exists, we output ”no”, and then finish the
verification. If a real counterexample does not exist,
(A�,Ω�) does not exist in the concrete model. The
counterexample is a spurious counterexample.

4) Refinement: If it is a spurious counterexample as a
result of Counterexample Analysis, it is the spurious
counterexample. The new predicate Ψ for removing
(A�,Ω�) from M� is derived.

5) return to 1)．

Finally by repeating these loops, Probabilistic Timed CE-
GAR system judges “yes”or “no” to a reachability problem.

The following techniques are needed in order to realize
the verification by this Probabilistic Timed CEGAR.

• The technique of deriving a candidate (A�,Ω�) of a
counterexample from M�.

• The counterexample analysis technique to compute
whether a counterexample (A,Ω) corresponding to a
candidate of a counterexample (A�,Ω�) exists.

• The refinement technique which derives predicate Ψ
which removes (A�,Ω�) from M�.

Here, we mention the theorem of Probabilistic Timed
CEGAR.

Theorem 7 (Validity of Probabilistic Timed CEGAR).
The verification result computed by Probabilistic Timed

CEGAR terminates and is valid.

Proof: (1)First we will show that the loop of Prob-
abilistic Timed CEGAR terminates. When we build an
abstract model M� by a basis, M� is a region graph [3]. In
Probabilistic Timed CEGAR, a set of abstraction predicates
is a subset of basis. Since the loop of Probabilistic Timed
CEGAR is the technique of the ability to add new predicates
in basis certainly each time, the loop of Probabilistic Timed
CEGAR can be said after certainly ending by the number
of times of limited.

(2)Next we will show that Probabilistic Timed CEGAR
is valid. When Probabilistic Timed CEGAR system outputs
“yes” , it is a verification result which is in agreement with
the verification result of M from theorem 6. When Proba-
bilistic Timed CEGAR system outputs “no”, the candidate
of a counterexample is computed, and the counterexample
on M is derived, and M� is refined. If the above is repeated
until Probabilistic Timed CEGAR system outputs ‘yes”,
while M� overapproximates a region graph [3], M� will
be converged on a region graph. Therefore, the verification
result of M is equal to the verification result of Probabilistic
Timed CEGAR. In addition, in the case of being the worst,
M� becomes a region graph, and the verification result of
M is equal to the verification result of Probabilistic Timed
CEGAR.

In this paper, both Counterexample Analysis and Refine-
ment are omitted on account of space.

V. EXPERIMENTS

A. Outline of experiments

We experiment by implementing Probabilistic Timed CE-
GAR verifier by Java SE 1.7.0.09, and compare with existing
techniques about the number of states. Experiment environ-
ment is Windows 7 Home Premium SP1 on Intel Core i3-
2120T 2.60GHz and 3980MB. The source code by Java is
about 2000 lines. Since all the zones are convex zones, zones
are implemented by DBM [16]. Probabilistic Time CEGAR
uses the technique of forward analysis in Counterexample
Analysis. When expressing a zone like DBM using the
maximum constant which appears in a model, it is known
that forward analysis cannot be conducted correctly [18]. If it
is a model which fills any one or more of the followings, it is
also known that forward analysis can be conducted correctly
[18].

Figure 7. FireWire Root Contention Protocol

• A diagonal-free model which uses only clock con-
straints of the form x ∼ d, ∼∈ {<,>,≤,≥,=}.

• A model which uses no more than three clocks.

So, we will verify models which use no more than three
clocks in this experiment. In addition, we conducted two
experiments such as FireWire Root Contention Protocol and
CSMA/CD.

B. FireWire Root Contention Protocol

The IEEE1394 FireWire root contention protocol concerns
the election of a leader between two contending nodes of a
network. The protocol consists of a number of rounds in
which each of the contending nodes flips a coin; given the
result of the coin flip, a node may decide to wait for a
short amount of time or a long amount of time. After this
amount of time has elapsed, a node then checks to see if
the other node has already deferred, and declares itself to
be the leader if so; otherwise, this node defers. The timing
constraints are derived from those given in the standard
when the communication delay is 360ns. The properties we
consider concern the minimum probability to elect a leader
with and without a deadline [8], [23].

The model is shown in Figure 7. In the model, an invariant
condition t ≥ D is added to the location elect which shows
that leader election was completed. Here, t is the newly
added clock variable, in order to express the time which
leader election took. Moreover, D is a constant showing
a deadline. Therefore, reaching to elect means that the
time more than a deadline may be required and leader
election may be executed. Such change is added because this
technique is aimed only at the reachability over a location in
Symbolic Model Checking or PRISM while a deadline can
be specified as property to verify. In addition, in order to
perform the comparison with existing techniques, a deadline
prepares the models from 2000 to 60000. A reachability

Figure 8. Comparison about FireWire Root Contention Protocol

Figure 9. CSMA/CD: The Medium

problem equivalent to the property verified by both Symbolic
Model Checking and PRISM is defined as follows.

(λ,Le) = (0, {elect}), that is ∀A.ProbA(Se) ≤ 0.Se =
{(elect, ν) ∈ S}. The case where this verification re-
sult is “no” – namely, when ∃A.ProbA(Se) > 0.Se =
{(elect, ν) ∈ S} is truth, it turns out that leader election
may take the time more than a deadline.

A comparative result with existing techniques is shown in
Figure 8. For any the Dead Line, verifications are finished
with the number of states smaller than existing techniques.
Moreover, the number of states shows that the number of
states is reduced more with the increase in Dead Line,
although there are few effects while Dead Line is small.

C. CSMA/CD

The CSMA/CD protocol is designed for networks with
a single channel and specifies the behavior of stations with
the aim of minimizing simultaneous use of the channel (data
collision). The basic structure of the protocol is as follows:
when a station has data to send, it listens to the medium,
after which, if the medium was free (no other station is
transmitting), the station starts to send its data. On the other
hand, if the medium was sensed busy, the station waits a
random amount of time, based on the number of failed
transmissions of the packet, and then repeats this process
[8], [23].

In this experiment, we verify whether the time more than
a deadline may be taken for each client to complete commu-

Figure 10. CSMA/CD: The Stations

Figure 11. CSMA/CD(bcmax=1)

nication. The automaton used in this experiment is shown
in Figure 9 and Figure 10. Figure 9 expresses the action of
the transmission path of communication between clients, and
Figure 10 expresses the action of the client which communi-
cates. It assumes communicating by connecting between two
clients by a transmission path as an actual model used for
this experiment, and becomes the model which carried out
parallel composition of these three automata. bcmax used
here is a maximum of the number of times of the resending
processing performed when collision occurs. For the model
constituted in this way, the reachability problem used as
verification property is defined as follows

(λ,Le) = (0, {DONE}). Namely，we verify whether
∀A.ProbA(Se) ≤ 0.Se = {(DONE, ν) ∈ S} is satisfied.

The case where this verification result is “no” – namely
When ∃A.ProbA(Se) > 0.Se = {(DONE, ν) ∈ S} holds
true, it turns out that the time more than a deadline may be
taken for each client to complete communication.

A comparative result with existing techniques is shown in
Figure 11 and Figure 12. Although a verification is finished
with the number of states smaller than existing techniques
for all the Dead Line at the time of bcmax = 2, when
bcmax = 1 and Dead Line are 1800 and 2000, the number of
states is large rather than existing techniques. The state was
subdivided when seeing the log of this experiment later on,

Figure 12. CSMA/CD(bcmax=2)

and many predicates were added by the location containing a
loop. The number of loops was two in the model of FireWire
Root Contention Protocol. Since the number of loops was
16 in the model of CSMA/CD, the number of times of a
CEGAR loop increase, and then the number of states will
increase.

VI. CONCLUSION

We have implemented Probabilistic Timed CEGAR and it
was shown in the specific model as compared with existing
techniques that a verification with the smaller number of
states is possible. We will develop model checking for
PTCTL by extending Probabilistic Timed CEGAR, and also
will develop new technique in order to avoid the state space
explosion.

REFERENCES

[1] S. Graf, H. Saı̈di, ”Construction of Abstract State Graphs with
PVS”, LNCS 1254, pp.72-83, 1997.

[2] E. M. Clarke, O. Grumberg, D. Peled, ”Model Checking”, The
MIT Press, 1999.

[3] M. Kwiatkowska, G. Norman, R. Segala, J. Sproston, ”Auto-
matic verification of real-time systems with discrete probability
distributions”, TCS 282(1), pp.101-150, 2002.

[4] R. Alur, ”Timed Automata”, LNCS 1633, pp.8-22, 1999.

[5] R. Alur, D.L. Dill, ”A theory of timed automata”, TCS 126(2),
pp.183-235, 1994.

[6] M. Kwiatkowska, G. Norman, J. Sproston, ”Symbolic Model
Checking of Probabilistic Timed Automata Using Backwards
Reachability”, CSR-00-01, University of Birmingham, School
of Computer Science, 2000.

[7] M. Kwiatkowska, G. Norman, J. Sproston, ”Symbolic Com-
putation of Maximal Probabilistic Reachability”, LNCS 2154,
pp.169-183, 2001.

[8] M. Kwiatkowska, G. Norman, J. Sproston, F. Wang, ”Symbolic
model checking for probabilistic timed automata”, Information
and Computation 205(7), pp.1027-1077, 2007.

[9] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith,
”Counterexample-Guided Abstraction Refinement”, LNCS
1855, pp.154-169, 2000.

[10] M. O. Moller, H. Rues, M. Sorea, ”Predicate Abstraction for
Dense Real-Time Systems”, ENTCS 65(6), pp.218-237, 2002.

[11] T. Han, J. P. Katoen, ”Counterexamples in probabilistic model
checking”, LNCS 4424, pp.72-86, 2007.

[12] T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine, ”Symbolic
Model Checking for Real-Time Systems”, Information and
Computation 111(2), pp.394-406, 1994.

[13] A. Bianco, Luca de Alfaro, ”Model checking of probabilistic
and nondeterministic systems”, LNCS 1026, pp.499-513, 1995.

[14] H. Hermanns, W. Björn, L. Zhang, ”Probabilistic CEGAR”,
LNCS 5123, pp.162-175, 2008.

[15] L.M.F. Fioriti, H. Hermanns, ”Heuristics for Probabilistic
Timed Automata with Abstraction Refinement”, LNCS 7201,
pp.151-165, 2012.

[16] J. Bengtsson, Wang Yi, ”Timed Automata: Semantics, Algo-
rithms and Tools”, LNCS 3098, pp.87-124, 2004.

[17] A. Rybalchenko, V. Sofronie-Stokkermans, ”Constraint solv-
ing for interpolation”, J. Symb. Comput. 45(11), pp.1212-1233,
2010.

[18] P. Bouyer, ”Untameable Timed Automata!”, LNCS 2607,
pp.620-631, 2003.

[19] V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, ”Au-
tomated Verification Techniques for Probabilistic Systems”,
LNCS 6659, pp.53-113, 2011.

[20] J. Sproston, ”Strict Divergence for Probabilistic Timed Au-
tomata”, LNCS 5710, pp.620-636, 2009.

[21] E.M. Clarke, A. Fehnker, Z. Han, B.H. Krogh, J. Ouaknine,
O. Stursberg, M. Theobald, ”Abstraction and Counterexample-
Guided Refinement in Model Checking of Hybrid Systems”,
International Journal of Foundations of Computer Science
14(4), pp.583-604, 2003.

[22] R. Alur, T. Dang, F. Ivancic, ”Predicate abstraction for
reachability analysis of hybrid systems”, ACM Transactions
in Embedded Computing Systems 5(1), pp.152-199, 2006.

[23] PRISM, <http://www.prismmodelchecker.org>

